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11 ESTIMATING THE DIFFERENCE 
BETWEEN THE MEANS OF 
INDEPENDENT POPULATIONS

INTRODUCTION

In Part I, we established the importance of statistical distributions. In Part II, these 
distributions were shown to underlie the construction of confidence intervals around point 
estimates of parameters. Estimating a parameter of a single distribution has important uses. 
For example, in the early stages of research, one may wish to estimate mean digit span, 
mean number of depressive symptoms, or mean response times in specific populations. 
However, as research progresses, our interest inevitably shifts to how such parameters 
differ between populations.

In Chapters 9 and 10 we saw examples of estimating μ1 - μ0 using m - μ0. In some 
situations, it is plausible to assume we know μ0. For example, assuming μIQ = 100 may be 
plausible for a given population. Also, when a population is completely known, such as 
the distribution of reading scores obtained over 30 years, it seems quite reasonable to use 
the mean of this population as μ0. In other cases, however, it is a wild stretch to assume 
we know μ0. For example, it seems highly implausible to assume, as we did earlier, “that 
college students in general complete 24 words in 20 minutes (σ = 4.8) on a standardized 
crossword puzzle.”

When the goal is to estimate the difference between two population means (μ1 
and μ2), it is almost always best to obtain samples from each of the two populations 
and then use the difference between the two sample means, m1 - m2, to estimate μ1 
- μ2. When we estimate μ1 - μ2, we say that the two populations (e.g., male versus 
female participants, or control versus experimental groups) represent two levels 
of the independent variable and the scores measured represent the dependent 
variable. In Chapters 11 through 15, the dependent variables we consider will be 
scale variables.

THE TWO-INDEPENDENT-GROUPS DESIGN

Variables that have just two values are called dichotomous variables. In this chapter, our 
independent variable will be dichotomous. The left column of Table 11.1 shows examples 
of five different qualitative dichotomous variables and their values. The right column 
shows examples of five scale variables and their values.

Table 11.1 provides 25 different questions that can be asked. Five such questions can 
be formed by combining the dichotomous variable sex with the five scale variables. For 
example, how much do males and females differ on the following variables: depression, 
fitness, intelligence, math ability, and belief in extrasensory perception (ESP)? The same 
five questions can be asked for each of the four remaining dichotomous variables. For any 
scale variable (e.g., fitness), it is almost certain that the means of the two populations differ, 

An independent 
variable is a 
qualitative or 
quantitative variable 
whose values define 
the two (or more) 
groups of interest.

A dependent variable 
is the variable for 
which we obtain 
scores.
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Chapter 11  •  Estimating the Difference Between the Means of Independent Populations    263

as we saw in Chapter 9. Therefore, our goal is to estimate the size of such differences and 
place confidence intervals around them.

Experimental Versus Quasi-Experimental Studies

There are two ways that dichotomous groups can be formed. Some groups form naturally 
(e.g., smokers versus nonsmokers, age younger than 40 versus older than 40, Christian 
versus Muslim, depressed versus not depressed). In other cases, groups are formed by an 
experimenter (e.g., treatment versus control conditions). Studies involving experimenter-
created groups are called experimental studies, and those involving naturally occurring 
groups are called quasi-experimental studies.

The critical difference between experimental and quasi-experimental studies is random 
assignment. One can’t randomly assign individuals to levels of the first four dichotomous 
variables in Table 11.1 because they were formed naturally. However, one can randomly 
assign individuals to different conditions in an experiment. Random assignment permits 
inferences about causality that are much more straightforward than without it. For example, 
the mean score on a measure of cardiovascular health may be lower for smokers than for 
nonsmokers. However, we can’t say that smoking caused this difference, because some 
other factor may have disposed people to both smoking and poor cardiovascular health. On 
the other hand, imagine selecting 1000 rats, dividing them randomly into two groups, and 
then raising one group in a smoky environment and the other in a smoke-free environment. 
Any measured differences in cardiovascular health following these two rearing methods 
may be reasonably attributed to the presence or absence of smoke.

Real Versus Hypothetical Populations

There is an interesting (and provocative) difference between the populations considered in 
experimental and quasi-experimental studies that we touched on in Chapter 7 (see the sec-
tion on the alternative hypothesis). The populations in quasi-experimental studies are easy 
to imagine, such as men versus women, smokers versus nonsmokers, Americans versus 
Canadians, or Sprague-Dawley rats versus Wistar rats, to name just a few randomly chosen 
examples. We can easily imagine drawing samples from each of these populations and 
computing the difference between the means of the samples.

Now let’s think about a new treatment for alcohol abuse. We could choose a random 
sample of alcohol abusers, divide them at random into two groups, and administer the 
new treatment to one group but not the other. The untreated sample represents a random 
sample of alcohol abusers. What about the treated group? You may think it odd, but we will 

TABLE 11.1  ■  Five Independent Variables and Five Dependent Variables

Dichotomous Independent Variable Scale Dependent Variable

Smoking: smokers versus nonsmokers Depression: scores on a clinical test

Sex: males versus females Fitness: scores on a fitness test

Political views: conservatives versus liberals Intelligence: IQ scores

Religious views: believers versus atheists Math ability: scores on a math test

Experimental condition: treatment versus 
control

Belief in ESP: scores on an ESP questionnaire

An experiment 
involves random 
assignment of 
individuals to 
treatment conditions. 
In an experiment, it is 
plausible to conclude 
that group differences 
on the dependent 
variable are caused 
by the different 
treatment conditions.

A quasi-experiment 
compares two 
naturally occurring 
groups (i.e., groups 
not formed as a 
result of random 
assignment). In a 
quasi-experiment, it 
is not always plausible 
to conclude that group 
differences on the 
dependent variable 
are caused by group 
membership.Draf
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264    Part III  •  Estimation and Significance Tests (Two Samples)

consider this group to be a sample from the population of alcohol abusers administered the 
new treatment. But, you might say, this group represents the entire population because no 
other individuals exist that have been administered this treatment. However, if things had 
been different and all alcohol abusers had been given this treatment, then our sample is one 
of the many random samples that could have been drawn from this population. Therefore, 
we can use the characteristics of this sample to infer properties of the hypothetical 
population of alcohol abusers who have been given this new treatment.

Confounding Variables

When we compare two samples of scores, it is important that there be no confounding 
variables. A confounding variable is one that affects the scores in our samples differently 
but is not the independent variable of interest. For example, if rats raised in the smoke-free 
environment were allowed more exercise than those raised in the smoke-filled environ-
ment, we would say that the effect of smoke is confounded with the effect of exercise. In 
this case, exercise is a confounding variable. Another example would be assigning the first 
20 volunteers to the treatment condition of an experiment and the next 20 to the control 
condition. There may be something different about those who volunteer early and those 
who volunteer late that confounds our ability to assess the effect of the independent vari-
able. In this case, time to enroll is the confounding variable.

We make all efforts to control for (i.e., eliminate) the effects of confounding variables 
in experiments, typically through random sampling from a population (e.g., alcoholics) 
and random assignment to experimental conditions (e.g., treatment and control). However, 
random sampling and random assignment do not guarantee that all confounds are eliminated. 
Consider a random sample from a psychology department participant pool. Because there are 
typically more females than males in such pools, a random sample will typically contain 
more women than men. When these participants are randomly assigned to the two conditions 
of an experiment, it is possible for all the men to be in one of the two conditions. No matter 
what the experimental manipulation is, the result will be confounded because one group is 
all women and the other is a mixture of men and women. In the long run, random assignment 
will cancel out confounds such as these, but any given sample may not.

Independent Versus Dependent Samples

In this chapter we will consider independent samples. This simply means that the scores 
in the two samples are not related in any systematic way. For example, if I choose 100 
people and divide them randomly into two groups of 50, then the scores obtained from the 
individuals in the two samples are independent of each other. This means that knowing  
the score (on the dependent variable) of an individual in one sample tells you nothing about 
the score of any individual in the other sample.

However, the same 100 people could be paired based on their similarity on variables 
such as height, IQ, or extroversion. If each member of each pair is then assigned to one of 
the two groups, we would have individuals matched for specific characteristics in the two 
groups. In this case, we say there is a dependency between the members of the two groups, 
and the scores obtained from the individuals in the samples are dependent. This means that 
knowing the score (on the dependent variable) of an individual in one sample does tell you 
something about the score of the corresponding individual in the other sample.

Another case of dependent samples is when two measurements are taken from each 
individual. For example, depression scores could be measured in individuals before 
and after treatment. These samples of before and after scores are dependent samples. 
When two or more scores are obtained from each individual, we say we have a repeated-
measures design.

A hypothetical 
population is one 
that does not exist, 
but which could exist. 
Individuals in an 
experimental group 
that undergo a novel 
treatment can be 
considered a sample 
from a hypothetical 
population of all 
individuals that 
undergo the same 
treatment.

A confounding 
variable is an 
uncontrolled variable 
that affects the 
scores in our samples 
differently.

Independent samples 
comprise scores 
that are completely 
unrelated to each 
other. This means 
that knowing the 
score of an individual 
in one sample tells 
you nothing about the 
score of any individual 
in the other sample.

Dependent samples 
comprise scores 
that are related to 
each other in some 
way; either pairs of 
scores come from 
the same individual 
(repeated measures) 
or pairs of scores 
come from individuals 
matched on some 
characteristic 
(matched samples). 
This means that 
knowing the score 
of an individual in 
one sample tells 
you something 
about the score of 
the corresponding 
individual in the other 
sample.
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Two Populations, Two Distributions

Figure 11.1 illustrates the state of affairs examined in this 
chapter. Each level of a dichotomous independent vari-
able is associated with a distribution of scores on the scale 
dependent variable. One distribution in Figure 11.1 has a 
mean (μ1) of 14 and the other has a mean (μ2) of 10. Both 
distributions have a variance of 16. One of these distribu-
tions might correspond to females and the other to males. 
Or one distribution might correspond to a control group 
and the other to an experimental group. The scores on 
the dependent variable may correspond to cardiovascular 
health, belief in supernatural phenomena, anxiety, digit 
span, or anything else we choose to measure. Whatever 
the two distributions correspond to, our objective will be  
to estimate the difference between the two population/ 
distribution means (i.e., μ1 - μ2).
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FIGURE 11.1  ■  Two Populations

Two normal populations with the same variance but 
different means.

LEARNING CHECK 1

1.	 What is the primary difference between an 
experimental study and a quasi-experimental study?

2.	 Explain why it is possible to study a hypothetical 
population. Give an example.

3.	 What is the difference between an independent-
groups design and a dependent-groups design?

4.	 For the purposes of this chapter, is it the independent 
or dependent variable that is dichotomous?

5.	 Can you imagine a two-independent-groups design in 
which both variables are dichotomous? If so, give an 
example.

Answers

1.	 Random assignment. We have random assignment in 
experiments but not in quasi-experiments.

2. 	 In an experimental study, our treatment group may be the 
only group of individuals who’ve received the treatment 
in question. Nevertheless, for the purposes of estimation, 
we may think of this group as a sample from a population 
of individuals who’ve all received the same treatment. 
For example, we could estimate the mean heart rate of 
chimpanzees in space. If all chimps on earth had been 
launched into space, then we would have a population of 
heart rates from spacefaring chimps. If instead we choose 
a random sample of chimps, launch them into space, 
and measure their heart rates while they are in space, we 
would have a sample from the population of interest even 
though that population doesn’t (currently) exist.

3. 	 In an independent-groups design, knowing the score 
of an individual in one sample tells you absolutely 
nothing about any score in the other sample. In the 
dependent-groups design, there is an association 
between pairs of individuals in the two groups. The 
clearest example is the repeated-measures design, 
in which two scores are obtained from the same 
individuals at different times. 

4. 	The independent variable is dichotomous. 

5. 	Sure. The independent variable could be smoking 
status (smoker, nonsmoker) and the dependent 
variable could be cancer status (has cancer, doesn’t 
have cancer). (This is not a situation that is covered in 
this chapter.)

AN EXAMPLE

Susan Cain (2012), a former Wall Street lawyer, wrote a well-received book titled Quiet:  
The Power of Introverts in a World That Can’t Stop Talking, in which she argued that 

Draf
t P

roo
f - 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2018 by SAGE Publications, Inc.   
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



266    Part III  •  Estimation and Significance Tests (Two Samples)

Western society, and the United States in 
particular, values the traits of extroverts 
more than those of introverts. She argues that 
introverts thrive in quiet settings where they 
are free to pursue their thoughts and nurture 
their creativity. One of Cain’s strongest 
claims is that the group work favored in 
schools and industrial settings often works 
against the natural inclinations of introverts. 
In other words, introverts are not able to 
flourish when forced to work in groups at 
school or in open offices in the workplace.

