
202

9 SIGNIFICANCE TESTS
Problems and Alternatives

INTRODUCTION

You may be surprised to learn that statistics is currently seething with controversy. People 
do not disagree about basic things like sampling distributions. Rather, the controversy 
centers on the use of significance tests, which are by far the most widely used data analysis 
methods in psychology. People can get quite worked up about these issues (Bakan, 1966; 
Carver, 1978; Cohen, 1994; Lambdin, 2012; Rozeboom, 1960), so it can be very entertaining 
to read these debates.

When psychologists approach a research question, we reflexively form our questions 
in terms like “Does this intervention or experimental manipulation work?” When we state 
things this way, we really mean “Is there a statistically significant effect of our experimental 
manipulation?” Significance tests seem to provide an elegant way to make decisions about 
our questions, so what could be the problem? And, if there is a problem, what might be a 
better approach to data analysis?

In this chapter, we’ll summarize some of the most frequently aired concerns about 
significance tests and then show how the routine use of estimation can go a long way 
toward addressing them. Rather than asking whether an intervention works (yes or no), it 
might be better to ask how well an intervention works.

SIGNIFICANCE TESTS UNDER FIRE

Given the prevalence of significance tests in psychology, you might think that 
all researchers endorse them. This is not so. Consider the following quote from 
Gerd Gigerenzer (2004), who has long criticized the use of significance tests in 
psychology:

You would not have caught Jean Piaget [conducting a significance test]. The semi-
nal contributions by Frederick Bartlett, Wolfgang Köhler, and the Noble laureate 
I. P. Pavlov did not rely on p-values. Stanley S. Stevens, a founder of modern 
psychophysics, together with Edwin Boring, known as the “dean” of the history of 
psychology, blamed Fisher for a “meaningless ordeal of pedantic computations” 
(Stevens, 1960, p. 276). The clinical psychologist Paul Meehl (1978, p. 817) called 
routine null hypothesis testing “one of the worst things that ever happened in the 
history of psychology,” and the behaviorist B. F. Skinner blamed Fisher and his 
followers for having “taught statistics in lieu of scientific method” (Skinner, 1972, 
p. 319). The mathematical psychologist R. Duncan Luce (1988, p. 582) called null 
hypothesis testing a “wrongheaded view about what constituted scientific progress” 
and the Nobel laureate Herbert A. Simon (1992, p. 159) simply stated that for his 
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research, the “familiar tests of statistical significance are inappropriate.” (Gigerenzer, 
2004, pp. 591–592)

There are some really strong words in this quote from people you’ve probably read about. 
So, let’s try to understand where these criticisms come from. Because many criticisms of 
significance tests are connected to the publication process, we will have to say a few things 
about this before moving on to the criticisms.

The Publication Process

I mentioned in Chapter 1 that most of your professors think of themselves as researchers. 
A routine part of research is publishing our research results in academic journals so that 
others can discuss them. Publishing is generally fun and exciting because it is one of the 
most important ways of engaging in a public conversation about research questions that are 
interesting to us. However, publishing is not an optional part of the job for your professors. 
They are expected to publish regularly, and their job performance is based on the num-
ber (and quality) of the papers they publish. Researchers who don’t, or can’t, publish their 
research results will not succeed, and they may lose their jobs. Because research productiv-
ity determines how they are viewed by their universities and professional colleagues, there 
is tremendous pressure on professors to publish. To understand some of the concerns about 
significance tests, we need to think about the process that researchers go through to get the 
results of their research published in academic journals.

Figure 9.1 illustrates the publication process. A professor typically has a laboratory 
housed in her university. In collaboration with other professors, graduate students, and 
research assistants, she runs experiments and collects data. When she thinks the results 
of her experiments answer her research question, she writes a paper describing the 
experiments, the results, and what the results mean.

When the paper is finished, the professor sends it to a research journal, where it is 
assigned to an editor. It is the editor’s responsibility to ensure that the journal publishes 
high-quality research. Therefore, the editor sends the paper to two or three experts in 
the relevant field and asks them to read the paper to make sure that the experiments were 
properly run, that the statistical analyses are sound, and that the conclusions make sense.

Because the experts reviewing the paper work in the same field as the author, they 
probably know her from her previous publications or from meeting her at conferences. 
However, the reviews are typically anonymous so that the reviewers can feel free to 
express any concerns they have about the quality of the research. The reviewers want to be 
thorough but fair. Their job is to provide useful comments in a report to the editor that will 
help him decide whether to accept the paper.

When the editor receives the reports from the reviewers, he may be able to make a 
decision to accept or reject the paper right away. Very often, however, the reviewers will 
find the paper interesting but needing improvement. For example, the author may have 
failed to acknowledge relevant research from another researcher. Or the reviewers may find 
the conclusions unconvincing and ask for more experiments to be run or more analyses to 
be conducted. In such cases, the editor may ask the author to do additional work and then 
submit a revised version of the paper. The revised paper may be sent back to the same 
reviewers to see if their concerns have been answered. There can be several rounds of 
revisions and reviews before the editor makes a final decision to accept or reject the paper.

If the paper is accepted, it will be published in the journal and other scientists will 
be able to read about the research. If the paper is rejected, it will not be published in that 
journal, and the author will have to either look for another journal to publish it or give up 
and store the paper away in a filing cabinet.
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204    Part II  •  Estimation and Significance Tests (One Sample)

Publication and Statistical Significance

At the heart of many research papers are claims such as A causes B. For example, we might 
claim that assuming a power pose for 2 minutes causes an increase in final exam grades, or 
that an additional 20 minutes of phonics instruction improves the reading scores of first-grade 

FIGURE 9.1  ■  The Publication Process

A researcher runs an experiment and collects and analyzes data. She then writes a paper (manuscript) 
describing the experiment, the results, and what the results mean. She sends the paper to a journal, 
where it is assigned to an editor. The editor sends the paper to experts in the field and asks for their 
opinions on the merits of the paper. When the editor receives the reports from the experts, he makes 
a decision about whether to accept and then publish the paper or to reject it.

Figure courtesy of Danielle Sauvé.
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students. In the simplest case, such claims involve comparing two means (e.g., m and μ0), 
computing a test statistic (e.g., zobs), and determining its p-value under the null hypothesis. If  
p < .05, the result is considered statistically significant and the claim may be supported, assum-
ing there are no problems that undermine the interpretation. Journal editors and reviewers 
often rely heavily on significance tests to judge whether claims are supported. In this way, 
statistical significance acts as a kind of filter that determines whether a paper is published and 
thus made available for other researchers to discuss. Unfortunately, many problems arise from 
the requirement for statistical significance.

CRITICISMS OF SIGNIFICANCE TESTS

The File-Drawer Problem

A major problem in psychology is the reluctance of journals and journal editors to publish 
papers in which statistically significant results have not been found. This form of publication 
bias means that many interesting results won’t make it into the literature because the results 
were not supported by statistical significance. Such results may be filed away and thus not 
shared with other researchers, creating what we call the file-drawer problem.

The file-drawer problem means that results in the published literature are not 
representative of all results obtained from studies addressing the same question. Imagine 
that 16 studies independently addressed the effectiveness of a particular treatment for 
attention-deficit/hyperactivity disorder (ADHD). Let’s say that a quarter of the studies 
found a statistically significant reduction in ADHD symptoms, and the other three-quarters 
found reductions that weren’t statistically significant. If only the statistically significant 
results are published, they will not represent the effectiveness of the treatment.

