
The following material deals briefly with extensions of and alternatives to ANOVA-
model CI procedures. It is a condensed version of what would have been an additional
chapter in ANOVA via CIs had space been available. Reference is sometimes made to
models and equations in ANOVA via CIs, using the numbering system used in the book.

Simplifying analyses of factorial data

Saturated ANOVA models can often lead to complex analyses of data from factorial
experiments, primarily because of the number and nature of the interaction contrasts that
must be included in an exhaustive account of variation between cell means. For
example, a saturated two-factor model of data from a 3 4 design accounts for the 11
degrees of freedom between 12 cells in terms of five linearly independent main effect
parameters and six additional linearly independent interaction parameters. A contrasts
analysis based solely on main effect parameters would obviously be simpler, in scale
and in ease of interpretation, than an analysis including at least six interaction contrasts.

If you decide (perhaps on the basis of a CI on ABf ) that interaction parameters can
safely be ignored, then you can base the interpretation of the data on main effect
contrasts. If you define these contrasts on the main effect parameters of the saturated
two-factor model, then the analysis becomes a simplified version of the ANOVA-model
analysis discussed in Chapter 5 (of ANOVA via CIs). Alternatively, you could choose to
define contrasts on the main effect parameters of the unsaturated main effects model
(4.2). The main effects model is not compatible with the cell means model, and for this
reason PSY cannot construct CIs on contrasts defined on the parameters of the main
effects model.

Unsaturated models In order to avoid confusion, we redefine the two-factor main
effects model as

* * * *
jijk k jkY i   (1)

where *
j

j
 = *

k
k
 = 0.

In general, none of the terms on the right hand side of (1) is identical to the
corresponding term of the right hand side of the saturated model

ijkY = + j + k + jk + ijk

unless the design is balanced, in which case *
j = j and *

k = k . In the case of an

unbalanced design, a contrast like * *
1 2 is usually not identical to the ‘same’contrast

1 2 defined in the context of a different model. Thus the choice of model is not
simply a choice between two different ways of producing interval estimates of the
values of the same set of main effect contrasts (as it is with balanced designs).
The main effects model is not the only unsaturated model that can provide a basis for a

contrasts analysis of data from a two-factor design with factors A and B. Two other
possible models are
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** ** **
jijk ijkY    (2)

and *** ** ***
ijk k ijkY    . (3)

In general, **
j is not equal to *

j (or to j ) and **
k is not equal to *

k (or to k ).
Thus the definition of a main effect parameter and of contrasts on that parameter depend
on what other parameters are included in the model.
The parameters of unsaturated models can be expressed as linear combinations of cell

means, but the results are often surprising because the weights attached to the cell
means in these definitions are influenced by the pattern of sample sizes ( jkn ). Whether

it is appropriate to allow differences in cell sample sizes to influence the definition of
model parameters depends on what is responsible for those differences. If the pattern of
differences in cell frequencies is essentially uninformative, as is the case if it is due to
data missing at random, then the saturated model, which assigns the same weight to
each mean, should be preferred to an unsaturated model. In general, saturated or cell
means models should be adopted for the analysis of data from randomized experiments,
even if there is good reason to ignore some or all of the interactions in the contrasts
analysis.
The pattern of differences in cell sizes can sometimes be genuinely informative in

observational studies without random assignment to cells. Suppose, for example, that
the participants in a 2 3 between-subjects observational study are randomly sampled
from a population of interest to the researcher, and that the two factors are the
categorical individual-difference variables Anxiety ( 1a : high anxiety, 2a : low anxiety)
and Depression ( 1b : low depression, 2b : medium depression, 3b : high depression). In
this case the pattern of inequality in sample sizes is a reflection of the association
between these variables in the population. This is not the place to consider the issues
involved in choosing a model for an analysis of data from this kind of study. Various
approaches have been recommended, some of which use a hierarchical approach (as in
hierarchical multiple regression analysis), with a different model for each type of
parameter. The issues involved are usually discussed in the context of a general
treatment of multiple regression analysis or general linear model analysis, such as that
provided by Cohen, Cohen, West and Aiken (2003).