Let’s say that an industrial psychologist at an American university shares the view that 
open offices are detrimental to activities requiring insight and creativity, but she believes 
this is true for both introverts and extroverts. She would like to assess this idea using what 
she believes is a novel methodology. To assess problem solving and creativity, she will have 
participants solve riddles of the following sort:

“Yesterday I went to the zoo and saw the giraffes and ostriches. Altogether they had 
30 eyes and 44 legs. How many animals were there?”*

“Marsha and Marjorie were born on the same day of the same month of the same year 
to the same mother and the same father, yet they are not twins. How is that possible?”**

Solving riddles requires insight and creative thinking; therefore, the researcher chose the 
number of riddles correctly solved in a 30-minute period as her dependent variable.

Our researcher’s hypothesis is that more riddles will be solved in quiet settings than in 
noisy settings. In her experiment, all participants will be tested in a university classroom 
where students are learning statistics. One group will be tested when the class is writing an 
exam (quiet condition) and the second group will be tested while the students are engaged 
in group work (noisy condition).

Because our hypothetical researcher believes that the nature of the task itself requires 
quiet, she expects both introverts and extroverts to benefit from quiet. Therefore, when 
she selects participants, the researcher does not assess their positions on the introversion-
extroversion continuum.

Twenty-two individuals were randomly selected from the department’s participant 
pool and then divided at random into two groups of 11 participants each. One group was 
assigned to the quiet condition and the other group was assigned to the noisy condition. Each 
participant took the riddle test, and the number of correct solutions was counted. The results 
of the experiment are shown in Table 11.2 and summarized in Figure 11.2. The mean number 
of riddles solved in the quiet condition was 12 with a standard deviation of 4.94, and the mean 
number of riddles solved in the noisy condition was 9 with a standard deviation of 3.95.

The goal of the riddle-solving study was to estimate the difference between two 
population means (i.e., μ1 - μ2). The difference between the two sample means (i.e.,  
m1 - m2) is the best point estimate of μ1 - μ2. The confidence interval around the difference 
between two sample means is computed as follows:

( ) ( ).
/

m m t sm m1 2 2 1 2
− −± α (11.1)

*Answer: Each animal has two eyes, so there were 30/2 = 15 animals.

**Answer: They are triplets.
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This confidence interval, like those we saw in Chapters 6, 9, and 10, involves 
a point estimate (i.e., a statistic) and a margin of error. The statistic in this 
case is the difference between the two sample means (m1 - m2), and the 
margin of error is t sm mα/

( ).
2 1 2−

We were reminded in Chapter 10 that the smallest sample size 
for which the sample variance can be computed is two. In the two-
independent-groups design, we require two groups with at least two 
scores in each, because computing a confidence interval will require 
computing the variance for both samples. This means that ta/2 is based on 
the sum of the degrees of freedom within the two groups; i.e., dfwithin = df1 
+ df2 degrees of freedom. We can also express this as dfwithin = n1 + n2 - 2. 
(There is an even more interesting reason why we associate ta/2 with df1 + 
df2 degrees of freedom, but we will have to wait until Chapter 16 for this 
explanation.) 

Knowing the point estimate and ta/2 leaves only the quantity sm m1 2-  to 
be explained. This quantity is the estimated standard error of the statistic 
m1 - m2. In the special case in which (i) sample sizes are the same and (ii) we 
can assume that the two populations have the same variance (i.e., σ2

1 = σ2
2), 

we compute the estimated standard error as follows:

s s
n

s
nm m1 2

1

2

1

2

2

2

− = + , (11.2)

where s
1

2  and s2
2  are the two sample variances, and n1 and n2 are the two 

sample sizes. 
With these definitions (and the assumptions that n1 = n2 and σ2

1 = σ2
2), 

we can compute a 95% confidence interval around the difference between 
the two sample means in Table 11.2. To make things clearer, we will use the 
subscripts q (quiet) and n (noisy) on sample means, variances, and sample 
sizes.

Step 1.	Calculate mn - mq. mq = 12 and mn = 9, so mn - mq = 
12 - 9 = 3.

Step 2.	Calculate sm m1 2-  using equation 11.2:

s
s
n

s
nm m1 2

2 2
24 4

11

15 6

11
1 91− = + = + =q

q

n

n

. .
. .

Step 3.	Determine ta/2. There are 11 + 11 - 2 = 20 degrees 
of freedom. Because this is a 95% confidence inter-
val, a/2 = .025. When we consult the t-table, we find 
that ta/2 = 2.086. [The same thing can be accomplished 
using T.INV.2T in Excel by typing ‘=T.INV.2T(.05, 20)’ 
into a cell in a spreadsheet.]

Step 4.	Calculate the 95% confidence interval around the difference between the two 
means as follows:

q nCI = −( ) ± ( ) = −−m m t sm mα /2 1 2
12 ± = −( ) . ( . ) [ . , . ].9 2 086 1 91 0 98 6 98

TABLE 11.2  ■  Raw Data

Quiet Noisy

12 5

4 7

13 11

11 3

17 14

21 10

11 9

5 8

15 7

14 8

9 17

n 11 11

m 12 9

ss 244 156

s2 24.4 15.6

s 4.94 3.95

Quiet Noisy
0

6

12

18

24
(a) (b)

N
um

be
r 

So
lv

ed

Quiet Noisy
0

4

8

12

16

FIGURE 11.2  ■  Raw Data and Statistics

(a) Raw scores for participants in the quiet and 
noisy conditions. (b) The means of the two groups. 
Error bars represent ±SEM.
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268    Part III  •  Estimation and Significance Tests (Two Samples)

The results of this study might be reported as follows:

APA Reporting

The mean number of riddles solved in the quiet condition was Mq = 12 with a standard 
deviation of s = 4.94, and the mean number of riddles solved in the noisy condition was 
Mn = 9 with a standard deviation of s = 3.94. The difference between the two means was 
3, 95% CI [-0.98, 6.98]. Although the results are somewhat imprecise, they support the 
idea that quiet conditions are more conducive to problem solving than noisy conditions.

The general form of this conclusion is familiar. The best point estimate of the difference 
in the number of riddles solved in the quiet and noisy populations is 12 - 9 = 3. In this 
example, we have 95% confidence that the true difference between the population means 
is in the interval [-0.98, 6.98]. Our confidence comes from knowing that 95% of intervals 
computed this way will capture μq - μn.

LEARNING CHECK 2

1.	 Bargh, Chen, and Burrows (1996) thought that 
exposure to words associated with age and fragility 
would have a subconscious effect on people and cause 
them to walk more slowly than individuals exposed 
to neutral words. In their experiment, Bargh et al. 
brought participants to a research lab and asked them 
to solve word problems. One group of 15 participants 
solved problems involving words such as old, bingo, 
and Florida. The other group of 15 participants solved 
problems involving words such as thirsty, clean, and 
private. Without their knowledge, the researchers 
measured participants’ walking speeds when they left 
the research lab. Bargh et al. found that those exposed 

to words suggesting age and fragility walked at 2.63 
mph, on average, with a variance of about 0.1933. This 
was slower than the speed of participants exposed to 
neutral words, who walked at 2.99 mph, on average, 
with a variance of about 0.2233. Compute the 95% 
confidence interval around the difference between 
these two means.

2.	 Do the results of this study support the idea that 
exposure to words associated with age and fragility has 
a subconscious effect on people and causes them to walk 
more slowly than individuals exposed to neutral words?

Answers

1. 	 m1 = 2.63, s
1

2
0 1933=  . , n1 = 15, m2 = 2.99, s

2

2
0 2233= . ,  

n2 = 15. We first calculate m1 - m2 = 2.63 - 2.99 = - 0.36. 
We then note that there are 15 + 15 - 2 = 28 degrees of 
freedom. Then, because this is a 95% confidence interval, 
we find that ta/2 = 2.048 when we consult the t-table. The 
calculations for sm m

1 2
-  and CI = − ± −( ) ( )

/
m m t sm m1 2 2

1 2
α  

are shown in the table below.

2. 	Yes, the results support the proposal. Those exposed 
to words associated with age and fragility walked  
m1 - m2 = 2.63 - 2.99 = - 0.36 mph slower than those 
exposed to neutral words, 95% CI [-0.70, - 0.02]. This 
result has become quite controversial in the last few 
years, and it’s worth Googling.

Calculate sm m1 2-
Calculate CI 1 2 /2 1 2

= −( ) ± ( )−m m t sm mα
 

s s
n

s
n

1

2

1

2

2

2

0 1933

15

0 2233

15

0 17

= +

= +

=

. .

.

m
1
m

2−
CI

0.34

= −( ) ± ( )
= − ±
= − ±
= −

−m m t sm1 m21 2 2

0 36 2 048 0 17
0 36
0 7

α/

. . ( . )

.
[ . 00 02, . ]−
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THEORETICAL FOUNDATIONS FOR THE  
(1-α)100% CONFIDENCE INTERVAL FOR µ1 - µ2

In the scenario discussed above, our hypothetical researcher 
was interested in the difference between two population 
means. One population comprises riddle scores obtained 
in quiet conditions and the other comprises riddle scores 
obtained in noisy conditions. Our researcher had in mind 
a situation like the one shown in Figure 11.1. She assumed 
that the two distributions have different means but she didn’t 
know how different they are.

We will use the two distributions in Figure 11.1 when 
we need concrete illustrations in this section. Keep in mind 
that Population 1 has a mean of 14 and a variance of 16, 
and Population 2 has a mean of 10 and a variance of 16. Of 
course, these are things that we know but our hypothetical 
researcher did not.

The Sampling Distribution of m1 − m2

As in previous chapters, understanding a confidence inter-
val requires understanding the sampling distribution of the 
statistic in question. In this case, the statistic is m1 - m2. To 
understand the distribution of this statistic, we must consider 
the means of all possible samples of size n1 drawn from Population 1 and the means of all 
possible samples of size n2 drawn from Population 2. Given these two (enormous) dis-
tributions of means, we can now imagine computing the difference between all possible 
pairings of the means from Populations 1 and 2. The resulting distribution is called the 
sampling distribution of the difference between two means, or the sampling distribu-
tion of m1 - m2 for short.

The parameters of the sampling distribution of m1 - m2 are directly related to the 
parameters of the distributions (populations) from which the samples were drawn. The 
mean of the distribution of m1 - m2 is

µ µ µm m1 2 1 2− = − . (11.3)

Because the sample mean is an unbiased statistic, the mean of all sample means drawn  
from Population 1 will be μ1, and the mean of all sample means drawn from Population 2 
will be μ2. Therefore, on average, the difference between two sample means is equal to the 
difference between the two population means. This is illustrated in Figure 11.3, which shows 
that the mean of the distribution of m1 - m2 is μ1 - μ2 = 14 - 10 = 4.

The variance of the distribution of m1 - m2 is

σ
σ σ

m m n n1 2

2 1

2

1

2

2

2

− = + . (11.4)

This formula contains familiar components. If you think back to our discussion of the 
distribution of means in Chapter 5, you will remember that its variance is σ σm n2 2= / . 
Equation 11.4 shows that the variance of the distribution of m1 - m2 is simply the variance of 
the sampling distribution of m1 (i.e., σ

1

2

1
/n )  plus the variance of the sampling distribution 

of m2 (i.e., σ
2

2

1
/n ).

The sampling 
distribution of 
the difference 
between two means 
is a probability 
distribution of all 
possible differences 
between two sample 
means, m1 and m2, 
of size n1 and n2, 
respectively, drawn 
at random from 
two independent 
populations. In 
other words, it is the 
sampling distribution 
of all possible values 
of m1 - m2.
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n 1
+

σ2
2

n 2

FIGURE 11.3  ■  The Distribution of m1 - m2

The sampling distribution of the difference between two 
independent means. The two distributions in question are 
those shown in Figure 11.1. Population 1 has a mean of 
14 and variance of 16, and Population 2 has a mean of 10 
and variance of 16. If we consider all possible samples of 
size n1 drawn from Population 1 and all possible samples 
of size n2 drawn from population 2, then we can compute 
the difference between all possible pairs of these sample 
means (i.e., m1 - m2). The resulting distribution is shown. 
In this example, n1 = n2 = 11; therefore, σ2

1 2
2 91m m− = . .  

and σm m1 2
1 71− = . .
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Knowing the variance of the distribution of m1 - m2 allows us compute the standard 
error of m1 - m2 as follows:

σ
σ σ

m m n n1 2

1

2

1

2

2

2

− = + . (11.5)

Let’s take a concrete example and think about the distribution of m1 - m2 for samples drawn 
from the two populations shown in Figure 11.1. If n1 = n2 = 11, we can substitute numbers 
into equation 11.5 to obtain the following:

σ
σ σ

m m n n1 2

1

2

1

2

2

2

16

11

16

11
1 71− = + = + = . .