Later in this chapter we will see that the population effect size [d = (m1 - m0)/s] can be 
estimated from the sample mean [d = (m - m0)/s]. If we average the estimated effect sizes 
obtained in the four published studies, the resulting mean will overestimate the size of the 
effect in question. That is, the average of the four published effect sizes will be greater than 
the average of all 16 studies (including both published and unpublished). Averaging only 
effect sizes that made it through the p < .05 filter is like computing the class average on a 
statistics test from only those people whose grades exceeded a threshold of 75%.

Publishing only statistically significant results clearly distorts the literature and results 
in a misleading representation of the full body of evidence relating to a given question. This 
is a dangerous situation if the studies relate to health outcomes, such as the effectiveness 
of pharmacological treatments for depression (Turner, Matthews, Linardatos, Tell, & 
Rosenthal, 2008).

Proliferation of Type I Errors

A publication bias favoring statistically significant results leads to the strong possibility that 
many if not most published results are Type I errors (Ioannidis, 2005). Let’s do a thought exper-
iment and consider a theory predicting that a daily dose of 1000 mg of vitamin C increases IQ. 
I doubt this theory is true because I just made it up. If several research groups (possibly funded 
by the vitamin C industry) studied this theory, then most studies would fail to find a statistically 
significant effect because the null hypothesis is true. However, it is inevitable that some studies 
will find statistically significant results; i.e., Type I errors. In a world in which publication bias 
favors statistically significant findings, these Type I errors would have a higher probability of 
being published than those that failed to reject the null hypothesis. If these Type I errors are 
published, then anybody reviewing the literature pertaining to this theory about vitamin C and 
IQ would conclude that it has been supported because they would not know about the many 
studies, hidden away in filing cabinets, that correctly retained the null hypothesis.

Publication bias 
“occurs whenever 
the research that 
appears in the 
published literature 
is systematically 
unrepresentative 
of the population of 
completed studies” 
(Rothstein, Sutton, 
& Borenstein, 
2006). One form 
of publication bias 
occurs when journals, 
editors, reviewers, 
and even authors 
favor publication 
of results that 
achieve statistical 
significance.

The file-drawer 
problem refers to 
the large number of 
papers filed away 
in cabinets (or hard 
drives) because they 
were unpublished. As 
a consequence, many 
valid and worthwhile 
results are not 
available to guide 
and inform other 
researchers.
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A second form of publication bias favors novelty. If I predicted, long before Carney 
et al. (2010), that holding a power pose for 2 minutes would increase final exam grades, 
I think most people would have found this prediction implausible. Therefore, if I ran the 
experiment and found no such increase, people would be unsurprised and it would probably 
be very hard to get the paper published. However, if the same experiment produced a 
statistically significant increase in grades, this would be viewed as an exciting new finding 
and the chances of being published would be much greater.

A publication bias favoring novelty is compounded by the fact that it is the policy of 
some journals not to publish replications of previously reported, statistically significant 
results. A notorious example of this happened recently when Bem (2011) published 
a paper in the Journal of Personality and Social Psychology titled “Feeling the Future: 
Experimental Evidence for Anomalous Retroactive Influences on Cognition and Affect.” 
Here is how one of the experiments was described to the participants:

[T]his is an experiment that tests for ESP. It takes about 20 minutes and is run 
completely by computer. First you will answer a couple of brief questions. Then, 
on each trial of the experiment, pictures of two curtains will appear on the screen 
side by side. One of them has a picture behind it; the other has a blank wall behind 
it. Your task is to click on the curtain that you feel has the picture behind it. The 
curtain will then open, permitting you to see if you selected the correct curtain. 
There will be 36 trials in all.

Several of the pictures contain explicit erotic images (e.g., couples engaged in 
nonviolent but explicit consensual sexual acts). If you object to seeing such images, 
you should not participate in this experiment. (Bem, 2011, p. 409)

The novel twist in the experiment was that the window showing the picture was chosen 
at random by a computer after the participant had made his or her choice. Therefore, the 
choice is (arguably) about the future state of the world.* The null hypothesis in this case is 
that participants would have a 50% chance of guessing which of the two curtains hid the 
erotic image. However, it was found that participants guessed correctly 53% of the time, on 
average, and this turned out to be statistically significant. Bem concluded that these results 
constitute positive evidence that people can see or sense future events.

If this study truly demonstrated that people can “feel the future,” it would be the most 
important experiment ever reported in human history, and every domain of science would 
have to be revised fundamentally in view of it. If any experiment calls out for replication 
to ensure that it is not a Type I error, it is this one. However, when a paper reporting an 
unsuccessful attempt to find the same results was submitted to the same journal, the editor 
rejected it, saying that it was the journal’s policy to publish only original studies and not 
replications. The editor in question was quoted in the New Scientist as saying, “This journal 
does not publish replication studies, whether successful or unsuccessful” (Aldhous, 2011).

This episode illustrates the unfortunate fact that Type I errors are far easier to get into 
the literature than to remove from the literature. Science is supposed to be self-correcting, 
but when journals devalue replication, errors become difficult to correct.**

*I’m not sure why it wasn’t taken as evidence for participants reading the current state of the random 
number generator in the computer through extrasensory perception.

**A bit of hopeful news here is that the public outcry over this event caused the Journal of Personality 
and Social Psychology to accept attempted replications of the Bem experiments (Galak, LeBoeuf, 
Nelson, and Simmons, 2012). Not surprisingly, Galak et al. did not find any evidence that people can 
“feel the future.”
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p-Hacking: The Quest for Statistical Significance

Because there is a publication bias favoring results that are statistically significant, 
researchers naturally feel pressured to find statistically significant results. This pressure 
does not necessarily result in dishonest behavior, but it can result in a multitude of ques-
tionable practices in which researchers make undisclosed adjustments to their data anal-
ysis procedure in efforts to produce statistically significant results. These practices are 
collectively known as p-hacking. Uri Simonsohn defined p-hacking as “trying multiple 
things until you get the desired result” (Nuzzo, 2014), where the desired result is statistical 
significance.

We encountered a simple example of p-hacking in Chapter 7 when we noted that a 
researcher may decide, after the experiment has been run, to test for statistical significance 
using a one-tailed test rather than a two-tailed test as originally planned. Rex Kline (2013) 
refers to this as an instance of hypothesizing after the results are known, or HARKing.

A very common type of p-hacking involves running many experiments, or conducting 
multiple analyses on the same data, and reporting only the results that are statistically 
significant or those that are consistent with the predictions of the researcher. Such 
practices very often create a misleading picture of reality and increase the likelihood that 
Type I errors will make their way into the literature. This type of p-hacking is brilliantly 
illustrated by an xkcd cartoon that can be found at xkcd.com/882. The cartoon shows 
twenty significance tests, each one assessing the link between acne and jelly beans of a 
specific color. In one case (green jelly beans) a statistically significant result was found. 
If only this result is reported, as in the cartoon, then a reader has no idea about the other 
19 analyses that did not produce statistically significant results. That is, the reader has 
no way of knowing that the result is almost certainly a Type I error. (If you ever need a 
break from studying statistics, visit xkcd.com for hours of top-notch entertainment. Some 
comics are NSFW.)

Another form of p-hacking is when researchers increase their sample size in hopes 
of  eventually getting a statistically significant result. Let’s think back to my theory about 
vitamin C and IQ. We will assume that IQ is normally distributed in college students, with a 
mean of 115 and standard deviation of 15; this is my null hypothesis distribution of scores. I 
then take a random sample of 25 students and put them on a high vitamin C diet for a month, 
after which I measure their IQs. I find that their mean IQ is 118.6, and from this, I compute  
zobs = (118.6 - 115/3 = 1.2, p = .12. This result is not statistically significant, but the difference 
is in the predicted direction and the p-value is sort of small. I might conclude that my test 
lacked power because the sample size was too small. Therefore, I continue to add participants 
to my sample and test for statistical significance after each additional participant is added. 
Finally, I end the experiment when I find a statistically significant result.