Fitting an unsaturated model SPSS MANOVA produces an unsaturated model analysis
if the effects in that model are specified on a design line in the syntax file. Given a 2 3
between-subjects design with factors A and B, the following syntax fits the main effects
model and produces 95% Scheffé SCIs on contrasts on the parameters of that model.

manova y by A(1 2) B(1 3)
/contrast(A)=special(1 1

1 -1)
/contrast(B)=special(1 1 1

-1 0 1
-1 2 -1)

/cinterval joint(.95) univariate(scheffe)
/print param(estim)
/design A B.
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The CIs in this analysis refer to main effect contrasts defined on parameters of the main
effects model (1).
The following syntax constructs a CI on the A main effect contrast defined by model

(2).

manova y by A(1 2)
/contrast(A)=special(1 1

1 -1)
/cinterval joint(.95) univariate
/print param(estim).

Finally, to construct Scheffé CIs on the B main effect contrasts defined by model (3),
use the syntax:

manova y by B(1 3)
/contrast(B)=special(1 1 1

-1 0 1
-1 2 -1)

/cinterval joint(.95) univariate(scheffe)
/print param(estim).

Note that a design line is required in the first case in order to define a two-factor model
without interaction parameters.

Analysis of covariance (ANCOVA)

The most simple version of the analysis of covariance model may be written as

ij j ij ijY X   (4)

where X is a covariate, a variable on which subjects are measured prior to the
administration of treatments in the experiment,
the parameter is a regression coefficient

and the remaining terms on the right hand side of (4) are analogous to the corresponding
terms in the single-factor ANOVA model (3.2a).
The error variance 2

 does not include the variance in Y that is predictable from X via
the regression term ijX . Therefore the error variance defined by the ANCOVA model
is smaller than the error variance defined by the ANOVA model if the covariate X is
correlated with the dependent variable Y. As a result, an ANCOVA can often provide
more precise estimates of parameters of interest (such as the values of contrasts on
effect parameters) than an ANOVA.
The model can be extended to include more than one type of effect parameter and more

than one covariate. Covariates should not be included, however, simply because they are
available. Each covariate accounts for one of the degrees of freedom that would
otherwise make a contribution to the estimate of the error variance, so a poorly chosen
set of covariates can lead to a reduction in precision of estimation.
Inferences from ANCOVA depend on stronger assumptions (concerning the nature of
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the regression of Y on X) than inferences from ANOVA.
ANCOVA is often used to analyse data from quasi-experiments where assignment to

treatments is not random (Cook and Campbell, 1979), and pre-existing differences
between groups can be mistaken for treatment effects in an ANOVA. In this context,
covariates are included in order to reduce bias (by controlling for pre-existing
differences associated with the covariates) rather than to increase precision. This is a
problematic application of ANCOVA (Reichardt, 1979), but there is no doubt that
ANCOVA is usually superior to ANOVA in this context.

Carrying out an ANCOVA It is not possible to carry out an ANCOVA with PSY,
because PSY is based on a means model, not the general linear model. In general, any
GLM program that can provide an appropriate ANOVA-model (or MANOVA-model)
analysis can also make provision for the inclusion of one or more covariates in the
analysis. SPSS GLM and SPSS MANOVA can include covariates in a planned contrasts
analysis with t-based CIs. If you want to include covariates in a post hoc analysis
including Scheffé, 2T or GCR CIs, you can do so with SPSS MANOVA. To include a
covariate in an SPSS MANOVA analysis, simply add

with X

to the manova line of the syntax that would otherwise be used for an ANOVA analysis.
For example, the syntax for an ANCOVA based on data in an SPSS file with variables
group, X and Y would begin with the line

manova Y by group with X

Multiple covariates can be included. The selection of covariates should be made
independently of the results of the analysis, because post hoc selection of covariates can
introduce bias into the resulting ANCOVA.