This is the standard error of the distribution shown in Figure 11.3.
Looking back to our opening example, we computed a confidence interval around  

m1 - m2 using the usual definition ( ) ( ),
/

m m t sm m1 2 2 1 2
− ± −α  with the estimated standard error 

computed as in equation 11.2. A comparison of equations 11.2 and 11.5 shows that they are 
structurally identical, with σ

1

2  and σ2
2  in equation 11.5 replacing s

1

2  and s2
2  from equation 

11.2. Therefore, sm m1 2-  is our best estimate of σm m1 2− .

We’ve noted that using sm m1 2-  as defined in equation 11.2 is valid only when (i) the 
two sample sizes are the same, and (ii) it reasonable to assume that σ σ

1

2

2

2= .  Creating 
confidence intervals for m1 - m2 becomes slightly more complex when these conditions do 
not hold, but we don’t need to worry about these additional complexities for the moment.

LEARNING CHECK 3

1.	 Calculate σm m
1 2

2

− for σ1 = 6, n1 = 16, σ2 = 5, n2 = 10.

2.	 Calculate σm m
1 2

2

− for σ1 = 20, n1 = 16, σ2 = 5, n2 = 100.

3.	 Calculate σm m
1 2

2

−  for σ1 = 12, n1 = 8, σ2 = 9, n2 = 2.

Answers

1.	 36/16 + 25/10 = 4.75.

2.	 400 16 25 100 5 02/ / . .+ =  

3.	 144/8 + 81/2 = 58.5.

The Logic of a Confidence Interval for m1 - m2

We will now return to the familiar logic underlying confidence intervals. In Chapter 10 
it was shown that when the sampling distribution of the mean is normal, it can be trans-
formed to a t-distribution by applying the following transformation to each sample mean:

t m
sm

=
− µ . (11.6)

Because (1-a)100% of all t-scores fall in the interval ± ta/2, we also know that (1-a) 
100% of all possible t ± ta/2 intervals will contain 0, which is the mean of the t-distribution. 
From this, we were able to show that (1-a)100% of all possible intervals computed as

m ± ta/2(sm) (11.7)
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will capture the population mean, μ. There was a formal demonstration of this in Appendix 10.4 
(available at study.sagepub.com/gurnsey).

We can apply the same logic to define the (1-a)100% confidence interval for  
μ1 - μ2. As with the distribution of means, we can transform the distribution of m1 - m2 into 
a t-distribution as follows:

t
m m

s
m m

=
−( ) − −( )

−

1 2 1 2

1 2

µ µ
. (11.8)

If you compare equation 11.8 with equation 11.6, you will 
see that they are structurally identical. In equation 11.8,  
m1 - m2 replaces m, μ1 - μ2 replaces μ, and sm m1 2-  replaces sm. 
The result is a t-distribution with dfwithin = df1 + df2 degrees of 
freedom.

As before, because (1-a)100% of all t-scores fall in the 
interval ± ta/2, we also know that (1-a)100% of all possible 
intervals ± ta/2 will contain 0. From this, it follows that  
(1-a)100% of all possible intervals computed as

m m t sm m1 2 2 1 2
−( ) ± ( )−α/ (11.9)

will capture μ1 - μ2. A formal demonstration of this is provided 
in Appendix 11.3 (available at study.sagepub.com/gurnsey).

Figure 11.4 shows that the logic underlying confidence 
intervals for μ1 - μ2 is exactly the same as the logic underlying 
confidence intervals for μ in Chapter 10. The sampling 
distribution of m1 - m2 at the bottom of Figure 11.4 was 
previously shown in Figure 11.3. It is a normal distribution 
with a mean of μ1 - μ2 = 4 and a standard error of σm m1 2

1 71− = . . 
Each dot above the distribution represents the difference 
between two sample means (m1 - m2) and the arms around 
each dot define the 95% confidence interval. White dots are 
at the centers of intervals that capture μ1 - μ2, and filled dots 
are at the centers of intervals that do not capture μ1 - μ2. If we 
were to compute m m t sm m1 2 2 1 2

−( ) ± ( )−α/
 for all possible pairs 

of sample means, then exactly 95% of these intervals would 
capture μ1 - μ2.

Estimating the Standard Error of the  
Difference Between Two Means

We saw earlier that computing a confidence interval around 
the difference between two means requires estimating the 
standard error of the difference between two means. The 
formula we use to do this depends on our sample sizes and 
assumptions we make about the two population variances. 
In this section, we will describe two ways to compute the 
estimated standard error of m1 - m2 when we can assume 
that the two populations have the same variance. When we 
aren’t able to make this assumption, computing confidence 
intervals becomes a bit more complicated, and this method 
is described in Appendix 11.4 (available at study.sagepub 
.com/gurnsey).

−8 −4 0 4 8 12 16
m

1
− m

2

µ
m

1
− m

2

−1.96( σ
m

1
− m

2

) µ
m

1
− m

2

+1.96( σ
m

1
− m

2

)

93.8% capture µ
1

− µ
2

6.2% do not capture µ
1

− µ
2

FIGURE 11.4  ■  95% Confidence Intervals

95% confidence intervals for μ1 - μ2 when the 
population standard deviations are unknown. The 
distribution at the bottom represents the sampling 
distribution of m1 - m2 for μ1 = 14, μ2 = 10, σ1 = σ2 = 4, 
and n1 = n2 = 11. The standard error of the distribution 
of m1 - m2 is σm m

1 2
−  = 1.71. The light blue lines enclose 

the central 95% of the sampling distribution. Each dot 
represents the difference between two sample means 
(m1 - m2), and the arms around each dot represent the 
95% confidence interval. White dots are the centers 
of confidence intervals that capture μ1 - μ2 and filled 
dots are the centers of confidence intervals that do not 
capture μ1 - μ2.
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Case 1: Equal Sample Sizes and Equal Population Variances

In the example that we worked through earlier, σm m1 2−  was estimated using equation 11.2:

s s
n

s
nm m1 2

1

2

1

2

2

2

− = + .

As noted twice before, this way of estimating σm m1 2−  is only appropriate when it is 
reasonable to assume that σ σ

1

2

2

2=  and when sample sizes are the same (n1 = n2).

Case 2: Unequal Sample Sizes and Equal Population Variances

If we assume that σ σ
1

2

2

2=  but sample sizes are different, then estimating σm m1 2−  becomes 
more interesting and involves an intermediate step to estimate the variance common to the 
two distributions, which we denote σ2. That is, subscripts on the population variances are 
unnecessary because they are assumed to be identical. The two sample variances, s

1

2 and 
s

2

2
,  are therefore independent estimates of σ2.

In Chapter 5, we saw that parameter estimates based on large samples are more precise 
than estimates based on small samples. Therefore, when two samples are different sizes, 
the variance of the larger sample provides a more precise estimate of σ2 than the variance 
of the smaller sample. However, the variance of the smaller sample can’t be ignored. 
Therefore, to estimate σ2, we combine s

1

2  and s2
2  in a way that gives greater weight to the 

variance from the larger sample. This estimate of σ2 is called s
pooled

2
,  because we pool two 

sample variances.
When s

pooled

2  has been computed, we use it to estimate σm m1 2−  as follows:

s
s
n

s
nm m

1 2

2

1

2

2

− = +pooled pooled
. (11.10)

That is, s
pooled

2  replaces both σ
1

2  and σ2
2  from equation 11.5. This leaves us with the 

relatively minor problem of computing s
pooled

2
.  There are two ways to do this. The first is 

more conceptual in nature and the second produces exactly the same result but is easier to 
compute by hand when you’ve been given the sums of squares for the two samples.

Estimating the Population Variances by “Pooling” the Sample Variances.  Sample 
variances are pooled by making use of a so-called weighted sum. (We used weighted 
sums to compute GPA in Appendixes 1.1 through 1.3.) This means that we multiply s

1

2 by 
a weight and s2

2  by a different weight and then add these products as follows:

s w s w s
pooled

2

1 1

2

2 2

2= ( ) + ( ).

In the case of s
pooled

2
,  w1 and w2 are defined as

w df
df

w df
df1

1

2

2= =
within

and

within

, ,

where dfwithin = df1 + df2 as before. Therefore, these two weights always sum to 1; i.e., w1 + w2 = 1. 
The pooled variance ( )spooled

2  can be computed as a weighted sum as follows:

s df
df

s df
df

s
pooled

within within

2 1

1

2 2

2

2= ( ) + ( ). (11.11a)

A weighted sum is 
a way of computing 
the mean of two or 
more statistics by 
multiplying each 
statistic by a weight 
related to sample size 
and then summing the 
products.

spooled
2

 
is the pooled 

variance. It is 
computed as a 
weighted sum of two 
separate estimates 
of σ2.
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To illustrate the value of weighted sums, we will consider an extreme example. Imagine 
that we’ve drawn samples from Populations 1 and 2 from Figure 11.1. (Remember, for both 
distributions σ2 = 16). Let’s say s

1

2
15=  and s

2

2
25= .  However, these two samples have 

very different sizes. There are n1 = 99 scores in the sample drawn from Population 1 and 
n2 = 3 scores in the sample drawn from Population 2. This means that df1 = 98 and df2 = 2. 
In this case,

w df
df1

1
98

100
98= = =

within

.

and

w df
df2

2
2

100
02= = =

within

. .

When we compute the weighted sum of the two sample variances, we have

s df
df

s df
df

spooled
within within

2 1
1
2 2

2
2 98 15 02 25= ( ) + ( ) = +. ( ) . ( ) ==15 2. .

If we had computed the simple mean of s
1

2  and s2
2 , it would be (15 + 25)/2 = 20. Another 

way to express this average would be

= +. . . ( ) . ( ) .5 5 5 15 5 25 20
1

2

2

2s s( ) + ( ) =

So, when we give equal weight to s
1

2  and s
2

2
,  we obtain a poor estimate of σ2, which in 

this example is 16. Therefore, when sample sizes are unequal, we compute the pooled 
variance as a weighted sum that gives greater weight to the variance from the larger 
sample.

Estimating the Population Variances by “Pooling” Sums of Squares.  There 
is a second way to compute s

pooled

2  that is more useful for hand calculations. Remem-
ber that the sample variance (s2) is the sum of squares divided by degrees of  
freedom (s2

 = ss/df). Therefore, the sum of squares is the sample variance multiplied  
by degrees of freedom (ss = s2*df). With this in mind, we can show a simpler version of 
equation 11.11a:

s ss ss
dfpooled

within

2 1 2=
+

. (11.11b)

The following sequence shows the equivalence of 11.11a and 11.11b:

s df
df

s df
df

s
df s
dfpooled

within within withi

2 1
1
2 2

2
2 1 1

2

= ( ) + ( ) =
( )

nn within within within withi

+
( )

= + =
+df s

df
ss
df

ss
df

ss ss
df

2 2
2

1 2 1 2

nn

.

Therefore, if we’ve been given ss1 and ss2, we can compute s
pooled

2  in fewer steps using 
equation 11.11b.

Computing the Estimated Standard Error Using the Pooled Variance.  Let’s return 
to our opening example that estimated the effect of noise on riddle solving. Steps 1, 
3, and 4 in the calculation of the confidence interval are exactly as before (so they are 
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not recalculated). However, the calculation of sm m1 2-  is broken into two parts (steps 2a 
and 2b).

Step 2a.	 Compute s
pooled

2  using equation 11.11b.

s
ss ss
df
q n

pooled
within

2 244 156
10 10

20=
+

=
+
+

= .

Step 2b.	Calculate sm m1 2-  using equation 11.10.

s
s
n

s
nm m

q n
1 2

2 2 20
11

20
11

1 91− = + = + =pooled pooled . .

If you compare sm m1 2-  calculated in Step 2b, you will see that it is exactly the same as sm m1 2-  
computed in our original example. Therefore, the confidence interval computed in Step 4 
will be the same in both cases.

Which Formula to Use?  We’ve just seen that when sample sizes are the same, then equa-
tions 11.5 and 11.10 will produce exactly the same result, so either one can be used. How-
ever, when sample sizes are different, these two methods will produce different results, 
and only equation 11.10 will provide a valid estimate of σm m1 2− .  Therefore, when sample 
sizes are unequal, you must use s

pooled

2  in the calculation of sm m1 2- .

Case 3: Unequal Population Variances

It is not always plausible to assume that σ1 = σ2. Sometimes interventions can change the 
variance in a distribution. For example, a weight loss treatment might reduce weight by 
the same percentage for each individual in a population. The distribution of weights would 
be smaller after the weight loss treatment than before the treatment. (See the discussion in 
Chapter 3 about the effect of multiplying the variance by a constant.)