We could call this the “run-until-statistically-significant” (RUSS) approach. Many 
researchers believe this is a perfectly legitimate strategy; I know I did for a long time. 
However, it is definitely not okay to do this. The problem with the RUSS approach is that 
even when the null hypothesis is true, there will be random variations in the statistic (and its 
associated p-value) as we add more participants to our sample. At some point, the statistic 
(e.g., zobs) may become statistically significant because of these chance fluctuations.

The random fluctuations in p-values are illustrated in Figure 9.2. Starting with a 
sample of size 1, drawn from the null hypothesis distribution, we compute zobs and record 
its p-value. We then add another score to the sample and test for statistical significance. We 
repeat this process until sample size is 50. Note that our 50 samples are not independent 
samples of different sizes. Rather, a sample of size n contains all the scores from the sample 
of size n-1, plus one more. 

In Figure 9.2, sample size is plotted on the x-axis and p-values on the y-axis. As you 
can see, the p-values “wander around” as sample size increases. In this case, the p-value 

The term p-hacking 
refers to a multitude 
of questionable 
practices in which 
researchers 
make undisclosed 
adjustments to 
their data analysis 
procedure in efforts to 
produce statistically 
significant results.
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eventually drops below the p < .05 criterion for statistical 
significance, indicated by the black horizontal line. If data 
collection stops at this point, we might be inclined report 
that the obtained zobs is statistically significant, p < .05. As 
we will see, however, the actual p-value associated with zobs 
is much greater than .05.

Imagine running the process shown in Figure 9.2 
10,000 times. The process stops when either (i) sample size 
is 50 or (ii) the sample produces a two-tailed zobs for which  
p < .05. In this situation, about 30% of these 10,000 trials 
will stop because the p < .05 criterion has been obtained. 
The trials comprising this 30% are Type I errors because 
the scores were drawn from the null hypothesis distribution! 
The p-value associated with our zobs statistic is clearly much 
greater than .05. Therefore, widespread use of the RUSS 
approach will inflate the number of Type I errors in the 
literature. As we’ve seen, Type I errors have an increased 
chance of being published, and once published it is difficult 
to publish replication studies to correct the error.

Binary Thinking

The quest for statistical significance produces a tendency 
to think of statistically significant results as important and 
meaningful, and results that are not statistically significant 
as unimportant and meaningless. As we will see at the end of 
the chapter, it is possible for two very similar results to differ 

in their statistical significance (e.g., p = .04 versus p = .06). It is silly to treat these two results 
as different in any meaningful way, but a reliance on statistical significance can seduce us 
into doing just that. Worse, psychologists in the past were instructed to think in exactly this 
way by the APA Publication Manual. The effects of this guidance are still with us.

Statistical Significance Versus Practical Significance

We’ve already discussed the important difference between statistical significance and 
practical significance. One effect of the p < .05 filter is that achieving statistical signifi-
cance can become the goal of the research, rather than an aid to reasoning. Consequently, 
one might consider the job done once the null hypothesis has been rejected. We’ve seen, 
however, that statistical significance does not mean that the result is important or meaning-
ful. Unfortunately, when the focus is on statistical significance, we may spend less time 
than we should considering the practical significance of a result. This can lead to very shal-
low research in which a large number statistically significant results “don’t amount to a hill 
of beans,” as Humphrey Bogart said to Ingrid Bergman in Casablanca. (You might have to 
Google this.)

It is a useful thought experiment to consider what would happen if researchers were not 
allowed to use significance tests (Harlow, Mulaik, & Steiger, 2016). In this case, a result 
would not carry weight just because it is statistically significant. Instead, researchers would 
have to explain things such as (i) why the magnitude of the difference is important, (ii) how 
it changes our view of a particular theory, or (iii) what it implies about the effect of some 
treatment on some population. I don’t mean to imply that researchers don’t do this at all. 
Rather, it is a question of balance. In my view, a result having low practical or theoretical 
significance can gain unwarranted stature if it is statistically significant. 
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FIGURE 9.2  ■  p-Hacking: RUSS

An illustration of how p-values can change as sample size 
increases. The sample is built up over time by drawing 
scores from the null hypothesis distribution. We start 
with a sample size of 1, and we add another randomly 
selected score on each of the remaining 49 trials. On 
each trial, zobs and its two-tailed p-value are computed. 
The p-values change over time. In this example, the 
p-value drops below the p < .05 criterion for statistical 
significance (indicated by the black horizontal line) at 
trial 45. The RUSS strategy ends the experiment when p 
drops below the p < .05 criterion.
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Misunderstanding p-Values

A frequent complaint about significance tests is that many researchers don’t know what 
statistical significance means. We saw in Chapter 7 that a p-value is a conditional prob-
ability. It is the probability of the obtained statistic, or one more extreme, occurring by 
chance when the null hypothesis is true. However, as noted by Cohen more than 20 years 
ago, many people who should know better are prone to committing the inverse probability 
error, which is the belief that the p-value represents the probability that the null hypothesis 
is true. As Cohen (1994) argues, the inverse probability error is really a case of wishful 
thinking. Researchers really want to know the probability of the null hypothesis being true, 
and they let their wishes lead them to believe that this is what p tells them, when it does 
nothing of the sort.

There are other misinterpretations of p-values documented by Oakes (1986), Haller 
and Kraus (2002), Carver (1978), and Kline (2004, Chapter 3), among many others. Among 
these misinterpretations are the following:

1.	 The belief that a p-value is the probability that you’ve made a Type I error. We 
saw in Chapter 8 that this is a confusion between p and α, arising from the hybrid 
Fisher-Neyman model. The correct interpretation is that α is the probability that the 
test will produce a Type I error, and p is the conditional probability of the statistic 
(derived from the data) under the null hypothesis. Unfortunately, someone believ-
ing that p = .0062 is the probability that a Type I error has been committed would 
have little reason to think that the study should be replicated.

2.	 The belief that 1-p is the probability that the same experiment will produce a sta-
tistically significant result if it is repeated. An innocent-sounding instance of this 
occurs when researchers say that small p-values indicate reliable (presumably rep-
licable) results. It is true that there is a relationship between p and the probability of 
replication, but the relationship is not a simple one. The probability that a result will 
replicate is certainly not 1-p. The consequences of this mistaken belief can be quite 
bad. If you think that 1-p is the probability that the same experiment will produce 
a statistically significant result if it is repeated, then when p = .0062 you think the 
probability is .9938 that your experiment will replicate. This misunderstanding also 
might lead one to think that doing an actual replication would be a waste of time.

3.	 The belief that 1-p is the probability that the alternative hypothesis is true. The 
Fisher-Neyman hybrid model probably explains this confusion. In an acceptance 
procedure, one of two hypotheses is accepted. When this is merged with a signifi-
cance test, then rejecting H0 is equivalent to accepting H1. So, what do we do with 
a p-value in this case, given that it plays no role in an acceptance procedure? Well, 
it seems just a short step to see the p-value as a measure of the probability that H0 is 
true (the inverse probability error) and 1-p as the probability that H1 is true. This is 
impossible; p-values are derived from the assumption that H0 is true, with no con-
sideration of H1.

Misunderstandings about p-values are so widespread that the American Statistical 
Association, in a highly unusual move, published a statement about the meaning of p-values 
(Wasserstein & Lazar, 2016). It is not a good thing when a professional does not understand 
the most commonly used tool in his or her toolbox. We’d be concerned about a surgeon 
who uses the wrong end of a scalpel.