Multivariate analysis of variance (MANOVA)

A multivariate experiment has more than one dependent variable. The most obvious
approach to the analysis of data from an experiment with p dependent variables
( 1 2, , , )pY Y Y is to carry out p univariate analyses, one for each dependent variable.
The FWER from such an analysis can be controlled with Bonferroni-adjusted critical
constants. If the analysis is carried out with a FWER per dependent variable of /p, then
the FWER for inferences on all contrasts in the analysis cannot exceed . All of the
analyses discussed in ANOVA via CIs can be modified in this way. Consider, for
example, a single-factor experiment with J = 4 groups, n = 20 subjects per group, and p
= 3 dependent variables. If the experimenter wishes to control the experimentwise error
rate for post hoc contrasts on all three dependent variables, then the appropriate
Bonferroni-adjusted Scheffé critical constant for CIs is

1 21 .05/3; 3,76/ ; , 3 3.299pF F    .
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Analyses of this kind can be implemented with PSY or SPSS by changing the value of 
[or 100(1 –)] from the default value to /p [or 100(1 –/p)]. To run the Bonferroni-
adjusted Scheffé analysis in PSY, construct a separate input file for each dependent
variable. For each of the p sub-analysis (three in this case), select post hoc on the
Analysis Options screen and change the Confidence level % value from 95 to 100[1 –
.05/p] (98.333 in this case).
An alternative solution to the multiplicity problem is to adopt a MANOVA model for

the analysis of the data. In Chapter 7 we saw how the MANOVA-based GCR procedure
can be used to construct SCIs on interaction contrasts from a mixed (between within)
two-factor design. A similar procedure can be used to construct SCIs on contrasts from a
single-factor between-subjects multivariate experiment. The GCR CC is

;

;

θ
1 θ

E s,m,n

s,m,n








where the GCR () parameters are

s = min( 1, p)
m =  1 1 2p 

and n =  1 2E p  .

The GCR CC for the current example is

; 3 0.5,36

; 3 0.5,36

76θ
1 θ

,

,

 

 
= 3.798 ,

which is 15.1% larger than the Bonferroni-adjusted Scheffé CC. This example illustrates
an important general point: MANOVA-based SCIs are always wider than Bonferroni-
adjusted Scheffé intervals in analyses where the only contrasts of interest are contrasts
on individual dependent variables. MANOVA is not appropriate for analyses of this
kind.

When is MANOVA appropriate? Any contrast in a multivariate experiment can be
expressed as a contrast on a linear combination of the dependent variables. The
MANOVA-based GCR procedure controls the FWER (the EWER in the case of single
factor designs) for all contrasts on all linear combinations of dependent variables,
including the maximal contrast on the first discriminant function, the (necessarily post
hoc) linear combination of dependent variables with the largest ANOVA F statistic. A
MANOVA is appropriate when the experimenter wishes to allow for the possibility that
the linear combinations (such as discriminant functions) that emerge from the analysis
might provide a more informative account of differences between groups than any of the
individual dependent variables. Experimenters who have no interest in emergent linear
combinations should not consider a MANOVA-model analysis.
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It is sometimes suggested that a statistically significant overall MANOVA test is
required to justify a set of ‘follow-up’univariate ANOVAs on individual dependent
variables. The logic underlying this suggestion is essentially the same as the
(discredited) logic underlying the use of ‘protected’t tests on all comparisons following
a significant F test in a univariate analysis. As Gleitzman (1996) has demonstrated,
neither procedure controls the familywise Type I error rate. It should also be noted that
this type of sequential analysis leads only to (invalid) follow-up tests. It does not allow
for the construction of CIs.

Assumptions

The inferential procedures discussed in ANOVA via CIs are based on models including
random error components (such as ijk = ij jY  in the case of the means model) that

allow for discrepancies between expected values of the dependent variable (given the
parameters of the model) and the values actually observed. In the case of between-
subjects designs, the justification for claims about the error rates and confidence levels
associated with these procedures depend on the following assumptions about error:

 the error components associated with each pair of Y values are statistically
independent.

 the variances of the j error distributions ( 2
j ) are homogeneous

within each of the j populations the error components are normally distributed.