If we cannot assume that σ1 = σ2, then confidence intervals are computed differently. 
First, the estimated standard error is computed using equation 11.2. However, the result 
will underestimate σm m1 2− .  To compensate for this underestimation, our second step is to 
reduce the degrees freedom to widen the confidence interval. That is, reducing the degrees 
of freedom increases ta/2. The amount by which the degrees of freedom are reduced depends 
on how different s

1

2  and s2
2  are. Appendix 11.4 (available at study.sagepub.com/gurnsey) 

provides a detailed explanation of how to adjust the degrees of freedom.

Assumptions

For a confidence interval to be valid, a number of assumptions must be made.

1.	 The two populations we sampled are normal.
2.	 The two populations have the same variance.
3.	 The samples are random samples from the populations of interest.
4.	 The two samples are independent.

Normality

The assumption of normal populations is a common one in inferential statistics. We make 
this assumption because our margin of error was computed using ta/2, and the t-distribution 

Draf
t P

roo
f - 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2018 by SAGE Publications, Inc.   
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



Chapter 11  •  Estimating the Difference Between the Means of Independent Populations    275

assumes that the scores in our samples were drawn from normal distributions. Obvious 
violations of the normality assumption can be detected using QQ or PP plots or other meth-
ods discussed in Appendix 4.3 (available at study.sagepub.com/gurnsey).

Equal Variances

When we compute confidence intervals for the difference between two sample means, we 
often assume that the two samples were drawn from distributions having the same vari-
ance. We made this assumption in the riddle example above when we computed s

pooled

2
.  

If the two populations in question were to have different variances, our confidence inter-
val will generally be too narrow. The Welch-Satterthwaite correction factor (described in 
Appendix 11.4 available at study.sagepub.com/gurnsey) provides a way around this prob-
lem. Most statistical packages that compute confidence intervals around the difference 
between two means will provide both versions. (We will see this in Appendix 11.2.)

Random Sampling

Of course, we always have to assume random sampling from the populations of interest. 
The scenario at the beginning of the chapter stated that a random sample of 22 participants 
was drawn from the participant pool. These 22 individuals were then assigned to the two 
conditions (quiet and noisy) at random. Because of random selection and random assign-
ment to conditions, there is no reason to suspect a systematic difference between the two 
groups; hence, there is no reason to suspect sampling bias.

The populations of interest were populations of scores (number of riddles solved) of 
individuals who performed the task in quiet and noisy conditions. We treat our samples 
as random samples from hypothetical populations that would exist if all members of 
the participant pool had solved riddles in a quiet environment, or if all members of the 
participant pool had solved riddles in a noisy environment.

Independence

Finally, we assume that there is no association between the scores in the two groups. In 
other words, the two samples are independent. In our riddle-solving example, the sample of 
22 participants was divided into two equal groups at random. That is, pairs of participants 
were not matched on any task-relevant variables before being placed in different groups. 
For this reason, the two groups are independent.

EFFECT SIZE δ

In Chapters 9 and 10 we showed how to estimate Cohen’s δ, which is the difference 
between two population means divided by their shared standard deviation. It is typically 
the magnitude or absolute value of δ that interests us (i.e., d) and not so much its sign. 
Nevertheless, we can compute δ in either of the following ways:

δ
µ µ

σ
=

−
1 2 (11.12a)

or

δ
µ µ

σ
=

−
2 1

. (11.12b)

Therefore, we can estimate δ in either of the following ways:

d m m
s=

−
1 2

pooled

(11.13a)
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or

d m m
s=

−
2 1

pooled

. (11.13b)

In equations 11.13a and 11.13b, spooled is simply the square root of s
pooled

2
,  as defined in 

equations 11.11a and 11.11b. That is, spooled estimates σ, which is the standard deviation 
common to the two distributions.

An Approximate Confidence Interval Around an Estimate of δ

As with any statistic, a point estimate is of limited use if we don’t know the precision of 
the estimate. Therefore, we next show how to construct an approximate (1-a)100% confi-
dence interval around d. Of course, computing a confidence interval requires knowing the 
sampling distribution of the statistic. Unfortunately, the sampling distribution of d is not 
usually normal, as illustrated in Figures 11.5 and 11.6. Figure 11.5 illustrates sampling dis-
tributions of d, computed as in equation 11.13a, for samples of size n = 5, drawn from two 
populations whose means are separated by δ = 0 to 2. When δ = 0, the sampling distribution 
of d resembles a t-distribution. As δ increases, the distributions shift to the right, because 
the average value of d increases as δ increases. More important is the fact that the distribu-
tions become increasingly skewed as δ increases.

LEARNING CHECK 4

1.	 If m1 = 10, m2 = 9, sm m
2 1

1 6− = . ,  and ta/2 = 2, calculate 
( ) ( ).

/
m m t sm m1 2 2 1 2

− ± −α

2.	 Calculate σm m1 2

2

−  for σ1 = 6, n1 = 16, σ2 = 5, n2 = 10.

3.	 Calculate s
pooled

2  for s1 = 6, n1 = 16, s2 = 5, n2 = 16.

4.	 Calculate s
pooled

2  for s1 = 6, n1 = 16, s2 = 5, n2 = 11.

5.	 If α = .05, n1 = 16, and n2 = 10, what is ta/2?

6.	 The 95% confidence interval is computed as 
( ) ).m m sm m1 2

1 2

− ± −2.086(  What is the total number of 
scores in the two samples?

7.	 If n1 = 11 and n2 = 13, what proportion of all intervals 
computed as ( ) )m m sm m1 2

1 2

− ± −1.717(  will capture 
μ1 - μ2?

8.	 Calculate the 95% confidence interval for m1 = 100,  
m2 = 90, s1 = 6, s2 = 7, n1 = 11, n2 = 16.

9.	 What four assumptions must be correct for 
( ) ( )

/
m m t sm m1 2 2 1 2

− ± −α  to be a valid confidence 
interval?

Answers

1.	 (10 - 9) ± 2(1.6) = [-2.2, 4.2].

2.	 36/16 + 25/10 = 4.75.

3.	 (36 + 25)/2 = 30.5. 

4.	 15/25*36 + 10/25*25 = 31.6.

5.	 2.064 for dfwithin = 16 + 10 - 2 = 24.

6.	 When we look at the t-table, we find that 2.086 is 
associated with dfwithin = 20 when α = .05; therefore,  
n1 + n2 = dfwithin + 2 = 22.

7.	 dfwithin = 22; therefore, ta/2 = 1.717 corresponds to α = 
.1, so this is the 90% confidence interval. Therefore, 
the proportion of all such intervals that will capture 
μ1 – μ2 is .9.

8.	 (100 - 90) ± 2.060(2.592) = 10 ± 5.340 = [4.66, 15.34].

9.	 The two populations we sampled are normal, the two 
populations have the same variance, the samples are 
random samples from the populations of interest, and 
the two samples are independent.
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The skew in the distributions of d is more apparent when it 
is computed from small samples than when it is computed from 
large samples. Figure 11.6 illustrates sampling distributions of d 
for δ = 0 to 2 when both sample sizes are 50. As in Figure 11.5, 
the distributions in Figure 11.6 shift to the right as δ increases. In 
addition, the distributions in Figure 11.6 are narrower than those in 
Figure 11.5 because the samples are larger, and thus the estimates 
of δ are less variable. Finally, the right skew of the distributions 
(particularly δ = 2) is much less pronounced in Figure 11.6 than in 
Figure 11.5.

We can compute an approximate confidence interval around 
d using a simple extension of the method used in Chapter 10 as 
follows:

d ± zα/2(sd). (11.14)

The only part of equation 11.14 that we haven’t yet explained is sd, 
which is the approximate standard error of d. In Chapter 9, when 
we had one sample and σ was known, the standard error of d was

σd n
=

1
.

In Chapter 10, when we had one sample and σ was unknown, the 
approximate estimated standard error of d was

s d
df nd = +

2

2

1
.

In the present case, we have two samples and σ is unknown. The 
approximate estimated standard error of d is

s d
df n nd = + +

2

1 2
2

1 1

within

. (11.15)

In equation 11.15, d is our estimate of δ, computed from our samples as described in 
equation 11.13a. As before, dfwithin = df1 + df2. Because of the nature of this approximation, 
we use za/2 rather than ta/2. Confidence intervals computed using this approximation will 
always be slightly different from the exact confidence interval. For small values of d, the 
confidence intervals will be slightly narrower; for large values of d, the confidence interval 
will be slightly wider. Fortunately, these differences are often negligible, particularly as 
sample sizes increase.

Our Example (Continued)

We will now step through the calculation of an approximate 
confidence interval for an estimated effect size. For quick refer-
ence, Table 11.3 shows the data from the riddle study for which 
we computed the confidence interval around m1 - m2. We will 
use the same data to compute d and the 95% confidence interval 
around it.
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FIGURE 11.5  ■  Distributions of d

Sampling distributions for d when δ = 0, 1, and 2 
when both sample sizes are 5. As δ increases, the 
distributions shift to the right and become wider 
and increasingly skewed.
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FIGURE 11.6  ■  Distributions of d

Sampling distributions for d when δ = 0, 1, and 2 
when both sample sizes are 50. As δ increases, the 
distributions shift to the right and become wider, but 
they are markedly less skewed than in Figure 11.5.

TABLE 11.3  ■  Data From Riddle Study

Quiet (q) Noisy (n)

N   11   11

M   12     9

ss 244 156
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Step 1. 	Compute s
pooled

.  Table 11.3 shows that ssq = 244 and ssn = 156. Because n1 = n2 
= 11, dfwithin = 11 + 11 - 2 = 20. With this information, we can compute spooled as 
follows:

s
ss ss
dfpooled

q n

within

=
+

=
+
+

=
244 156
10 10

4 47. .

Step 2.	Compute d, using equation 11.13.

d
m m
s

=
−

=
−

=q n

pooled

12 9
4 47

0 67
.

. .

Step 3.	Compute sd, using equation 11.15.

s d
dfd = + = + + =

22

2

0 67

2 20

1

11

1

11
0 4394

*

.

*
. .

within
n n

+
1 2

1 1

Step 4.	 Compute the approximate 95% confidence interval around d using equation 11.14.

CI = d ± za/2(sd) = 0.67 ± 1.96(0.4394) = [-0.19,1.53].

Therefore, the approximate 95% CI is [-0.19, 1.53]. Our confidence in this interval comes 
from knowing that approximately 95% of all confidence intervals computed in this way 
will contain δ.

According to Cohen’s classification scheme, described in Chapters 9 and 10, our 
estimated effect size of 0.67 is between medium and large. Of course, this classification 
scheme should always be treated with some skepticism. In a later section we will reconsider 
a more quantitative approach to giving meaning to our estimate of δ.

An Exact Confidence Interval Around an Estimate of δ

In Appendix 10.3 we described how to compute an exact confidence interval using 
MBESS ci.sm in R for an estimated effect size (d) based on a sample mean and a known 
population mean. We can also compute an exact confidence interval for d when com-
puted as in equations 11.13a and 11.13b using ci.smd from MBESS. The text in the code 
fragment below shows the arguments provided to ci.smd: smd is the standardized mean 
difference (i.e., d), n.1 and n.2 are the sample sizes, and conf.level is the confidence 
level. With values assigned to each of these arguments, we press return and ci.smd 
returns the lower and upper limits of the interval, [-0.1986694, 1.522964] as well as the 
center of the interval. When it is rounded to two decimal places, the 95% confidence 
interval [-0.20, 1.53] is very similar to the approximate interval computed in the previ-
ous section.

> ci.smd (smd =.67, n.1 = 11, n.2 = 11, conf.level =.95)

$Lower.Conf.Limit.smd

[1] -0.1986694
$smd

[1] 0.67

$Upper.Conf.Limit.smd

[1] 1.522964
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U3

In Chapters 8 through 10, we discussed Cohen’s U3 as a measure 
of overlap between two populations of scores. This allowed us 
to think in concrete terms about the effect of some treatment or 
intervention at the level of populations. We can use U3 in the con-
text of the two-independent-groups design just as we did for the 
one-sample design in earlier chapters.

Figure 11.7 illustrates our best estimate of the relationship 
between the two populations. Both distributions are assumed 
to be normal, and our sample statistics are the best estimates of 
the population parameters. Our best estimate of μq is mq 

= 12, 
our best estimate of μn is mn = 9, and our best estimate of σ is 
spooled = 4.47. Therefore, our best estimate of δ is d = 0.67. U3 is the 
proportion of the noise distribution below the mean of the quiet 
distribution (shown in gray in Figure 11.7) or, equivalently, the 
proportion of the quiet distribution above the mean of the noise 
distribution. When estimating δ from two independent samples, 
U3 is calculated exactly as before:

U3 = P(d ),

where P(d ) is the proportion of the standard normal (z) distribution below the absolute 
value of d. In our example, our best estimate is that U3 = .7486.