In summary, statistical significance is a kind of filter that determines which papers 
make it into the publicly available research literature. This means that the published 
literature may seriously misrepresent the size of some effect. We would have a much better 
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210    Part II  •  Estimation and Significance Tests (One Sample)

sense of any given effect if we knew about all relevant results, not just those that passed 
through the p < .05 filter. Furthermore, the criterion for statistical significance ensures 
that if some effect does not exist, it is more likely that a paper reporting that the effect does 
exist (a Type I error) will enter the literature than a paper that says it doesn’t exist (correctly 
retains the null hypothesis). In a world in which replication is not valued, Type I errors will 
linger in the literature for years, misleading many other researchers and thus wasting their 
time and slowing the progress of science. This problem is compounded by the p-hacking 
that occurs when researchers (who are under pressure to publish) selectively report data in 
order to present a story that ends with a rejected null hypothesis that supports their claims. 
An emphasis on statistical significance also leads to a black-and-white worldview in which 
only results that are statistically significant are treated as interesting and meaningful. 
Equating statistical significance with significance can lead to very shallow thinking. If we 
add to these points reports that many researchers misunderstand the meaning of a p-value, 
then I’d say we have a problem.

CONFIDENCE INTERVALS

I have seen speakers deliver eloquent summaries of problems like those listed above to 
rooms full of researchers who routinely use significance tests as part of their professional 
activities. The really interesting thing is that it is rare for researchers to rise and defend 
significance tests against these criticisms. The most common response is, “True, true, 
but what’s the alternative?” This dynamic also exists in the statistics literature in general. 
Kline (2013) notes that there are hundreds of papers criticizing significance tests, and there 
are only a handful of defenses. So, what is the alternative?

For many, estimation with confidence intervals provides the healthiest alternative to 
significance tests. Significance tests and confidence intervals rest on the same theoretical 
foundations (i.e., sampling distributions) but differ in their objectives. Significance tests 
are designed to decide what a parameter is not, whereas confidence intervals are designed 
to estimate what a parameter is. When you reject the null hypothesis, you are rejecting a 
specific hypothesis about the mean of the distribution from which a sample was drawn. 
When you construct a confidence interval, you are providing your best estimate about the 
mean of the distribution from which a sample was drawn. When we move attention away 
from decision making based on the p < .05 criterion, we can focus on the size of an effect 
and its practical significance.

DECISIONS VERSUS ESTIMATION

Significance tests are designed to decide what a parameter is not, whereas confidence 
intervals are designed to estimate what a parameter is.

The Advantages of Confidence Intervals

In my view, (almost) any steps that eliminate the p < .05 filter from the publication process 
in psychology and related disciplines will produce improvements over the current state of 
affairs. Without the p < .05 filter, there would be no need for p-hacking or binary thinking, 
less of a file-drawer problem, and fewer Type I errors lodged in the literature. Furthermore, 
without the p < .05 crutch, there would be more emphasis on replication and greater effort 
to explain the practical significance of a result.
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LEARNING CHECK 1

1.	 With regard to the proper interpretation of p-values, 
explain why the following are wrong:

(a)	 Somebody tells you that 1-p is the probability that 
an experiment will replicate. 

(b)	 Somebody tells you that 1-p is the probability that 
H1 is true.

(c)	 Somebody tells you that p is the probability that 
you’ve made a Type I error.

2.	 Provide an example in which a statistically significant 
result is of no practical significance. (Be creative.)

3.	 A researcher tells you that he plans to run an 
experiment to test the effect of THC (the psychoactive 
agent in marijuana) on a problem-solving task known 
to have a mean of m0 = 25 in the general population. 
He says he thinks 18 participants should be sufficient 
to conduct a two-tailed test of the null hypothesis  
m1 = m0. What questions might you ask him that would 
help him run a better experiment?

4.	 A researcher wondered whether verbal reasoning 
might improve following 15 minutes of listening to a 
Mozart sonata. After running the experiment with 21 

participants, he found an improvement of 6 points on 
a verbal reasoning task, zobs = 1, p = .159. He thought 
this was encouraging, but concluded that his sample 
was not large enough. Therefore, he continued 
adding participants until he reached 36 participants, 
at which point he again found a 6-point improvement, 
zobs = 1.7, p = .045. Would you have anything to say to 
this experimenter about the legitimacy of what he’s 
done?

5.	 A researcher wondered about the effects of alcohol 
consumption on driving ability. She chose a random 
sample of 21 college students and measured the 
number of driving errors they made (on a controlled 
driving track) once their blood alcohol level was 
elevated to .05 g/dL, which is below the legal limit 
for intoxication in most jurisdictions. She found 
an elevation in driving errors corresponding to 
zobs = 1.4, p = .081. Because this increase was not 
statistically significant according to the p < .05 
criterion for statistical significance, she concluded 
that a blood alcohol level of .05 g/dL posed no 
increased risk of driving accidents. Please comment 
on this conclusion.

Answers

1. 	 (a)	� 1-p is the probability of obtaining a statistic less 
extreme than the one you obtained when the null 
hypothesis is true. 1-p is not derived from any 
consideration of the alternative hypothesis and 
so can’t possibly be the probability that the result 
will replicate. 

(b)	 For the same reason given in (a), 1-p cannot be the 
probability that H1 is true. 

(c)	 This claim confuses p with α. α specifies the prob-
ability of a Type I error. p is the probability of the 
obtained data (or data more extreme) occurring by 
chance when the null hypothesis is true. α is a prop-
erty of the test, whereas p is a property of the data.

2. 	You can choose your own example because infinitely 
many silly tests can be imagined. If I take a random 
sample of 121 psychology students and measure the 
number of push-ups that each can do, I’m pretty sure 
that the difference between the mean of these 121 
scores and μ0 = 200 would be statistically significant. 
I can’t attach any meaning to this result.

3. 	 I’d ask why he chose n = 18 participants. If he were to say, 
“Well, that seems like enough,” you could then ask him to 
think about what effect size would be interesting to him, 
and then tell him a little bit about power analysis. On the 
other hand, he might have said he is only interested in an 
effect size of δ = .6 or greater, and 18 participants gives  
him power = .8. In this case, he gets a pat on the head  
and a big gold star.

4. 	I would say: “Running the experiment until you 
find a statistically significant result increases the 
probability of obtaining statistical significance when 
the null hypothesis is true. You should have done a 
prospective power analysis, chosen your sample size, 
and stuck with it.” 

5.	 Failing to reject the null hypothesis does not mean 
that the null hypothesis is true. In this case, the 
data suggest that an increased blood alcohol level 
increases driving errors and in the real world would 
increase the probability of driving accidents, which 
often have devastating consequences.
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The routine use of confidence intervals would go a long way to realizing these benefits. 
With confidence intervals, the focus is on the precision of a parameter estimate for some 
variable of interest. The actual size of a measured difference would be central to our 
thinking, rather than the probability of the difference under the null hypothesis. Because 
the focus would be on the size of a measured difference, we would not be drawn into binary 
thinking. Furthermore, any measured difference would be seen as a single estimate with 
unavoidable imprecision. Therefore, replication with an eye to combining measures from 
different studies would be far more common.

Significance Tests With Confidence Intervals

At a purely technical level, estimation with confidence intervals is a far more general 
method of data analysis than significance tests. In this section we’ll see that once you have 
computed a confidence interval, you can test any null hypothesis of interest simply by 
asking whether μ0 falls within the interval. For this reason, confidence intervals are the 
method recommended by the most recent versions of the APA Publication Manual. We will 
now revisit examples of significance tests from previous chapters from the perspective of 
computing confidence intervals.

Please note that I am absolutely not recommending the routine use of confidence 
intervals to test null hypotheses! This would be an egregious misuse of estimation. Rather, 
the main point is to emphasize that significance tests represent a minor feature of what can 
be done with confidence intervals. Understanding the secondary role of significance tests 
helps us recognize the poverty of the information they yield.