The first of these assumptions is often violated in practice, and it is reasonable to
suppose that the second and third assumptions are almost always false. How well, then,
do ANOVA-model analyses perform when assumptions about error distributions are
violated to the extent likely to be encountered in practice? If ANOVA-model analyses
are suspect in the presence of a given degree of variance heterogeneity or non-normality,
are alternative procedures available that are likely to perform better?

The assumption of independence

Consider an experiment with three treatments for depression, where each treatment is
administered by five experienced therapists, but each therapist administers only one
treatment. Suppose that 150 subjects are randomly assigned to the therapists, so that
each therapist treats 10 subjects.
A single-factor fixed-effects ANOVA model for the data from this experiment would

ignore therapists (just as was done for the Depression study discussed in Chapters 2 and
3 of ANOVA via CIs). In effect, an analysis based on this model would assume that
differences in treatment outcomes might be influenced by differences between
treatments, but not by differences between therapists. If this assumption is false, because
some therapists administer treatments more effectively than others, then Y values (and
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associated error components) obtained by different subjects assigned to the same
therapist would not be statistically independent, and this failure of the independence
assumption would bias the estimates of effect parameters in the single-factor ANOVA
model.
We can obtain some idea of the consequences of this threat to the validity of inferences

about treatment effects by considering an alternative model of the data that takes into
account the role of therapists in the design. Although the alternative model has a
Therapist factor as well as a Treatment factor, it is not a factorial model because the
design does not produce data for all possible combinations of treatments and therapists.
Rather, the Therapist factor is nested within treatments, meaning that each therapist is
observed at only one level of the Treatment factor. Furthermore, we will suppose that
Therapist factor is to be treated as random (as distinct from fixed), meaning that the
therapists administering a particular treatment are regarded as a random sample from a
population of qualified therapists, and that conclusions from the analysis are to refer to
the population from which the therapists are sampled. The resulting model can be
written as:

( ) ( )jijk k j i jkY b  , (5)

where ijkY is the dependent variable score obtained by subject i given

treatment j by therapist k (i = 1, ,10 ; 1, ,3; 1, ,5j k   );

( )k jb is the effect of therapist k within treatment j;

( )i jk is the error due to variation between subjects within

treatment-therapist combinations.

The therapist random effect parameter ( )k jb is a value of a random variable with

variance 2
( )k jb . The model includes two random variables, the second being ( )i jk with

variance 2
( )i jk .

The single-factor ANOVA model does not distinguish between therapist variance and
error variance. The proportion of the error variance defined by the single-factor model
that is attributable to differences between therapists is

2
( )

2 2
( )( )

k j

i jkk j

b

b 




 
, (6)

an intraclass correlation coefficient (ICC). An analysis that ignores therapists (that is,
an analysis based on the single-factor ANOVA model) depends on the assumption that 
= 0. If > 0, the standard errors of treatment contrast values are systematically
underestimated, with the result that noncoverage error rates for raw CIs on treatment
contrasts are inflated. In addition, point estimates of standardized treatment effects are
inflated. Given particularly unfavourable combinations of J, K, and n, the bias in the
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estimation of standardized treatment effects resulting from even modest values of can
be substantial. Wampold and Serlin (2000) have shown by Monte Carlo methods that if
J = K = 2, n = 10 and 1 2 0 (two treatments, two therapists per treatment, 10
subjects per therapist, no treatment effect), then the expected value of 2̂ (an estimate
of effect size) is about .067 when = 3. When J = 2, an 2 value of .067 is equivalent
to a standardized mean difference of 1 2 0.536,  a medium effect according to
Cohen’s guidelines. That is, if there is no difference between the two treatment means
and 30% of the ‘error’variance defined by the single-factor ANOVA model is due to
differences between therapists, then a point estimate of the standardized effect size can
be expected to indicate a medium effect (in one direction or the other). As might be
expected, the Type I error rate from a .05-level test of 0 1 2: 0H  (about .339
according to Wampold and Serlin’s Monte Carlo data) is seriously inflated in this
situation. The noncoverage error rate for raw CIs on 1 2 would be similarly
inflated.
Note that the problems outlined in the previous paragraph arise because of a mismatch