Let’s think about the population of scores for the quiet condition. The distribution is 
assumed to be normal, with 50% of scores lying above and below its mean, μq. Our results 
suggest that if all individuals from this population had been tested under noisy conditions, the 
mean would have dropped by 0.67(σ). This means that 74.86% of scores would now fall below 
μq, as shown in the shaded gray region in Figure 11.7. Therefore, we estimate that testing in 
the noisy versus quiet conditions leads to an increase of 74.86 - 50 = 24.86% of scores falling 
below μq. Conversely, testing in quiet conditions would result in 24.86% of scores falling 
above μn. This seems like a substantial effect on performance. But, like any statistical result, 
the practical significance of U3 depends on one’s perspective, as we’ll see in a later section.

−3 0 3 6 9 12 15 18 21 24
0.00

0.03

0.06

0.09

0.12

D
en

si
ty

Number of Puzzles Solved

µ
n
 = 9

µ
q
 = 12

σ = 4.47

δ = 0.67

U
3
  = 0.7486

FIGURE 11.7  ■  Cohen’s U3

An illustration of our best estimate of the 
relationship between quiet and noisy populations. 
Because d = .67, we estimate that 74.86% of the 
noisy distribution lies below the mean of the quiet 
distribution.

LEARNING CHECK 5

1.	 What does spooled estimate?

2.	 What does d = (m1 - m2)/spooled estimate?

3.	 For fixed sample sizes, how does the shape of the sampling 
distribution of d change as δ gets further from 0?

4.	 Compute the approximate 95% confidence interval  
for d for m1 = 100, m2 = 90, s1 = 8, s2 = 8, n1 = 20,  
n2 = 20.

Answers

1. 	 σ, the standard deviation assumed to be common to 
the two populations in question.

2. 	d = (m1 - μ2)/σ.

3. 	The sampling distribution of d becomes increasingly 
skewed as δ gets further from 0.

4. 	d = (100 - 90)/8 = 1.25.  
+ =s d dfd

2
/ ( n n+ =

1 2
1= +2 1) / / .0206 1 3472. . .

within  

CI = d ± za/2(sd) = 1.25 ± 1.96(.3472) = [0.57, 1.93].

+ =s d dfd
2
/ ( n n+ =

1 2
1= +2 1) / / .0206 1 3472. . .

within
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SIGNIFICANCE TESTING

Although our focus has been on estimating μ1 - μ2 and δ, we’ve seen in previous chapters 
that many researchers follow the custom of significance testing to judge whether a treatment 
is effective. As always, the null hypothesis is that there is no difference between the means 
of the two populations under consideration. We saw in Chapter 10 that significance tests 
can be conducted with confidence intervals and t-statistics, so we will review these in turn.

Significance Testing With Confidence Intervals

In previous chapters, two-tailed tests of the null hypothesis with α = .05 were conducted 
by asking whether μ0 falls in the 95% confidence interval around m. In the present case, we 
are estimating the mean of the distribution of m1 - m2. According to the null hypothesis, our 
two populations have the same means (μ1 = μ2), so we can state it as

H0: m1 - m2 = 0. 

For a two-tailed test of H0, our alternative hypothesis is simply

H1: m1 - m2 ≠ 0. 

To conduct a two-tailed test of our null hypothesis, we ask if 0 falls in our confidence 
interval defined as ( ) ( ).

/
m m t sm m1 2 2 1 2

− ± −α  If it does, we retain H0; if not, we reject H0. In 
the riddle-solving example that we worked through above, the 95% confidence interval 
around m1 - m2 was [-0.98, 6.98]. Because this interval contains 0, we retain the null 
hypothesis. (Remember that retaining the null hypothesis does not mean that it is true.)

Hypothesis Testing With t-Statistics

Traditionally, significance tests are conducted with t-statistics rather than confidence inter-
vals. However, the logic of the hypothesis test is the same. If the researcher predicts that quiet 
conditions will lead to more correct solutions than noisy conditions, then the null and alternative 
hyp�otheses would be as follows:

H0: mq - mn = 0

H1: mq - mn > 0 

If the researcher makes no prediction about which condition will lead to more correct 
solutions, then the null and alternative hypotheses will be as follows:

H0: mq - mn = 0

H1: mq - mn ≠ 0

In either case, tobs is defined as follows:

t m m
sm m

obs
=

−

−

1 2

1 2

. (11.16)

When we fill in the quantities defined earlier, we find that

t
m m
sm m

obs

q n=
−

=
−

=
−1 2

12 9

1 91
1 57

.
. .
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To make a decision about tobs, we would have to compare it with tcritical. As we saw in  
Chapter 10, tcritical depends on α, df, and H1. Let’s make the conventional assumption that  
α = .05. The degrees of freedom are dfwithin = nq + nn - 2 = 20, exactly as in the 95% confidence 
interval we computed. Finally, assuming the directional alternative hypothesis, H1 predicts that  
μq > μn, so we expect a positive value of tobs. With this information we can consult the  
t-table for the t-score having α(100)% = 5% of the distribution above it when dfwithin = 20. In 
doing so, we find tcritical = 1.725. Because tobs = 1.57 fails to exceed tcritical, we retain H0.

Using the T.DIST function in Excel, we can determine that the exact proportion of a 
t-distribution (with 20 df) above 1.57 is p = .0657. Again, because p = .0657 is greater than 
α = .05, we retain H0. (For a two-tailed test, p = 2*.0657 = .1314.)

APA Reporting

The mean number of riddles solved for 11 participants in the quiet condition was  
Mq = 12, and the mean number of riddles solved for the 11 participants in the noisy 
condition was Mn = 9. The difference between the two means was 3, 95% CI [-0.98, 6.98]. 
A one-tailed test of the difference between the two means showed that the difference was 
not statistically significant, t(20) = 1.57, p = .07.

The Connection Between d and tobs

The vast majority of research in psychology over the past 75 years or so has relied on sig-
nificance tests to draw inferences about the effects of experimental manipulations. Until 
recently, very little emphasis has been placed on measures of effect size. As a consequence, 
you may read an older paper in which the authors report tobs but don’t mention the corre-
sponding effect size. If you are in this situation, you can take heart in the following, very 
simple connection between d and tobs:

d t
n n

= +
obs

1 1

1 2

. (11.17)

Therefore, if an author provides tobs and the sample sizes, one can easily recover d and then 
put a confidence interval around it.

The APA reporting section above provides the information required by equation 11.17 
to recover d. We do this as follows:

d t
n n

= + = + =
obs

1 1
1 57

1

11

1

11
0 67

1 2

. . .

One of the unfortunate things about the past emphasis on significance tests is that tobs 
may not be reported when it is not statistically significant. This means that we can’t recover 
information about the effect size associated with the difference in question. Of course, this 
produces a very unbalanced representation of effect sizes in the literature.

INTERPRETATION OF OUR RIDDLE STUDY

The researcher in the riddle-solving experiment predicted that more riddles would be 
solved in a quiet setting than in a noisy setting. This prediction is supported by the data. 
Participants in the quiet condition solved three more riddles, on average, than those in 

Draf
t P

roo
f - 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2018 by SAGE Publications, Inc.   
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



282    Part III  •  Estimation and Significance Tests (Two Samples)

the noisy condition, 95% CI [-0.29, 6.29]. This represents a 33% improvement (12/9 = 
1.33) and corresponds to an estimated effect size of 0.67, 95% CI [-0.19, 1.53]. From the 
estimated effect size of 0.67 we estimate that in the two populations, 74.86% of the noisy 
distribution lies below the mean of the quiet distribution.

Although the researcher’s prediction is supported, the estimate of the difference 
between the two population means is somewhat imprecise. In fact, the 95% confidence 
interval contains 0. So, although 3 is our best estimate of the difference between the two 
population means, 0 remains one of many plausible values for μq - μn. Some would say that 
the difference is not statistically significant, but this should not be taken to mean that there 
is no evidence of a difference between the two population means.

This hypothetical experiment provided an analog of the real-world situation of working 
in a quiet or a noisy setting. The results suggest that for some types of work, a quiet setting 
may produce better outcomes. One could imagine many real-world contexts in which 
work quality would suffer in a noisy and active open office. Computer programming and 
architectural design might be examples of jobs that are done more effectively in quiet 
environments. Such jobs, like riddle solving, seem to require extended periods of focus, 
during which many choices are considered and the implications of each choice must be 
weighed. Interrupting these thought processes might lead to poor work.

On the other hand, people are different. It may be that introverts gravitate to quieter 
environments and perform better there, whereas extroverts seek out more dynamic 
environments. Therefore, it might be interesting to see whether both introverts and 
extroverts benefit from quiet environments on the riddle task, or whether introverts show 

LEARNING CHECK 6

1.	 A researcher at the University of Dallas wonders 
what effect challenging cognitive activities has on 
outcomes on the Montreal Cognitive Assessment 
(MoCA) test of cognitive functioning. Thirty-six 
elderly men (ages 65 to 75) were selected at random 
and divided, at random, into a treatment group and 
a control group; there were 18 individuals in each 
group. The treatment group participated in a digital 
photography course for 3 hours a day for 4 weeks. The 
control group spent 3 hours a day watching television 
in the common room of a local senior home. At the end 
of the 4-week period, all 36 men were administered 
the MoCA. The results of the experiment were as 
follows: mT = 29.6, mC = 27.2, sT = 2.2, and sC = 3.1.

(a) 	State the null and alternative hypotheses in 
symbols.

(b) 	Assuming α = .05, compute a confidence interval 
to test the null hypothesis.

(c)	 If you were to conduct the hypothesis test using a 
t-test, what would be the value of tcritical?

(d) 	Calculate tobs.
(e) 	Based on your calculations, should you retain or 

reject the null hypothesis?
(f) 	 Show how to compute an estimate of δ from tobs.

Answers

1.	 (a)	� H m m0
0: 

T C

µ − =  and H m m1
0: 

T C

µ − ≠ ; no prediction 
was made. 

(b)	 ta/2 = 2.032. ( ) ) .( . . ) . (. ) , .m m t sm m1 2
1 2

29 6 27 2 2 032 896 058 4 22− ± [ ]− ± =−α ( =   
2.032(.896) = [0.58, 4.22].

(c)	 tcritical = ±2.032. 

(d)	 tobs = (29.6 - 27.2)/.896 = 2.679. 

(e)	 tobs = 2.679, p = .011. Reject H0 (a p-value computed 
in Excel, p < .02, is also acceptable). 

(f) 	 d t n n= + = =
obs

1 1 2 679 2 18 89
1 2

/ / . / . .
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greater benefit. The methods to address such questions go beyond the two-groups design 
and will be considered in Part IV of this book.

One mustn’t forget, however, that there are jobs for which a dynamic open environment 
is essential. Think of comedy writers. So, although we have a (hypothetical) experimental 
example of quiet conditions yielding better outcomes, different results might be obtained 
for different populations of individuals and different types of tasks.

A Note on Sample Size

As with most examples, we have used small samples so that we will have manageable 
numbers to illustrate the calculations involved. However, it is important to remember that 
for both estimation and significance testing, it is possible to make rational and informed 
choices about sample sizes.

From the estimation point of view, sample size determines the margin of error. 
For the example we’ve been working with in this chapter, the margin of error 
associated with the confidence interval around m1 - m2 was shown above to be 
t sm mα/

( ) . * . . .
2 1 2

2 086 1 9069 3 98− = = . Appendix 11.5 (available at study.sagepub.com/
gurnsey) shows that this margin of error is approximately 0.88(σ), or almost a full standard 
deviation wide. In some circumstances, this lack of precision might be acceptable. For 
example, in the present case we were simply asking if there is any evidence that quiet rooms  
are more conducive to riddle solving than noisy rooms. The results support the idea that 
there is an advantage to working in a quiet setting. However, because the samples are 
small, we are unable to state how big the effect is with much precision. Appendix 11.5 
continues the discussion of how to choose an appropriate sample size to achieve a desired  
level of precision.

From the significance testing perspective, we use prospective power analysis to 
choose sample sizes. We can use G*Power to determine sample sizes required to achieve 
a specified power, given an assumed effect size (δ). However, G*Power can also be used to 
determine the power of the experiment post hoc (i.e., after the experiment has been run). 
The experiment described in our example has very low power. The G*Power application 
shows that if the population effect size were δ = 0.67 (as estimated in our hypothetical 
study), then using two samples of size 11 would yield power of only .45. Furthermore, we 
can use G*Power to determine what effect size can be detected with a specified power, 
for a given α and sample size. We call this the sensitivity of the experiment. For example, 
assuming a one-tailed test with α = .05 and power = .8, the choice of 11 participants per 
group suggests that the researcher was interested in an effect size of δ = 1.1. That is, the 
experiment has the sensitivity to detect an effect size of δ = 1.1 power* 100% of the time 
when sample sizes are 11 and α = .05. Appendix 11.6 (available at study.sagepub.com/
gurnsey) illustrates how to use G*Power to obtain both post hoc power and sensitivity.