Whole Language Versus Phonics: Revisited

In the phonics example that opened Chapter 7, we were told that the mean of the null 
hypothesis distribution was μ0 = 72. We were also given the sample mean (m = 74.5), the 
population standard deviation (σ = 8), and sample size (n = 64). Using σ and sample size, we 
were able to compute σ σm n= = =/ / .8 64 1  This information is exactly what is needed to 
compute a confidence interval. The 95% confidence interval around m is as follows:

CI = m ± za/2(sm) = 74.5 ± 1.96(1) = [72.54, 76.46].

Therefore, we have 95% confidence that the mean of the 
distribution from which the sample was drawn is in the 
interval [72.54, 76.46]. This confidence interval allows 
us to reject μ0 = 72 as a plausible hypothesis about the 
mean of the distribution from which the phonics-enriched 
students were drawn, because 72 does not fall within it.

Figure 9.3 illustrates the connection between 
confidence intervals and significance tests. The normal 
distribution in Figure 9.3 is the sampling distribution 
of the mean under the null hypothesis. Figure 9.3 
compares two intervals: μ0 ± 1.96(σm) (the light blue 
vertical lines) and m ± 1.96(σm) (the confidence interval 
around the dot, representing the sample mean). The 
arms of both intervals are the same. Therefore, if m is 
outside the interval μ0 ± 1.96(σm), the confidence interval  
m ± 1.96(σm) will not capture μ0. If m is within the interval 
μ0 ± 1.96(σm), the confidence interval m ± 1.96(σm) will 
capture μ0. (Think back to the arms in the illustrations 
from Chapter 6 in the section on sampling distributions 
and confidence.)
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µ = 72
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n = 64
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 = 1.0

m = 74.5
z = 2.5
p = .0062

FIGURE 9.3  ■  Estimation and Significance Tests

The connection between confidence intervals and two-tailed 
significance tests. The normal distribution is a distribution 
of sample means for size n = 64, drawn from a population 
of reading scores having a mean of μ0 = 72 and standard 
deviation of σ = 8. The mean of the sample is m = 74.5 and  
σm = 1. The dot plots the sample mean. The arms around the dot 
represent the 95% confidence interval. Notice that the interval 
does not capture μ0, which is the mean of the distribution, 
according to the null hypothesis. Therefore, we can reject a 
two-tailed test of the null hypothesis at the p < .05 level.
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Another way to see this relationship is to note that when a 95% confidence interval 
does not capture μ0, then zobs = (m - μ0)/sm will be outside the interval ±1.96. If the 95% 
confidence interval captures μ0, then zobs = (m - μ0)/sm will be within the interval ±1.96. 
Therefore, any time a 95% confidence interval does not capture μ0, we can reject the null 
hypothesis at the p < .05 criterion for statistical significance.

If the 95% confidence interval around the sample mean does not capture μ0 specified by 
H0, we are faced with the same two possibilities we face in any significance test. Either H0 is 
true, and this is one of those rare times that the sample mean falls a long way from the mean of 
the distribution (μ0), or the confidence interval does not capture μ0 because H0 is false, and so 
μ0 is not the mean of the distribution from which the sample was drawn. Of course, the second 
interpretation means we reject the null hypothesis. Therefore, in the phonics example, we could 
reject a two-tailed test of H0 at the p < .05 level because the 95% confidence interval around the 
sample mean (m = 74.5) did not capture the mean specified by H0 (μ0 = 72). More importantly, 
the confidence interval provides evidence of what μ1 (i.e., μphonics) is, not just what it is not.

Differences in IQ: Revisited

In the IQ example from Chapter 7, we were told that the mean IQ of Quebec residents 
was μQue = 100 with a standard deviation of σ = 15. We were also told that the mean IQ of  
n = 250,000 people from Maine was m = 100.06. Using σ and sample size (n = 250,000), we 
were able to compute σm = 0.03. When we compute the 95% confidence interval around m, 
we find the following:

CI = m ± za/2(sm) = 100.06 ± 1.96(0.03) = [100.0012, 100.1188]. 

As in the reading example, our confidence interval does not capture the known population 
mean, μQue = 100. Therefore, we can reject a two-tailed test of H0 at the p < .05 level. Besides 
revealing that 100 is an implausible hypothesis about the mean IQ of Maine residents, the 
confidence interval provides the best estimate of what µMaine is (i.e., 100.06). It also provides 
and interval around this mean, and we have 95% confidence that µMaine is in this interval 
(95% CI [100.0012, 100.1188]). As with the reading example, confidence intervals provide 
us with information about what the parameter in question is, in addition to what it is not.

Bench-Pressing 5-Year-Olds: Revisited

In the bench-pressing example from Chapter 7, we were told that the mean bench-pressing 
weight for 15-year-old European males was µ15YO = 125 pounds. We were also told that the 
mean bench-pressing weight for a sample of one hundred 5-year-old European males was 
m = 10 pounds, with sample standard deviation, s = 2. Using s and sample size, we were 
able to compute s s nm = = =/ /2 10 0 2. .  When we compute the approximate 95% confi-
dence interval around m, we find the following:

CI = m ± za/2(sm) = 10 ± 1.96(0.2) = [9.61, 10.39].

As in the previous two examples, our confidence interval does not capture the known population 
mean, µ15YO = 125. Therefore, we can reject H0 at the p < .05 level. In addition to revealing that 125 
is an implausible hypothesis about µ5YO, the confidence interval provides the best estimate of µ5YO 
(i.e., 10). It also provides an interval around this estimated mean, and we have 95% confidence 
that µ5YO is in this interval (95% CI [9.61, 10.39]). Again, this confidence interval provides us with 
information about what the parameter in question is, in addition to what it is not.

As a final point, note that in this example we used the sample standard deviation s in 
the calculation of sm. The question of what s estimates does not arise in this situation. The 
sample standard deviation, s, clearly estimates σ5YO. We didn’t have to assume that σ15YO 
and σ5YO are the same, as we did in Chapter 7, so this makes things a little cleaner.
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Retaining the Null Hypothesis

We noted in Chapters 7 and 8 that retaining H0 does not mean that it is true. This is particu-
larly clear when we test H0 with a confidence interval. Think of the following null hypoth-
esis in a case where m = 26, σ = 8, and n = 16:

H0: m0 = 25.

The 95% confidence interval around m = 26 is computed as follows:

CI = m ± za/2(sm) = 26 ± 1.96(2) = [22.08, 29.92].

This confidence interval contains μ0 = 25, so we would retain H0. In this example, it can be 
seen that many population means (μ) are consistent with this interval. That is, 25 is just one 
of many plausible hypotheses about the mean of the population from which the sample was 
drawn. Therefore, this example makes it very clear that retaining H0: μ0 = 25 does not mean 
that 25 is the population mean. In fact, the most plausible estimate is that μ = m.

*One- and Two-Tailed Tests (Optional Material)

In this section, we will see how to conduct one-tailed tests with confidence intervals. This 
material is presented for completeness only, and it can be skipped without doing damage to 
your understanding of the connection between confidence intervals and significance tests.

In the original phonics scenario, the researcher predicted that phonics instruction 
would improve reading scores. Therefore, her significance test was a one-tailed test in 
which she predicted μ1 - μ0 > 0. This raises the question of how to conduct a one-tailed 
significance test using confidence intervals. The easiest way to do this (when α = .05) is 
to compute the 90% confidence interval around the mean, and then reject H0 only if (i) the 

interval does not capture μ0 and (ii) the sample mean is on 
the predicted side of μ0. We will illustrate this procedure 
while referring to Figure 9.4.

First, in the phonics example, the 90% CI would be

CI = m ± za/2(sm) = 74.5 ± 1.645(1) = [72.86, 76.15].

