You are here

In observance of the 2024 holiday season, Sage offices will be closed Monday December 23rd through Wednesday January 1st. Normal operations, including shipping for orders placed during the closure, will resume on Thursday January 2nd. For technical support during this time, please visit our technical support page for assistance options. 

We wish you a wonderful holiday season. Thank you. 

Disable VAT on Taiwan

Unfortunately, as of 1 January 2020 SAGE Ltd is no longer able to support sales of electronically supplied services to Taiwan customers that are not Taiwan VAT registered. We apologise for any inconvenience. For more information or to place a print-only order, please contact uk.customerservices@sagepub.co.uk.

Monte Carlo Simulation
Share
Share

Monte Carlo Simulation



April 1997 | 112 pages | SAGE Publications, Inc

Monte Carlo Simulation is a method of evaluating substantive hypotheses and statistical estimators by developing a computer algorithm to simulate a population, drawing multiple samples from this pseudo-population, and evaluating estimates obtained from these samples. Christopher Z. Mooney explains the logic behind Monte Carlo Simulation and demonstrates its uses for social and behavioral research in conducting inference using statistics with only weak mathematical theory, testing null hypotheses under a variety of plausible conditions, assessing the robustness of parametric inference to violations of its assumptions, assessing the quality of inferential methods, and comparing the properties of two or more estimators. In addition, Mooney carefully demonstrates how to prepare computer algorithms using GAUSS code and illustrates these principles using several research examples.

is a method of evaluating substantive hypotheses and statistical estimators by developing a computer algorithm to simulate a population, drawing multiple samples from this pseudo-population, and evaluating estimates obtained from these samples. Christopher Z. Mooney explains the logic behind and demonstrates its uses for social and behavioral research in conducting inference using statistics with only weak mathematical theory, testing null hypotheses under a variety of plausible conditions, assessing the robustness of parametric inference to violations of its assumptions, assessing the quality of inferential methods, and comparing the properties of two or more estimators. In addition, Mooney carefully demonstrates how to prepare computer algorithms using GAUSS code and illustrates these principles using several research examples.

Monte Carlo Simulation will enable researchers to effectively execute Monte Carlo Simulation and to interpret the estimated sampling distribution generated from its use.


will enable researchers to effectively execute Monte Carlo Simulation and to interpret the estimated sampling distribution generated from its use.

Learn more about "The Little Green Book" - QASS Series! Click Here


 
Introduction
 
Generating Individual Samples from a Pseudo-Population
 
Using the Pseudo-Population in Monte Carlo Simulation
 
Using Monte Carlo Simulation in the Social Sciences
 
Conclusion

Select a Purchasing Option


Rent or Buy eBook
ISBN: 9781506317908

Paperback
ISBN: 9780803959439
$46.00

This title is also available on SAGE Research Methods, the ultimate digital methods library. If your library doesn’t have access, ask your librarian to start a trial.