PARTITIONING VARIANCE

Overview

In this section we will discuss the fascinating interconnectedness of statistics. This inter-
connectedness is a major theme that we will see often in the remainder of this book. We’ve 
already seen that d and tobs are connected in a relatively straightforward way (equation 
11.17). We’ll now see that things go deeper than this.

The interconnectedness of statistics derives from the notion of partitioning variance. 
To see where we’re going, let’s think about merging the 11 scores in each of the two groups 
of our riddle study into a single group of 22 scores. Partitioning variance means that we 
can decompose the variability in this merged set of scores into two components. One 
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component is related to the variability within each of the two subgroups of 11 scores. The 
other component is related to the difference between the two sample means. From this 
decomposition we will discover a new statistic that we will call r2, which represents the 
proportion of variance in the merged group of scores that is attributable to the difference 
between the two group means. Although r2 is derived quite differently from Cohen’s d, 
we will see that they are two expressions of the same thing. We will also see how other 
statistics are connected to each other through r2 and Cohen’s d.

There will be quite a few formulas in this section, but introducing them is not an 
intellectual exercise to illustrate the interconnectedness of statistics. Rather, the research 
literature abounds with different statistics, and when we understand the connections 
between them, we are in a much better position to relate studies to each other and to see the 
order in what might otherwise seem a chaotic set of results. Seeing the unity in statistics 
puts us in a better position to understand an important statistical technique called meta-
analysis, which will be introduced in the last section of this chapter.

Between- and Within-Group Variability

We could continue with the data from the riddle-solving example to illustrate the notion of 
partitioning variance. However, an example with fewer scores will be easier to work with. 
Therefore, we will use a concrete example involving cats and dogs.

Assume that we have a collection of three cats and three dogs and we’ve measured 
the weight of each animal. Figure 11.8a shows these weights. Cats are denoted by circles 
and dogs are denoted by squares. It should be clear from Figure 11.8 that cats weigh less 
than dogs on average. More importantly, the variability within the group of cats, and the 

variability within the group of dogs, is less than 
the variability in the two groups combined. It is 
this difference that we will focus on. To simplify 
the discussion, we will use sums of squares as a 
measure of variability.

In the discussion that follows, we will refer to 
weights as scores and denote the scores for cats and 
dogs as ycats and ydogs, respectively. The scores for 
the cats, ycats = {6, 9, 12}, have a mean of mcats = 9. 
The scores for the dogs, ydogs = {19, 25, 31}, have a 
mean of mdogs = 25. To compute the sums of squares 
within each group, we subtract the group mean from 
each score and then square and sum these deviation 

scores. The deviation scores for cats are {-3, 0, 3}, producing sscats = 18. The deviation scores 
for dogs are {-6, 0, 6}, producing ssdogs = 72.

The sums of squares for cats and dogs reflect within-group variability. If we add the 
sums of squares for the two groups, we can denote the result as sswithin. Therefore, the total 
within-group variability is sswithin = 18 + 72 = 90.

Now let’s merge our two groups of three scores into one group of six scores. The resulting 
merged set will be ytotal = {6, 9, 12, 19, 25, 31}. This merged set of scores has a mean and a 
sum of squares, which we’ll call mtotal and sstotal, respectively. As shown in Figure 11.8a, mtotal 
= 17. Subtracting 17 from each score in ytotal produces deviation scores, ytotal - mtotal = {−11, 
−8, −5, 2, 8, 14}. Squaring and summing these deviation scores produces sstotal = 474.

We now have two sums of squares, sswithin and sstotal. The within-group variability 
makes up part of sstotal but not all of it. The difference between sstotal and sswithin is sstotal 
− sswithin = 474 - 90 = 384. We refer to this difference as between-group variability and 
denote it with ssbetween. We will next see that ssbetween is derived from the mean scores of 
cats and dogs.

Within-group 
variability is the 
variability about the 
mean of a sample or 
population.

Between-group 
variability reflects 
the variability in a 
collection of scores 
resulting from scores 
having been drawn 
from two or more 
populations. 

iStock.com/GlobalP
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To see more clearly what ssbetween represents, we replace each 
score in ytotal with the mean of the sample from which it came. This 
will produce the following collection of numbers: ymeans = {9, 9, 9, 
25, 25, 25}. The mean of these six numbers is mmeans = 17; i.e., the 
mean of the means equals mtotal. When we subtract mmeans from each 
of the means, we obtain the following deviation scores: ymeans - mmeans 
= {-8, -8, -8, 8, 8, 8}. Squaring and summing these deviation scores 
produces ssmeans = 6*82 = 384. (Notice, we’ve seen 384 before.) 
We will refer to ssmeans as ssbetween because it represents variability 
associated with the difference between group means.

From this example, we can see the following relationship: 

sstotal = ssbetween + sswithin

474 = 384 + 90.

That is, we have decomposed the total variability in our six scores 
(sstotal) into a part associated with variability within groups (sswithin) 
and a part associated with variability between groups (ssbetween). This 
is what we mean by partitioning variance.

The numbers in Table 11.4 summarize the calculations we’ve just 
seen and relate to Figures 11.8a through 11.8c. The first column of 
Table 11.4 identifies the groups in question (i.e., cats and dogs). The 
second column (labeled “Subject”) provides a number that we can 
use to refer to each individual. Each of the six scores shown in the 
third column comes from a specific individual (see Figure 11.8a). 
The fourth column shows the means of the corresponding groups; 
i.e., mcats = 9 and mdogs = 25 (see Figure 11.8b). The fifth column 
shows the deviation of each subject’s score from its group mean (see 
Figure 11.8c). The deviations are denoted with the letter e because 
deviation scores are sometimes called error scores, and we don’t 
want confusion with Cohen’s d.

Table 11.4 shows that each individual’s score can be broken down into two parts. One 
part is the group mean and the other is its deviation from the group mean. For example, 

0 5 10 15 20 25 30 35
Weight (pounds)

ss
total

 = 474

m = 17

−10 −5 0 5 10 15 20 25
Deviation Scores

ss
within

 = 90

0 5 10 15 20 25 30 35
Weight (pounds)

ss
between

 = 384

m = 17

(a)

(b)

(c)

FIGURE 11.8  ■  Partitioning Variability

A graphical illustration of partitioning 
variability. (a) The six scores from Table 11.4 
are shown; cats are circles and dogs are squares. 
(b) Each of these six scores is replaced with the 
group mean (9 or 25). (c) Each of the six scores is 
replaced with its deviation from its group mean.

TABLE 11.4  ■  Illustrating the Concept of r2

Group Subject Scores (y) Means (m) e = y - m

Cats 1     6 9 −3

Cats 2     9 9   0

Cats 3   12 9   3

Dogs 4   19 25 −6

Dogs 5   25 25   0

Dogs 6   31 25   6

Mean   17 17   0

ss 474 384 90

r2 0.8101
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subject 4 (a dog) has a score of 19, which equals the group mean of 25, plus the score’s 
deviation from the mean; i.e., -6. Therefore, we can say that y4 = m4 + e4 = 25 - 6 = 19. 
Breaking down (or decomposing) each score into these two parts is the essential feature of 
partitioning the total variability into within-group and between-group variability.

In summary, the total variability in our scores (column y in Table 11.4) is defined as

sstotal = S(y - my)
2.

The variability attributable to the difference between group means (column m in Table 11.4) 
is defined as

ssbetween = S(m - my)
2.

And the variability not attributable to the difference between group means (column e in 
Table 11.4) is defined as

sswithin = Se2.

Remember, the mean of the e scores is 0. The row labeled ss in Table 11.4 shows that sstotal = 
474, ssbetween = 384, and sswithin = 90.

Explained Variance as an Effect Size

We can now ask, what proportion of sstotal is attributable to group means? Well, that’s easy. 
We define the proportion of sstotal attributable to group means as

r ss
ss

2 = between

total

.

In this case,

r2 384

474
8101= = . .

That is, 81.01% of the variability in our set of six scores is attributable to (or explained by) 
group means. Put differently, 81.01% of the variability in our set of six scores comes from 
between-group variability.

Furthermore, the variability not explained by means is

1
2− =r ss

ss
within

total

,

which in this case is

1
90

474
1899

2− = =r . .

That is, 18.99% of the variability in our set of six scores is not attributable to the differences 
in the group means. Put differently, 18.99% of the variability in our set of six scores comes 
from within-group variability.
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The calculations we just worked through are cumbersome, and we did them to establish 
the general notion of partitioning variance, and r2 in particular. It turns out that there is a 
very simple relationship between tobs and r2. It is just this:

r t
t df

2

2

2
=

+
obs

obs within

. (11.18)

Although we haven’t computed tobs, the data in Table 11.4 give us enough information to 
do so. We saw that mcats = 9 and mdogs = 25. The deviation scores in column 5 of Table 11.4 
allow us to compute the corresponding variances. That is, scats

  /
2 2

3 0 3 2 9= − =Σ{ , , }  and 
s

dogs
  6 /

2 2
6 0 2 36= − =Σ{ , , } .  Therefore,

t
m m
s

m m

s
n

s
n

m m
obs

dogs cats dogs cats

dogs

dogs

cats

cats

=
−

=
−

+

=
−1 2

2 2

225 9

9

3

36

3

4 1312
−

+
= . .

If we put tobs into equation 11.18, we find the following

r t
t df

2

2

2

2

2

4 1312

4 1312 4
8101=

+
=

+
=obs

obs within

.

.
. ,

which is exactly what was computed previously as r2 = ssbetween /sstotal. Therefore, if we know 
tobs and dfwithin, we can easily determine the proportion of variability in our scores explained 
by group means.

We can now think back to the riddle example that we’ve worked with throughout 
this chapter. Equation 11.18 provides a very simple way to determine the proportion of 
variability in our 22 scores explained by the difference between group means. Remember 
that tobs for the riddle example was 1.57 and dfwithin was 20. When we put these numbers into 
equation 11.18 we find the following:

r t
t df

2

2

2

2

2

1 57

1 57 20
1097=

+
=

+
=obs

obs within

.

.
. .

This means that about 11% of the total variability in our 22 scores is explained by the 
difference between the group means, and the remaining 89% is explained by within-group 
variability; i.e., the vast majority of variability in our set of 22 scores represents within-
group variability.

As noted at the beginning of this section, r2 is an effect size. 
However, the interpretation of r2 (or its square root r) as an 
effect size presents the same complications as the interpretation 
of d. An r2 that is considered large in one field of study (e.g., 
social psychology) may be considered small in another (e.g., 
neuroscience). Therefore, there are no universal guidelines that 
allow us to say what are small, medium, and large effects when r 
is the measure of effect size. Well, there are almost no universal 
guidelines. As with d, Jacob Cohen provided guidelines that 
he found useful in his field of study. These are summarized in 
Table 11.5. 

TABLE 11.5  ■  Cohen’s Guidelines 

Classification r r2

Small .10 .01

Medium .25 .0625

Large .40 .16

Note: Cohen’s guidelines for effect size (r and r2) are to be 
used as a last resort!
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The Connection Between r2 and d

Equation 11.17 showed that tobs and d are directly related, and equation 11.18 shows that tobs 
and r2 are directly related. This suggests that r2 and d should be directly related, and indeed 
they are. The relationship is this:

d df r
r n n

=
−









 +








within

2

2

1 2
1

1 1
. (11.19)

In the section on effect size (Cohen’s d), we determined that our estimate of δ in the 
riddle study was d = .67. Therefore, if we substitute r2 = .1097 into equation 11.19, we 
should obtain d = .67, which we do:

d df r
r n n

=
−









 +








 =

−






within

2

2

1 2
1

1 1
20

1097

1 1097

1

1

.

. 11

1

11
0 67+






 = . .

You should work through these numbers yourself to confirm that the calculations are 
correct.

What we’ve just shown is really elegant. The standardized difference between 
two means (d) is directly related to the proportion of total variance explained by the 
difference between the two means (r2). These are two units-free measures of how 
different the means of two distributions are. This result is not only elegant but also very 
useful.

The F-Statistic

Before drawing this discussion to a close, there is one last statistic to be thrown into the 
mix. This is the F-statistic (in honor of Sir Ronald Fisher) and it is widely used in the 
advanced analyses that are covered in Part IV of this book. However, F can be computed 
for the independent-groups design that we are currently considering. For the two-groups 
design, the F-statistic is defined as

F r
r
df=

−

2

2
1

within
. (11.20)

For our riddle example,

F r
r
df=

−
=

−
=

2

2
1

1097

1 1097
20

within
2.46.