This confidence interval is shown in Figure 9.4. 
The interval does not capture μ0, so that is the first 
requirement for concluding that there is a statistically 
significant difference between m and μ0. The second 
requirement is that the sample mean must be on the side 
of μ0 predicted by the alternative hypothesis. In this case, 
the alternative hypothesis predicts m will be greater than 
μ0, so this requirement is satisfied as well. Therefore, 
we can reject the null hypothesis at the p < .05 level of 
statistical significance. As in the case of significance 
tests with zobs, if the alternative hypothesis had been  
μ1 - μ0 < 0, we would have retained the null hypothesis.

Having shown that one can do significance tests 
with confidence intervals, I must reiterate that I don’t 
recommend doing so. If you feel that you must do a 
significance test, then simply use a standard z-test; i.e., 
compute zobs. That is, if you find yourself living in the 
high-contrast world of statistical significance, then use a 
test statistic such as zobs, which is the coin of the realm.
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µ = 72
σ = 8
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m = 74.5
z = 2.5
p = .0062

FIGURE 9.4  ■  Estimation and Directional Tests

The connection between confidence intervals and one-tailed 
significance tests. This is a modified version of Figure 9.3. 
The distribution of sample means of size n = 64 was drawn 
from a population of reading scores having a mean of μ0 = 72 
and standard deviation of σ = 8. The mean of the sample is  
m = 74.5 and σm = 1. The dot plots the sample mean. The 
arms around the dot represent the 90% confidence interval. 
Notice that the interval does not capture the μ0, which is the 
mean of the distribution, according to the null hypothesis. 
Only if the alternative hypothesis predicts μ1 - μ0 > 0 could 
we reject a one-tailed test of the null hypothesis at the p < .05 
level. If the alternative hypothesis predicts μ1 - μ0 < 0, we 
would have to retain the null hypothesis.
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LEARNING CHECK 2

1.	 A researcher conducts a two-tailed test of H0: μ1 - μ0 
= 0, where μ0 = 25. His alternative hypothesis is H1: μ1 
- μ0 ≠ 0. In which of the following cases can he reject 
H0 at the p < .05 significance level: (a) 95% CI [23, 26], 
(b) 95% CI [23, 24], (c) 95% CI [26, 27], and (d) 95% 
CI [24, 26]?

2.	 *A researcher conducts a one-tailed test of H0: μ1 - 
μ0 = 0, where μ0 = 25. His alternative hypothesis is 
H1: μ1 - μ0 > 0. In which of the following cases can 

he reject H0 at the p < .0 significance level: (a) 90% 
CI [22, 27], (b) 95% CI [23, 24], (c) 90% CI [26, 27], 
and (d) 90% CI [18, 24]? 

3.	 *A researcher conducts a one-tailed test of H0: μ1 - μ0 
= 0, where μ0 = 25. His alternative hypothesis is H1:  
μ1 - μ0 < 0. In which of the following cases can he reject 
H0 at the p < .05 significance level: (a) 90% CI [22, 27],  
(b) 95% CI [23, 24], (c) 90% CI [26, 27], and (d) 90% CI 
[18, 24]? 

Answers

1. 	 (a)	 No. The interval contains μ0 = 25. 
(b)	 Yes. The interval does not contain μ0 = 25. 
(c)	 Yes. The interval does not contain μ0 = 25. 
(d)	 No. The interval contains μ0 = 25.

2. 	(a)	 No. The interval contains μ0 = 25. 
(b)	 No. The interval does not contain μ0 = 25, but it is 

on the wrong side of μ0. 
(c)	 Yes. The interval does not contain μ0 = 25, and it is 

on the predicted side of μ0. 

(d)	 No. The interval does not contain μ0 = 25, but it is 
on the wrong side of μ0.

3. 	 (a)	 No. The interval contains μ0 = 25. 

(b)	 Yes. The interval does not contain μ0 = 25, and it is 
on the predicted side of μ. 

(c)	 No. The interval does not contain μ0 = 25, but it is 
on the wrong side of μ0. 

(d)	 Yes, the interval does not contain μ0 = 25, and it is 
on the predicted side of μ0.

ESTIMATING µ1 - µ0

There is an important point about significance tests that questions whether H0 could ever 
be true. Consider pairs of populations, such as the IQs of men and women, the IQs of US 
citizens living east and west of the Mississippi River, or the heights of 20-year-old men 
born on odd and even days of the year. In none of these situations would we have any reason 
to expect a big difference in the means of the two populations. On the other hand, would 
we ever expect the difference between the two population means to be exactly 0? Not 0.1, 
0.0032, or 0.0089, but exactly 0. It seems highly unlikely that the difference between any 
two populations, no matter how similar, will be exactly 0. If this is the case, there is a 
good argument that it makes little sense to test a null hypothesis that there is exactly zero 
difference.

If the null hypothesis that µ1 = µ0 has very little chance of ever being true, then a better 
approach to data analysis is to estimate the difference between μ1 and μ0. Therefore, to 
judge “how wrong” the null hypothesis is, we can estimate μ1 - μ0. Estimating μ1 - μ0 
involves a minor modification to the method covered in the previous section.

In the phonics scenario, the known distribution of reading scores with μ0 = 72 and 
σ = 8 was the null hypothesis distribution. The distribution of reading scores under the 
alternative hypothesis has a mean (μ1) that is unknown. However, it is assumed that the 
standard deviation (σ) of this distribution is equal to the standard deviation of the known 
(null hypothesis) distribution. From these observations it follows that the sampling 
distribution of the mean under the alternative hypothesis would have mean μ1 and a 
standard error of σ σm n= / .
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To estimate μ1 - μ0, we must consider subtracting μ0 from each mean in this distribution 
of means under the alternative hypothesis. Doing so will produce a distribution of the 
statistic m - μ0. The sampling distribution of m - μ0 will have mean μ1 - μ0 and standard 
error s/ n.  This standard error is just the standard error of the mean that we’ve been using 
all along. However, we will refer to it in a way that makes clear that it is associated with the 
statistic m - μ0. Therefore, the standard error of m - μ0 will be called σ µm−

0

,  and its value is

σ σµm n− =
0

/ . (9.1)

A confidence interval around m - μ0 is computed as follows:

CI = −( ) ± ( )−m z mµ σα µ0 2 0/
. (9.2)

This is exactly like all confidence intervals we’ve computed before, except that now we’re 
estimating μ1 - μ0 rather than μ1.

Using the numbers from the phonics scenario, the 95% confidence interval around  
m - μ0 is computed as follows:

Step 1.	Compute m - μ0.

m - m0 = 74.5 - 72 = 2.5.

Step 2.	Compute σm - μ0
.

σ σµm n− = = =
0

8 64 1/ / .

Step 3.	Find zα/2. Because this is the 95% confidence interval, α = .05. Therefore, α/2 
= .025. Using the z-table, we find that 2.5% of the z-distribution falls below 
-1.96. Therefore, zα/2 = 1.96.

Step 4.	Compute ( ) .
/

m z m− ± ( )−µ σα µ0 2 0

CI  = −( ) ± ( ) = − ± =−m z mµ σα µ0 2 0
74 5 72 1 96 1 54 4 46/ ( . ) . ( ) [0. , . ].

We have 95% confidence that the true difference between μ1 and μ0 is in the interval 
[0.54, 4.46]. Our confidence comes from knowing that 95% of all intervals computed this 
way will capture μ1 - μ0. This means that our best estimate of the difference between the 
means of the whole language and phonics distributions is 2.5. However, a difference of 
0.54 is just as likely as a difference of 4.46. The practical significance of this difference 
depends on all the factors discussed in Chapter 7.