between the structure of the experimental design and the model chosen as the basis for
the analysis. The error components defined by (5) can be statistically independent in the
presence of Therapist effects, but the error components defined by the inappropriate
single-factor ANOVA model cannot.

Dealing with statistically dependent observations.

In general, the best way of analysing data from a hierarchical design (where levels of
one factor are nested within levels of another factor) is to base the analysis on a model
[such as (5)] that reflects the hierarchical structure of the design. Analyses informed by
hierarchical models are usually multilevel analyses, where error terms (for tests) and
standard errors (for CIs) vary across levels. For example, an analysis of treatment effects
informed by (5) would use an error term based on variation between therapists within
treatments, whereas an analysis of therapist effects (which may or may not be of interest
to the experimenter) would use an error term based on variation between subjects within
therapists.
If you are thinking of adopting a model for an analysis that appears to ignore statistical

dependencies that may exist in the data, then you should think about the possibility of
adopting a different model that takes the dependencies into account. If the experiment is
well designed, some form of multilevel analysis may be appropriate. For an introduction
to multilevel models, see Cohen, Cohen, West and Aiken (2003), Kreft and DeLeeuw
(1998), or Maxwell and Delaney (2004).
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The assumption of variance homogeneity

If the variance of Y values in population j is 2 2 ,
jjY   the variance homogeneity

assumption states that

1 2

2 2 2 2
J        .

If this assumption is false because error variances 2
j vary across populations, then the

standard error of the estimated value of the contrast g is

ĝ
 =

2 2
j j

jj

c
n


 . (7)

Variance heterogeneity implies that, even if sample sizes are equal, standard errors can
vary across different {m, r} contrasts of the same degree of complexity (and therefore
the same value of 2c ). As a consequence, the procedure used in ANOVA via CIs to
estimate standard errors of between- subjects contrasts (2.12) will systematically
understimate the standard errors of some contrasts and overestimate the standard errors
of others. As a consequence, individual CIs will be too wide on some contrasts, and too
narrow on others.
This problem can be corrected by estimating contrast standard errors from

ˆ̂g
 =

2 2
j j

jj

c s
n . (8)

Given this estimated standard error, the CC required for the construction of an
approximate 100(1 –)% individual raw CI on g is 2/ ;t  , where

 =

 

4

4 4

2

ˆ

1

ˆ
g

j j

j jj

c s
n n



 
 
  




. (9)

This CI procedure (developed by Brown and Forsythe, 1974) is not supported by PSY,
SPSS MANOVA, or any of the other programs mentioned elsewhere in ANOVA via CIs.
SPSS ONEWAY, however, can provide the required values of ĝ , ˆ̂g

 and . Given

these values, hand calculations of CI limits from

g  ĝ CC  ˆ̂g
 ,

are not onerous unless the number of contrasts is large.
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To illustrate the Brown-Forsythe t (BF-t) procedure, we will reanalyse the Depression
data using the same set of planned orthogonal contrasts that were used to illustrate
individual CIs in Chapter 2. The SPSS syntax

oneway y by group
/contrast = .333333 .333333 .333333 -1
/contrast = .5 .5 -1 0
/contrast = 1 -1 0 0.

produces output including the following:

Contrast Tests

8.717a 2.1627 4.031 76 .000
2.800 2.2938 1.221 76 .226
.200 2.6487 .076 76 .940

8.717a 2.0072 4.343 37.409 .000
2.800 2.3214 1.206 40.249 .235
.200 2.7962 .072 37.903 .943

Contrast
1
2
3
1
2
3

Assume equal variances

Does not assume equal
variances

Value of
Contrast Std. Error t df Sig. (2-tailed)

a. The sum of the contrast coefficients is not zero.