.

.

Interestingly, F is related to tobs as follows:

F t=
obs

or
2 (11.21)

t F
obs

= . (11.22)

In the riddle example, tobs = 1.57 and when squared (equation 11.21), we find 
F t= = =

obs

2
1 57 2 46

2
. . ,  exactly as we found above using equation 11.20.
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The Interconnectedness of Statistics

We’ve just worked through a lot of formulas that connect statistics to each other. 
Interconnectedness is one of the major themes that emerge from the study of statistics. This 
is fascinating from a purely intellectual point of view. In fact, this kind of interconnected-
ness is what makes mathematics beautiful. We can enjoy this on a small scale.

However, beyond aesthetic reasons, there are important practical reasons to understand 
these connections. Once understood, these interconnections allow us to compare the results 
of statistical analyses that have used different statistics. For example, different researchers 
may have run essentially the same experiment but reported the results using different 
statistics, including d, r2, tobs, and F. When we know how to translate between these four 
statistics, we can more easily compare the results of the experiments. Furthermore, we can 
put all results on a common scale and combine the results. In the next section we will see 
how this works.

LEARNING CHECK 7

1.	 A researcher at the University of Arizona was curious 
about how much male and female psychology students 
know about the local football team. (The Arizona 
Cardinals were formerly the St. Louis Cardinals, who, 
in their glory years, featured Jim Hart and Mel Gray 
as the core of an incredibly productive passing offense.) 
The researcher obtained three female and three male 
volunteers from the Psychology Department participant 
pool and asked each to name as many current Cardinals 
players as possible. The results of this small study 
showed that ymales = {8, 9, 10} and yfemales = {4, 5, 6}.

(a) 	What proportion of the variability in these two sets 
of scores is explained by sex?

(b)	 What proportion of the variability in these two sets 
of scores is not explained by sex?

(c)	 Convert r2 to d.

(d)	 Compute the approximate 95% confidence interval 
around d.

(e)	 What does this confidence interval say about the 
null hypothesis that mmales = mfemales?

Answers

1.	 (a)	 r2 = .8571. 

(b)	 1 - r2 = .1429. 

(c)	 d = 












 =4

8571

1429

2

3
4

.

.
.

(d)	 sd = + + =
16

8

1

3

1

3
1 633. .  CI = 4 ± 1.96(1.633)  

  = [.80, 7.20]. 

(e)	 If the null hypothesis were true, we would expect 
0 to fall within this interval. Because it does not, 
we can reject the null hypothesis.

META-ANALYSIS

All the examples we’ve worked through to this point have dealt with the results of single 
studies. This reflects how research is typically done. A researcher has a question that he or 
she would like answered. The study is conducted, the analysis is completed, and a paper is 
written describing the experiment, results, and conclusions. The paper is then submitted to 
a professional journal in the hope that it will be judged suitable for publication.

The examples in this and preceding chapters show that the results of individual studies 
can be rather imprecise. That is, the confidence intervals around our point estimates can 
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be quite wide. The appendixes for Chapters 6 and 10 as well as Appendix 11.5 (available 
at study.sagepub.com/gurnsey) show that with proper planning, we can have some control 
over our margin of error. However, in practical terms there may be limits to how precise 
a single study can be. In any case, it is rare for a question of any importance to be settled 
by the results of a single study. Rather, we rely on replication and the cumulative weight of 
evidence arising from many related studies to draw our conclusions.

One method used to combine the results of several studies is meta-analysis (Ellis, 
2010; Hedges & Olkin, 1995; Hunter & Schmidt, 1990; Smith & Glass, 1977). The logic of 
the method is extremely simple: if the results of several individual studies are somewhat 
imprecise, then the results of these individual studies can be averaged to yield a more 
precise result. For example, if several studies had addressed the effects of a new treatment 
for depression, then the results of all such studies can be averaged to yield a more precise 
estimate of the benefits of the treatment. The logic is exactly the same as all estimation 
procedures we’ve done to this point. In single studies, we combine measures taken from 
individuals to estimate a population parameter. In meta-analysis, we combine the results of 
studies to get a more precise estimate of a population parameter.

Throughout this chapter we have worked with the example of the effect of noise (or 
quiet) on riddle solving. We found that the estimated effect size was d = .67. Let’s say a 
second study of the same sort had been conducted, with 25 participants in each condition 
(quiet and noisy), and a statistically significant increase in the number of riddles solved 
was found, t(48) = 3.7, p = .0006. Perhaps a third study used the same method with 20 
participants in each group. In this study too there was an increase in the number of riddles 
solved, which corresponded r2 = .25. That is, the difference between sample means 
accounted for 25% of the variability in the scores. Finally, a fourth study was conducted 
with two groups of 16 participants and a statistically significant increase in the number of 
riddles solved was found, F = 6.5, p = .016.

Now we have four studies addressing the same question, but each has presented the 
results in a different way. However, we now know that all three measures can be converted 
to an estimate of δ. That is, all three results can be expressed as d. This is shown in  
Table 11.6. Using equation 11.17, we find that t(48) = 3.7 corresponds to d = 1.05. Using  
equation 11.22, we find that r2 =.25 corresponds to d = 1.13. And, using equation 11.17, we  
find that F = 6.5 corresponds to d = 0.90; in this case, t F

obs
= .

Meta-analysis is a 
quantitative method 
of data analysis that 
combines the results 
of many individual 
studies to obtain a 
more precise estimate 
of a population 
parameter.

TABLE 11.6  ■  Converting tobs and r2 to d for a Meta-Analysis

Study Statistic Value Expressed as d Transformation

Study 1 d 0.67 0.67

Study 2 tobs 3.70 1.05 d t
n n

= +obs *
1 1

1 2

Study 3 r2 0.25 1.13 d df
r

r n n
=

−








 +








within

2

2
1 21

1 1

Study 4 F 6.50 0.90 d F
n n

= +*
1 1

1 2

Mean 0.94

Standard deviation 0.20
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Now that all statistics have been converted to the same units (d), we can compute the 
mean and standard deviation of these four values of d. At the bottom of Table 11.6, we 
can see that the mean of the four d values is 0.94 with a standard deviation of 0.20. This 
is a meta-analysis. We have combined the results of four studies to obtain a more precise 
estimate of the true population effect size. Although we won’t do it here, we could go on 
to compute a confidence interval around this average value of d. (We could also test it for 
statistical significance if we thought this would be useful, or if a journal editor forced us to.)

It is important to recognize a second important role of d in meta-analysis. Remember, d, 
like z, is a unitless measure. Therefore, the responses on many different dependent variables 
can be converted to d and then averaged. For example, in the four studies we just considered, 
the dependent variable was the number of riddles solved. However, different dependent 
variables could have been used. For example, a researcher might have measured the time 
required to solve five riddles, rather than the number solved in 30 minutes. Response times 
are supposed to reflect the same underlying psychological construct measured by the 
number of riddles solved. Therefore, participants who solve more riddles would be expected 
to solve a fixed number of riddles in a shorter time. So, on average, participants in the quiet 
condition would be expected to solve riddles faster than those in the noisy condition. The 
difference between these two time-to-solve means can be converted to d and combined in a 
meta-analysis with d derived from two number solved means.

Meta-analysis is a powerful tool for combining research results, and estimates of δ play 
an important role. First, many different statistics can be converted to d so that they are put 
on a common scale and averaged. Second, many different dependent variables, all reflecting 
the same underlying psychological construct, can be converted to d and averaged.

When you read about individual research results that seem interesting, you should 
always be thinking meta-analytically (Kline, 2013), which means

•• thinking about how the dependent variable in one study relates to the dependent 
variables used in related studies, and

•• what the weight of evidence suggests about the question being addressed in these 
related studies.

Thinking meta-analytically keeps us from thinking that the results of a single study are 
definitive, as we might be led to believe from a misinterpretation of p-values.

Because meta-analysis is a very general but simple analysis, we will wait until we’ve 
seen a few more statistical methods before returning to the question of how results obtained 
using these different methods can be combined.

SUMMARY

In this chapter we saw how to compute a confidence 
interval around the difference between two independent 
sample means when the population standard deviations 
are unknown. The confidence interval is computed as 
follows:

( ) ( ),
/

m m t sm m1 2 2
1 2

− ± −α

where m1 - m2 is the difference between two means 
drawn from two independent populations. Population 

1 has mean μ1 and variance σ
1

2
,  and population 2 has 

mean μ2 and variance σ
2

2
.  One can (theoretically) 

compute all possible values of m1 from samples of 
size n1 from population 1, and all possible values of m2 
from samples of size n2 from population 2. If m1 - m2 is 
computed for all possible combinations of m1 and m2, the 
result will be the sampling distribution of the difference 
between two means. This distribution will have a mean of 
μ1 - μ2 and a variance of σ σ

1

2

1 2

2

2
/ /n n+ .  If sample sizes are 

equal and it is assumed that σ σ
1

2

2

2= , then σ σ
1

2

1 2

2

2
/ /n n+  
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can be estimated with s n s n
1

2

1 2

2

2
/ / .+  If sample sizes are 

unequal but we can assume that σ σ
1

2

2

2= ,  then we can 
compute

s df
df

s df
df

s
pooled

2

within within

= +1

1

2 2

2

2
( ) ( )

to estimate the variance (σ2) common to the two 
populations. s

pooled

2  can then be substituted into

σ
σ σ

m m n n1 2

1

2

1

2

2

2

− = +

as follows to yield the estimated standard error of the 
difference between two means, sm m1 2- :

s
s
n

s
nm m1 2

2

1

2

2

− = +pooled pooled
.

We use sm m1 2-  to compute our confidence interval. If 
σ

1

2  and σ2
2  cannot be assumed to be identical, then we 

can use the Welch-Satterthwaite correction (described in 
Appendix 11.4 available at study.sagepub.com/gurnsey) 
to increase ta/2 appropriately.

The information used to compute a confidence 
interval around m1 - m2 can also be used to estimate δ 
and to place an approximate confidence interval around 
this estimate. Specifically,

d m m
s

=
−

1 2

pooled

estimates δ. An approximate (1-α)100% confidence 
interval around d is computed as follows:

d ± za/2(sd)

where

s d
df n nd = + +

2

1 2
2

1 1

within

.

The estimated effect size d is related to tobs as follows:

d t
n n

= +
obs

1 1

1 2

.

This is a very useful connection because many research 
studies report only tobs. So, if you know tobs and the size 
of the two samples, you can recover d and place an 
approximate confidence interval around it.

Confidence intervals, (m1 - m2) ± tα/2( ),sm m1 2-  can be 
used to test the null hypothesis that H0: μ1 - μ2 = 0. If 0 
does not fall within the interval, we can reject a two-
tailed test of the null hypothesis with a significance 
level of α. The traditional method of testing the null 
hypothesis is to compute

t m m
sm m

obs
=

−
−

1 2

1 2

and reject H0 if tobs exceeds the tcritical value that is 
established based on α, dfwithin, and H1.

The concept of partitioning variance is important 
for two reasons. The first is that r2 is an alternative 
estimate of a population effect size, which we will call 
r2 in later chapters. r2 is the proportion of variability in 
our two samples, treated as a single set of scores, that 
is explained by the difference between the two group 
means. r2 is related to tobs in a very simple way:

r t
t df

2 =
+

obs

2

obs

2

within

.

r2 is also related in a simple way to d. Specifically,

d df r
r n n

=
−









 +








within

2

2

1 2
1

1 1
.

In statistics, everything is related. Because tobs and 
r2 can be converted to d, we can combine the results 
of studies using different statistics and different 
dependent variables in a meta-analysis.

KEY TERMS

between-group variability  284
confounding variable  264
dependent samples  264
dependent variable  262
experiment  263

hypothetical population  264
independent samples  264
independent variable  262
meta-analysis  290
pooled variance ( )s

pooled

2   272

quasi-experiment  263
sampling distribution of the difference 

between two means  269
weighted sum  272
within-group variability  284
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EXERCISES

Definitions and Concepts

  1.	 What is the difference between an experiment 
and a quasi-experiment?

  2.	 Please explain the concept of a hypothetical 
population.

  3.	 What is the difference between independent and 
dependent samples?

True or False

State whether the following statements are true or false.

  4.	 For the two-groups design, the independent vari-
able is dichotomous and the dependent variable is 
quantitative.

  5.	 The mean heart rate of a sample of 32 Wistar rats 
living on the international space station is an esti-
mate of the mean heart rate of Wistar rats living 
on the international space station. 

  6.	 It is impossible to estimate the mean of a hypo-
thetical population. 

  7.	 Statistical significance implies high practical 
significance. 

  8.	 sm m
1 2

-  is the standard error of the difference 
between two means. 