To see that nothing mysterious has been done here, we can look at the situation slightly 
differently. The confidence interval around m was [72.54, 76.46] and the confidence interval 
around m - μ0 is [0.54, 4.46]. Therefore, the confidence interval around m - μ0 is simply equal 
to the confidence interval around m minus μ0. That is, [72.54, 76.46] - 72 = [0.54, 4.46]; μ0 
has been subtracted from the upper and lower limits of the 95% confidence interval around m.

According to the null hypothesis, H0: μ1 - μ0 = 0. Testing this null hypothesis is just a 
matter of asking whether 0 is in this interval ( ) ( ).

/
m z m− ± −µ σα µ0 2 0

 Because it is not, a two-
tailed test of the null hypothesis can be rejected at the p < .05 level of significance. However, 
this confidence interval also provides our best estimate of what μ1 - μ0 is (95% CI [0.54, 4.46]) 
in addition to what it is not (0). So, if the null hypothesis is never really true, a confidence 
interval around m - μ0 provides a simple method of estimating just how wrong it is.
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LEARNING CHECK 3

1.	 A researcher with a long-standing interest in visual 
memory has collected data on the ability of university 
students to recall the details of five 30-second video 
clips. All participants were asked 100 questions about 
the videos; for example, How many people were in the 
video about the car theft? What color was the cottage 
in the video about the summer camp? What was 
the name on the store in the video about the hockey 
team? The average score on this test was µ0 = 38 with 
σ = 10. A random sample of 25 university students 

was shown the same five videos and asked the same 
100 questions. Unlike all previous participants, these 
25 participants were asked to answer the questions 
with their eyes closed (Nash, Nash, Morris, & Smith, 
2015). The mean score for the sample of 25 students 
was m = 42. Use this information to compute the 95% 
confidence interval about an estimate of μ1 - μ0. Use 
this estimate to perform a two-tailed test of the null 
hypothesis in which H0: μ1 - μ0 ≠ 0.

Answers

1. 	 The estimate of μ1 - μ0 is m - μ0 = 42 - 38 = 4. 
The standard error is σ σµm n− = = =

0
10 25 2/ / .

Therefore, the 95% confidence interval is

CI  = ± ( ) = ± =−m z mα µσ/ . ( ) [ . , . ].2 0
4 1 96 2 08 7 920

Because this confidence interval does not capture 0, we 
can reject the null hypothesis that H0: μ1 - μ0 = 0 at the  
p < .05 level.

ESTIMATING δ = (µ1 - µ0)/σ 

Let’s now return to the topic of power and effect size. In Chapter 8, the following points 
were made:

•• Significance tests are used to decide whether two population means are different.

•• If you have insufficient power to detect a difference, you may be wasting your time.

•• Therefore, you should think about what effect size would be meaningful to you and 
then choose a sample size that provides sufficient power to reject the null hypoth-
esis when it is false.

These points strongly imply that δ should be a primary concern. Therefore, rather 
than using δ as part of a power analysis conducted before running a significance test, it 
would seem more direct to estimate δ from the sample data. In fact, it is a simple matter 
to estimate δ, and a confidence interval around the estimate can be constructed if we know 
its standard error.

In Chapter 8, the population effect size was defined as follows:

δ
µ µ

σ
=

−
1 0

.

When the population standard deviation is known, δ is estimated with the statistic d as 
follows:

d m
=

− µ
σ

0
. (9.3)
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In equation 9.3, μ1 has been replaced by m. As with any statistic, d is subject to sampling 
error. When σ is known, the standard error of d is the following:

σd n
=

1
. (9.4)

(There is an explanation of why this is the standard error of d in a later section.) To compute 
the (1-a)100% confidence interval around d, we would use our familiar formula:

d ± za/2(sd). (9.5)

To illustrate the construction of a confidence interval around d, we will return to the 
power-pose example. In Chapter 8 we were told that the mean of a population of final 
exam grades was μ0 = 75 with a standard deviation of σ = 10. Let’s assume that a sample of  
n = 64 students held a power pose for 2 minutes before their final exam and that the average 
grade on the exam was m = 76. With this information we can compute an estimate of δ and 
a confidence interval around the estimate as follows:

Step 1.	Compute d.

d =
−

= =
76 75

10

1

10
0 1. .

Step 2.	Compute σd.

 σd n= = =1 1 64 0 125/ / . .

Step 3.	Find zα/2. Because this is the 95% confidence interval, a = .05. Therefore,  
a/2 = .025. Using the z-table, we find that 2.5% of the z-distribution falls below 
-1.96. Therefore, zα/2 = 1.96.

Step 4.	Compute d ± za/2(sd).

CI = d ± 1.96 (sd) = 0.1 ± 1.96(0.125) = [-0.145, 0.345].

We have 95% confidence that δ lies in the interval [-0.15, 0.35]. Our confidence comes 
from knowing that 95% of all intervals computed this way will capture δ. This means that 
our best estimate is that the mean of the power-pose distribution is 0.1 standard deviations 
above the mean of the regular population. According to Cohen’s classification scheme, 
this is a very small effect size. The confidence interval shows that a difference of -0.15 
standard deviations, which means a drop in the average final exam grade, is just as likely 
as a difference of 0.35.

One way to approach the practical significance of this result is to ask what effect this 
intervention would have if applied to all members of the population. This question can be 
addressed with Cohen’s U3. Our best estimate of δ is 0.1. The z-table shows that U3 = P(0.1) 
= 0.5793, which means that we estimate the proportion of the H0 (power-pose) distribution 
above μ0 = 75 (the mean of the H0 distribution) to be 0.5398. Therefore, it is estimated that 
adding 2 minutes of power posing before the final exam produces about a 4% increase 
[(0.5398 - 0.5)*100 = 3.98%] in the number of students scoring above the previous mean of 
75. This seems like an interesting result given how minimal the intervention was.

However, we should also consider the limits of the confidence interval. U3 for the lower 
limit (-0.15) is 0.4424. This means about a 6% decrease [(0.4424 - 0.5)*100 = -5.76%] in 
the number of students scoring above the previous mean of 75. U3 for the upper limit (0.35) 
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is 0.6350. This means about a 13% increase [(0.6350 - 0.5)*100 = 13.5%] in the number of 
students scoring above the previous mean of 75.

All things considered, these results seem rather imprecise and not very compelling. Our 
best estimate is that a 2-minute intervention will increase by 4% the number of students 
scoring above the previous mean. The lower limit of the confidence interval suggests that 
power posing could reduce by 6% the number of students scoring above the previous mean. 
This seems like a pretty big risk. The upper limit suggests that power posing could increase 
by 13% the number of students scoring above the previous mean. Although this suggests 
a large potential benefit, it must be weighed against the risk of a large cost. If one believes 
these results to be interesting, a study could be designed to achieve a far more precise 
estimate of δ using the “precision planning” method described in Appendix 6.3 (available at  
study.sagepub.com/gurnsey).

From the hypothesis testing point of view, the null hypothesis is that power posing has 
no effect on exam grades. We can state this as

H0: d = 0.

If the null hypothesis were true, we would expect our interval to capture 0. The interval  
([-0.15, 0.35]) does capture 0. Therefore, we retain the null hypothesis and say that the 
result is not statistically significant.

*A Detail

Let’s return to the question of why σd n=1/ .  The following expression needs no explana-
tion at this point:

CI = ± ( ) = ± ( )m z m z nmα ασ σ/ / / .2 2

We also know from equation 9.3 that

d m
=

− µ
σ

0
.