The values in the first section of the output (appropriate when variance homogeneity is
assumed) are compatible with the CI analysis discussed in Chapter 2, and repeated in
Table 1(a). BF-t tests (which do not assume homogeneous variances) are reported in the
second section of the SPSS output. Note that  values (df values in the output) are not
integers. These values were rounded to the nearest integer to determine the CCs for the
calculation of the CI limits shown in Table 1(b).

Table 1 Critical constants and 95% individual confidence intervals from Y scores
(a) assuming variance homogeneity and (b) not assuming variance homogeneity

(a) Variance homogeneity assumed

Contrast CC Raw CI Standardized CI
LL UL LL UL

1 .025;76 1.992t  4.409 13.024 0.526 1.555

2 .025;76 1.992t  –1.769 7.369 –0.211 0.880
3 .025;76 1.992t  –5.075 5.475 –0.606 0.654
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(b) Variance homogeneity not assumed

Contrast CC Raw CI Standardized CI
LL UL LL UL

1 .025;37 2.026t  4.710 12.724 0.562 1.519

2 .025;40 2.021t  –1.892 7.492 –0.226 0.894
3 .025;38 2.024t  –5.461 5.861 –0.652 0.700

The BF CIs in Table 1(b) are very similar to those constructed on the assumption of
homogeneous population variances. This is not surprising, given the fact that max mins s

is only 1.22. If sample variances differ substantially, however, then the BF-t procedure
can produce CIs that look very different from standard t-based intervals.
Most of the methods recommended in ANOVA via CIs for the construction of CIs on

between-subjects contrasts (and interaction contrasts with a between-subjects
component) can be modified along the lines suggested by Brown and Forsythe (1974).
For example, the Scheffé procedure can be modified by replacing the standard CC of

1 21 ; ,F with
11 ; ,F  , and replacing the usual contrast standard error with (8).

The modified Scheffé procedure, however, does not have the same relationship to a
similarly modified ANOVA F test that the standard Scheffé procedure has to the
standard ANOVA F test. A similar comment could be made about Brown-Forsythe
modifications of any other procedure allowing for post hoc analysis. Harris (1994,
p.159) recommends that when there is reason to be concerned about variance
heterogeneity, a Bonferroni-adjusted version of the BF-t procedure (perhaps allowing
for inferences on all {m, r} contrasts) should be used in preference to Brown and
Forsythe’s (1974) modification of the Scheffé procedure. None of the modified CI
procedures produces exact CIs. It is not clear whether any of them produce inflated
noncoverage error rates.
If variance homogeneity is not assumed, the usual definition of standardized CIs does

not apply. Standardization can be based on some kind of average of the population
standard deviations, on the square root of the average of the population variances (the
standardization implicitly used in the example), or on variability in a particular
experimental condition (such as a control condition).

The assumption of normal distributions

It is reasonable to suppose that the assumption of normality of error distributions
(implying that Y scores are normally distributed within populations) is always false.
Indeed, the distributions of dependent variables used in psychological research are often
skewed, bimodal, multimodal, or lumpy, sometimes with a discrete mass of scores with
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a value of zero (Micceri, 1989, Sawilowsky and Blair, 1992). Monte Carlo studies have
shown that the two-group t test and the ANOVA F test generally perform well (in the
sense of producing error rates close to nominal values) when Y values are sampled from
populations with mildly or moderately skewed distributions (Glass, Peckham and
Sanders, 1972) and from distributions likely to be encountered in practice (Sawilowsky
and Blair, 1992). This conclusion applies to experiments where the population
distributions for all treatments have the same shape. It probably does not apply to
experiments where the distribution shape varies substantially across treatments, or
where non-normality is combined with variance heterogeneity.
Substantial departures from normality can produce serious discrepancies between