  9.	 σ
σ σ

m m n n1 2

2 1

2

1

2

2

2

− = + .

10.	 If n1 = n2 = 5, and s1 = s2 = 15, then σm m1 2
6− = .

11.	 If n1 = n2 = 5, and s1 = s2 = 15, then spooled = 15. 

12.	 If n1 = n2 = 11, and tobs = 4, then r2 = .6154. 

13.	 If n1 = n2 = 11, and tobs = 4, then d = 1.706. 

Calculations

14.	 For each of the following parameters, compute 
the mean and variance of the sampling distribu-
tion of the difference between two means.
(a)	 μ1 = 10, μ2 = 12, σ1 = 6, σ2 = 5, n1 = 15,  

n2 = 15
(b)	 μ1 = 10, μ2 = 12, σ1 = 6, σ2 = 5, n1 = 22,  

n2 = 15

(c)	 μ1 = 20, μ2 = 6, σ1 = 6, σ2 = 25, n1 = 15,  
n2 = 4

(d)	 μ1 = 18, μ2 = 30, σ1 = 28, σ2 = 5, n1 = 4,  
n2 = 15

(e)	 μ1 = 4,  μ2 = 8,  σ1 = 16, σ2 = 8, n1 = 32,  
n2 = 64

15. 	 For each of the following scenarios, (i) calcu-
late the 95% confidence interval around m1 - m2,  
(ii) compute the approximate 95% confidence inter-
val around d, (iii) compute tobs, and (iv) compute r2.
(a)	 m1 = 10, m2 = 12, s1 = 6, s2 = 5, n1 = 15,  

n2 = 15
(b)	 m1 = 9, m2 = 11, s1 = 5, s2 = 5, n1 = 10,  

n2 = 15
(c)	 m1 = 8, m2 = 7, s1 = 4, s2 = 3, n1 = 9, n2 = 15
(d)	 m1 = 7, m2 = 8, s1 = 3, s2 = 4, n1 = 8, n2 = 15

Scenarios

16.	 Twenty university students (chosen at ran-
dom from students enrolled at the University of 
Vermont) took part in an experiment testing the 
effect of watching FOX News versus CNN on 
knowledge of world events. The 20 participants 
were divided into two equal groups of 10 par-
ticipants each. One group was assigned to watch 
FOX and the other was assigned to watch CNN. 
Participants then watched their assigned station 
(FOX or CNN) for 3 hours a night for 4 weeks. 
At the end of the 4-week period they were admin-
istered a test of world knowledge. The results  
were as follows: mFOX = 110, mCNN = 99, sFOX = 10, 
sCNN = 6.

(a)	 Compute the 95% confidence interval around 
mFOX - mCNN.

(b)	 What does it mean to have 95% confidence 
in this interval?

(c)	 Use the 95% confidence interval to test  
the null hypothesis H0: μFOX - μCNN = 0 
against the alternative hypothesis H1: μFOX 
- μCNN ≠ 0.

(d)	 What do you conclude from these data?

17.	 �This font is called Comic Sans MS. An honors 
student at Concordia University theorized 
that reading comprehension is reduced when 

Draf
t P

roo
f - 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2018 by SAGE Publications, Inc.   
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



294    Part III  •  Estimation and Significance Tests (Two Samples)

text is presented in Comic Sans MS rather 
than the more commonly used Helvetica. She 
chose to test her theory in a population of 
university students using a widely available 
test of reading comprehension. The student 
drew a random sample of 42 university 
students in Canada, which she then divided, at 
random, into two groups of 21. One group was 
given the reading test formatted using Comic 
Sans MS, and the other was given the test 
formatted in Helvetica. After she collected 
the results from the 42 students, she found 
the following: mCSMS = 110, mHelvetica = 122, sCSMS 
= 16, sHelvetica = 20.

(a)	 What proportion of the variability is  
explained by the difference between the two 
means?

(b)	 Calculate the approximate 95% confidence 
interval around d.

(c)	 If H1: μCSMS - μHelvetica < 0, can we reject the 
null hypothesis at the α = .05 significance 
level? Explain your answer.

18.	 Researchers at Concordia University have a 
theory that drinking beer while studying will 
reduce test anxiety and result in improved 
test grades. To test their theory, the research-
ers chose 16 students at random from those  
currently enrolled in an introductory sta-
tistics course at Concordia. Half of the stu-
dents were asked to consume two bottles of 
beer during their normal studying periods, 
and the other half were asked to refrain from 
alcohol consumption while studying. The stu-
dents then wrote the test in their regular class 
period. The results were as follows: mBeer = 

75, mNoAlc = 70, sBeer = 8, sNoAlc = 6. Conduct 
a test to assess the researchers’ theory about 
the relationship between beer drinking and 
test performance.
(a)	 Assuming α = .05, is there a statisti-

cally significant difference between the 
means of the two groups? Explain your 
answer.

(b)	 What proportion of the variability in the 
test scores is explained by between-groups  
variability?

(c)	 Would Cohen consider this a small,  
medium, or large effect size?

19.	 A professor of linguistics was dismayed by 
the prevalence of the word “like” in con-
temporary language. Thinking this was 
a generational difference, he measured 
the number of times a random selection of 
young and old subway passengers used the 
word “like” in a 5-minute conversation. 
(This study did not have the ethical approval 
of his university’s ethics committee and 
verges on the creepy.) The results were as fol-
lows: myoung = 60, mold = 75, syoung = 15, sold = 17.  
There were 25 individuals in the group of 
older subway passengers and 36 in the group 
of younger subway passengers.
(a)	 Compute the 95% confidence interval 

around mold - myoung.
(b)	 If his alternative hypothesis was H1: μold - 

μyoung < 0, would he be able to reject the null 
hypothesis based on this confidence inter-
val?

(c)	 Compute the approximate 95% confidence 
interval around his best estimate of δ.

APPENDIX 11.1: ESTIMATION AND SIGNIFICANCE TESTS IN EXCEL

Confidence Intervals and tobs for m1 - m2

In previous appendixes we introduced all the Excel 
functions needed to conduct the analyses described 
in the body of this chapter. Figure 11.A1.1 shows how 
to compute a confidence interval around m1 - m2 and 
how to calculate tobs. In cells B2 to B7, we are provided 
with values for m1, m2, s1, s2, n1, and n2. We are also pro-
vided with the value for α in cell B9. The within-groups 
degrees of freedom (dfwithin) are computed in cell B8 as 
n1 + n2 - 2.

From the numbers given, m1-m2 is calculated in cell 
B11, and

s df
df

s df
df

s
pooled

2

within within

= +1

1

2 2

2

2
( ) ( )

is calculated in cell B12. s
pooled

2  is used in the calculation of

s
s
n

s
nm m1 2

2

1

2

2

− = +pooled pooled
,
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in cell B13. To compute a confidence interval around  
m1 - m2 requires tα/2, which is computed in cell B14 using 
the T.INV function. The lower and upper bounds of the 
confidence interval are computed in cells B16 and B17.

A two-tailed test of the null hypothesis can be 
conducted by asking whether 0 falls in the 95% confidence 
interval around m1 - m2. One can also compute

t m m
sm m

obs
=

−

−

1 2

1 2

as shown in cell B19. The T.DIST function is used in cell 
B20 to compute the one-tailed p-value associated with tobs. 
The two-tailed p-value is computed in cell C21.

Confidence Intervals for d

Cells B2 to B12 of Figure 11.A1.2 contain exactly the 
same quantities as cells B2 to B12 in Figure 11.A1.1. In 
cell B13, spooled is computed simply as the square root of 
s

pooled

2
.  In cell B14,

d m m
s

=
−

1 2

pooled

is computed, and the estimated standard error of d is 
computed in cell B15 as

s d
df n nd = + +

2

1 2
2

1 1

within

.

NORM.S.INV is used in cell B16 to compute zα/2.  
The lower and upper limits of the confidence interval 
around d [i.e., d ± zα/2(sd)] are computed in cells B18 
and B19.

Partitioning Variance

Figure 11.A1.3 illustrates how variability in the depen-
dent variable is partitioned into within- and between-
groups sources. Cells B2 to B23 are the raw data from 
Table 11.2. The mean of each condition is computed 
in cells C2 to C23 using the AVERAGE function. (The  
‘$’ signs shown to the right in column D have to do  
with absolute referencing, which was introduced in 
Appendix 2.1.) Cells E2 to E23 show the deviations of 
scores from their group mean. For example, cell B13 
shows a score of 5 in the noisy condition, which has a 
mean of 9. Therefore, the deviation score is 5 - 9 = -4, as 
shown in cell E13.

The DEVSQ function has been used to compute 
sstotal (cell B26), ssbetween (cell B27), and sswithin (cell B28). 
Note that sstotal = ssbetween + sswithin = 49.5 + 400 = 449.5. 
Cell B30 shows the calculation of r2 as

r ss
ss

2 = between

total

.

FIGURE 11.A1.1  ■   Confidence Intervals and tobs

Confidence intervals and t-tests for the two-independent-
groups design.

FIGURE 11.A1.2  ■  Confidence Intervals for d

Approximate confidence intervals for d.
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Cell B31 shows the calculation of the F-statistic as

F r
r
df=

−

2

2
1

.

And as noted in this chapter, t is the square root of F, 
as shown in cell B32. (Note that 1.573 is the value of 

tobs calculated in the chapter.) Finally, r2 is calculated a 
second time in cell B33 using the formula

r t
t df

2 =
+

obs

2

obs

2
.

FIGURE 11.A1.3  ■  Partitioning Variance

Partitioning the variance in scores from two independent samples.

APPENDIX 11.2: ESTIMATION AND SIGNIFICANCE TESTS IN SPSS

To compute a confidence interval around the 
difference between independent sample means in 
SPSS, we first enter our data as a single column of 
numbers. In Figure 11.A2.1a the column labeled  
N_Solved contains the scores from Table 11.2 arranged 
in a single column. To the right, in the column labeled 
Group, are numbers used to identify the groups. In this 

example, 1s corresponds to the quiet condition and 2s 
correspond to the noisy condition.

To compute a confidence interval and significance 
test for these two groups of scores, we choose  
the Analyze→Compare Mean→Independent-Samples 
T Tests . . . menu. When this has been chosen, the 
Independent-Samples T Tests dialog appears, as shown 
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in Figure 11.A2.1b. The variable N_Solved has been 
moved into the Test Variable(s): region and Group has 
been moved into the Grouping Variable: region. Before 
we can proceed, we are required to identify the groups 
(the numbers in the Group variable) in the analysis. 
To do this, we click on the Define Groups . . . button, 
and the Define Groups dialog appears. As shown in 
Figure 11.A2.1c, 1s are associated with Group 1 and 2s 
are associated with Group 2. (These are values that I 
entered.) With this done, we click  to return 
to the Independent-Samples T Tests dialog, and there 
we click  to proceed with the analysis.

The output of the analysis is shown in Figure 
11.A2.2. There are two rows of numbers. The top row 
shows the analysis when the population variances are 
assumed to be equal (i.e., σ1 = σ2), and the second row 
shows the analysis when population variances are not 
assumed to be equal. The first two columns show the 
results of Levene’s test for equal variances. We won’t 
discuss this analysis, but it is in essence a kind of 
significance test. If the p-value (Sig.) associated with 

the computed statistic (F) is small, then a statistically 
significant difference in the two sample variances 
exists.

The next column (t) shows tobs computed exactly 
as described in the body of the chapter. The degrees of 
freedom are n1 + n2 - 2 when equal variances are assumed. 
When equal variances are not assumed, the degrees 
of freedom are adjusted downward using the Welch-
Satterthwaite procedure described in Appendix 11.4 
(available at study.sagepub.com/gurnsey). In this case, 
there has been very little adjustment because the sample 
variances are very similar. The two p-values [Sig (2-tailed)] 
are slightly different because they are based on the same tobs 
(1.573) but slightly different degrees of freedom.

The difference between the two means (Mean 
Difference) and the estimated standard error (Std. Error 
Difference) used to compute tobs are shown in the next two 
columns. These two quantities do not depend on whether 
the population variances are assumed to be equal. The last 
two columns show the 95% confidence intervals for the 
difference between two means. The interval computed in 

FIGURE 11.A2.1   Independent-Groups Analysis

Conducting an independent-groups analysis in SPSS.

(a)

(b)

(c)
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the first row is exactly the same as the one computed in the 
chapter. The second row shows the Welch-Satterthwaite 
corrected confidence interval. In this case, tα/2 is based on 

19.077 degrees of freedom rather than 20, which means 
tα/2 is a little larger than in the first row and hence the 
confidence interval is a little wider.

FIGURE 11.A2.2  ■  Independent-Groups Output

Conducting an independent-groups analysis in SPSS.
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