nominal and actual error rates. Consider the problem of constructing a 90% CI on the
mean of a variable Y whose distribution is lognormal rather than normal. [The
lognormal distribution of Y = Ze (where Z has a standard normal distribution) is heavily
skewed, as shown in Figure 1.] If n = 20, the actual noncoverage error rate is about .161
when the nominal error rate is = .10 (Westfall and Young, 1993). More importantly,
the distribution of errors is asymmetrical. The probability of an overestimation error,
where all of the values in the interval are greater than the population mean, is much
lower than the nominal value (about .008, rather than /2 = .05), whereas the
probability of an underestimation error, where all of the values in the interval are
smaller than the population mean, is unacceptably large (about .153 rather than .05). If
the variable Y is a within-subjects contrast variable with a population value of zero, then
the t-based CI (or test) procedure will produce far too many erroneous inferences
implying that < 0. If the population value of the contrast is positive, the procedure
will produce too many directional inferences in the wrong direction (Type III errors) and
too few directional inferences in the right direction (that is, poor power).
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Figure 1 A lognormal distribution
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These results seem to be at odds with the claim that ANOVA methods work reasonably
well with non-normal distributions. It should be noted that the outcome can be quite
different when two or more groups are involved in the analysis. In a between-groups
experiment with approximately equal sample sizes where the dependent variable
distribution is lognormal with the same variance in all populations, ANOVA procedures
work reasonably well (Westfall and Young, 1993, p.60). The same would be true of
within-subjects experiments with lognormal distributions of dependent variable scores
(as distinct from contrast variable scores). Problems similar to those outlined above are
likely to arise in between-subjects experiments, however, if the magnitude or direction
of skew varies across populations. Problems associated with non-normality can be
magnified in analyses including multiple inferences. Westfall and Young (1993, p.62)
have shown that if n = 20, Sidak-adjusted simultaneous inferences on the means of ten
independent lognormal distributions with a nominal FWER of .10 produce an actual
FWER slightly greater than .50, and that almost all of the noncoverage errors are
underestimation errors. These results cannot be generalized directly to multiple
comparisons (as distinct from multiple inferences on individual means), but they do
illustrate the fact that problems associated with a single inference can be magnified
considerably in a multiple inference context.
Skew is not the only kind of departure from normality that has the potential to produce

problems for ANOVA procedures. When these procedures are applied to symmetrical
distributions with thick tails (usually called heavy-tailed distributions), noncoverage
error rates can be expected to fall below the nominal value, thereby decreasing the
power to detect nonzero contrast values (Wilcox, 1998).

Robust alternatives to ANOVA procedures

Least squares (LS) estimation procedures (used in ANOVA and other general linear
model analyses) are known to be sensitive to outliers (extreme values) that occur
relatively frequently in samples from various non-normal distributions, including heavy-
tailed and skewed distributions. Outliers distort LS estimates of standard errors and CI
CCs. Robust estimation procedures provide better estimates of standard errors or better
CCs when ANOVA-model distributional assumptions fail, thereby providing a basis for
CI procedures with better control over error rates There is a large, complex and rapidly
changing literature on robust estimation procedures, and it is not possible to provide an
adequate summary here. For our purposes it will be sufficient to provide a brief
indication of some of the methods that have so far been developed in this area.

Bootstrap procedures A bootstrap procedure (Efron and Tibshirani, 1993) for CI
construction uses a computer-intensive resampling procedure to determine CI limits.
The data set to be analysed defines the population from which the resampling takes
place. Some bootstrap procedures determine CI limits directly, while others use
expressions like (2.16) with empirically determined CCs in place of theoretically
derived values (Westfall and Young, 1993).
Suppose, for example, that an experimenter wishes to abandon the assumption of

normally distributed error (while retaining the assumption of variance homogeneity)
when constructing a set of 95% SCIs in a post hoc analysis of data from a single-factor
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between-subjects experiment. The CC for a Scheffé analysis (which assumes normally
distributed error) would be .05; 1,( 1) J N JJ F   . In a bootstrap analysis the set of N

within-group deviation scores ( )ij jY M is used as a ‘population’from which a large
number (say 10,000) of random samples of size N (obtained by sampling with
replacement) is drawn. An ANOVA F value is calculated from each sample, and the
95th percentile of this distribution ( .05; bootF ) is used to define the bootstrap bootCC of

.05; boot( 1)J F . The experimenter can then use PSY (or some other program) to carry

out a post hoc analysis of the data with a user-supplied CC of bootCC .
Justification for the claim that bootstrap CI procedures control the FWER depend

partly on bootstrap estimation theory and partly on evidence from Monte Carlo studies.
Some (but very little) discrepancy between the nominal and actual FWER will result
from the use of a finite number of bootstrap samples. Even if simulation error is not an
issue, some bootstrap CI procedures do not work well with small data sets (Westfall and
Young, 1993). Nevertheless, there is good evidence that the bootstrap approach can
provide acceptable control over error rates in a number of situations where classical
ANOVA procedures do not. In practice, however, these computer-intensive procedures
are currently inaccessible to many researchers.

Trimmed means procedures A trimmed mean is the mean of the values in a distribution
that remain when a certain proportion of extreme values is removed from each tail of the
distribution. Many robust estimation procedures are based on 20% trimmed means
(means of the middle 60% of the relevant distribution), because removing the upper
20% and lower 20% of values from a distribution eliminates or substantially reduces the
influence of outliers without doing too much damage to precision of estimation when
sampling from normal distributions. A sample trimmed mean tM is an unbiased
estimate of the corresponding population trimmed mean ,t which is not identical to
the population mean unless the distribution is symmetrical. In general, therefore, an
analysis based on trimmed means is appropriate only if the experimenter wishes to make
inferences about population trimmed means rather than population means. A population
trimmed mean is closer than the population mean to most of the values in a substantially
skewed distribution, and for that reason it may be preferred as a location parameter
(Wilcox, 1998).
The standard error of a sample trimmed mean is slightly larger than the standard error

of the sample mean when the sample is drawn from a normal distribution. For example,
if n = 10, the standard error of the 20% trimmed mean is 0.337 and the standard error of
the mean is 0.316. That is, the sample mean is a slightly more precise estimator of the
population mean of a normal distribution than is the 20% trimmed mean. (The
population 20% trimmed mean of a normal distribution is also the population mean.)
When samples are drawn from a lognormal distribution, however, the standard error of
the 20% trimmed mean (when n = 10) is only slightly larger (0.421), whereas the
standard error of the mean is much larger (0.684). That is, the precision with which the
sample 20% trimmed mean estimates the population 20% trimmed mean of a lognormal
distribution is considerably greater than the precision with which the sample mean
estimates the population mean of the same distribution. In practice, the standard error of
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a sample trimmed mean is estimated by a procedure that relaces the extreme values
discarded by the trimmed mean with less extreme values.
A number of SCI procedures based on trimmed means, sometimes in conjunction with

bootstrapping, have been proposed as robust alternatives to ANOVA-model tests. For
descriptions of some of these procedures, see Wilcox (2003).

Robust estimation procedures will almost certainly be widely used by researchers
when their performance is more thoroughly investigated and when they can be easily
implemented with user-friendly software. At the time of writing, however, there remains
a great deal to be discovered about the conditions under which particular procedures
work well. For example, when Keselman, Lix and Kowalchuk (1998) examined the
performance of a number of stepwise multiple comparison procedures for trimmed
means, they discovered that although the trimmed means MCPs provide more power
than corresponding LS procedures when distributions are highly skewed, the reverse is
the case in the presence of moderate skew. Although it is not clear whether this finding
has direct implications for CI procedures, it does illustrate the need for very thorough
investigations of the comparative performance of robust and LS procedures in a wide
variety of conditions.
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