We say that we’ve standardized the difference between m and μ0 by dividing the difference 
by σ. (Remember, d is a kind of z-score, and z-scores are called standard scores.) We can 
standardize the limits of the 95% confidence interval about m in the same way. That is,

m z n± ( )



 −α σ µ

σ

/
/

.
2 0

With a little manipulation, we can derive the following:

m z n m z n

m z n m

± ( )



 −

=
−( ) ± ( )

=
−

±
( )

=
−

α α

α

σ µ

σ

µ σ

σ

µ
σ

σ

σ
µ

/ /

/

/ /

/

2 2

2

0 0

0 00

2 2

1

σ
1α α± ( ) = ± 







z n d z
n//

/ .

Or, more simply,

σ
σ
σ

σ
σd

m n n
n

= = = =
/

/ .1
1
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The Connection Between zobs and d

As a final note, it is important to recognize the connection between d and zobs. We define zobs 
as follows:

z m
nobs

=
− µ

σ/
,

but this is equivalent to

z m n
obs

=
− µ
σ

* .

(You should plug numbers into examples like this to convince yourself that the statement 
is true.) The first term in this expression [i.e., (m - m0)/s] is the definition of d given in 
equation 9.2. Therefore,

z d n
obs

= * , (9.6)

and

d z n=
obs

/ . (9.7)

Because z d n
obs

= *  we can see that no matter how small d is, as long as it is not exactly 
0 it will become statistically significant if n is large enough. The value of equation 9.7 is 
that it allows one to determine an estimated effect size from a published report, even when 
a researcher has not reported it. The importance of this will be seen in the third part of this 
book when meta-analysis is discussed.

LEARNING CHECK 4

1.	 Let’s say that the mean IQ for American adults 
living west of the Mississippi River is 100, with a 
standard deviation of 15. A random sample of 105,625 
American adults living east of the Mississippi River is 
found to have a mean of 100.1.
(a)	 Compute the 95% confidence interval around an 

estimate of δ.

(b)	 Would this confidence interval lead you to reject a 
two-tailed test of the null hypothesis at the p < .05 
level of significance? Why or why not?

(c)	 Show how to convert the estimate of δ into zobs.

Answers

1.	 (a)	� The estimate of δ is d = (100.1 - 100)/15 = .006667.  
The standard error of d is 1 1 105 625/ n = / ,  
= 0 0031. . Therefore, the 95% confidence interval is

CI = d ± Za/2 (sd) = .006667 ± 1.96(0.0031)   
     = [0.0006, 0.0127].

(b)	 Because this confidence interval does not capture 
0, we can reject a two-tailed test of the null hypoth-
esis that H0: δ  = 0 at the p < .05 level. 

(c)	 z d n
obs

= = =* (. / ) ( ) . .1 15 325 2 167
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ESTIMATION VERSUS SIGNIFICANCE TESTING

Let’s start with a few kind words for significance tests. Significance tests are used to 
make decisions about the null hypothesis. If we adopt the p < .05 criterion for statistical 
significance, then we seem to have a simple rule that makes research decisions very easy. A 
universal criterion for statistical significance could be seen as a referee in scientific debates. 
Without such a referee, judgments about a particular result may be determined by who can 
shout the loudest. A senior researcher might claim that a difference reported by a junior 
researcher is not important, while claiming that the same difference is important when she 
reports it. The apparent impartiality of p < .05 explains its role in the publication process.

Unfortunately, as discussed earlier in this chapter, many problems arise from adopting 
p < .05 as a universal criterion for statistical significance, and these far outweigh the 
potential value of p < .05 as an impartial referee. One of the major problems is the binary 
thinking that leads one to believe that when a statistic has an associated p < .05, the result is 
important and meaningful, and that when a statistic has an associated p > .05, the result is 
unimportant and meaningless. Binary thinking is put into stark relief when we consider the 
following question: What if H1: μ1 ≠ μ0, and zobs = 1.96?

What if H1: μ1 ≠ μ0, and zobs = 1.96?

If we adopt the p < .05 criterion for statistical significance, then zcritical = ±1.96 for a non-
directional test. So, what do we do if zobs is exactly equal to 1.96, or exactly equal to -1.96? 
That is, should we treat 1.96 like 1.95 (not statistically significant) or 1.97 (statistically 
significant)? Of course, these two z-scores (1.95 and 1.97) are almost identical; if we hadn’t 
heard about the p < .05 criterion for statistical significance, we wouldn’t have thought for a 
moment that we should treat them differently. Unfortunately, psychologists of my genera-
tion were instructed to do exactly this. The 1974 edition of the APA Publication Manual 
provided the following guidance about the interpretation of p-values:

Caution: Do not infer trends [read as statistical significance] from data that fail by 
a small margin to meet the usual levels of significance. Such results are best inter-
preted as caused by chance and are best reported as such. (p. 19)

This is an explicit instruction to treat zobs = 1.97 and zobs = 1.95 differently. In fairness, this 
(mis)advice may derive from Fisher (1926), who said:

Personally, the writer prefers to set a . . . standard of significance at the 5 per cent 
point, and ignore entirely all results which fail to reach this level. (p. 504, emphasis 
added)

Imagine an experiment that tested the effects of regular exercise on the IQs of men 
and women. In the general population, the IQs of both men and women have μ = 100, and  
σ = 15. Let’s say a random sample of 100 men and a random sample of 100 women were 
put on the same exercise routine for 3 months. At the end of 3 months, the mean IQ for 
men was found to be mmen = 102.955, and the mean IQ for women was found to be mwomen 
= 102.925. If you do the calculations, you’ll find that zobs = 1.97 for men, and zobs = 1.95 for 
women. The guidance from the 1974 APA Publication Manual says we should report this 
result as follows:

The effect of exercise on IQ was significant for men (z = 1.97, p < .05) but not for 
women (z = 1.95, p > .05).
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This kind of binary thinking has been passed from one generation of psychologists to the 
next, so it is no wonder that some engage in p-hacking to try to get statistically significant 
results.

Fortunately, things have changed, and more recent editions of the APA manual provide 
better guidance. The sixth edition (published in 2010) stated the following:

Because confidence intervals combine information on location [read as point- 
estimates] and precision and can often be directly used to infer significance levels 
[read as can be used to test H0], they are, in general, the best reporting strategies. 
The use of confidence intervals is therefore strongly recommended. (p. 34)

According to this guidance, we could report the results of our experiment in the following 
way:

APA Reporting

Following the 3-month exercise regime, the mean IQ for men was M = 102.96 (95% CI 
[100.02, 105.90]) and the mean IQ for women was M = 102.93 (95% CI [99.99, 105.87]). 
The mean IQ in the general populations of men and women is 100. Therefore, both after-
exercising sample means are associated with increases in IQ. The effect of exercise on IQ 
yielded an effect size of d = .197 for men (95% CI [.001, .393]) and d = .195 for women 
(95% CI [-.001, .391]). Therefore, exercise leads to very similar improvements for both 
men and women.

This report gives a much clearer sense of the results of the experiment. In this situation, 
it doesn’t seem to be particularly important that one confidence interval contains μ0 = 100, 
and the other doesn’t.

What if H1: μ1 < μ0, and zobs = 2?

Another problem we’ve already encountered within the Fisher-Neyman hybrid model of 
significance testing is the question of what to do with a large zobs that is inconsistent with 
our directional alternative hypothesis. For example, let’s say that a review of the literature 
suggested to a researcher that extensive video gaming would impair the ability of college 
students to solve crossword puzzles. (The speculation is that video gaming would make a 
person more impulsive and this would lead to fewer correct words on the crossword puz-
zle.) The researcher happens to know that college students in general complete μ0 = 24  
(σ = 4.8) words in 20 minutes on a standardized crossword puzzle. The researcher selects a 
random sample of n = 36 college students and has them play a video game for 30 minutes, 
after which they are given 20 minutes to complete the standardized crossword puzzle. The 
variable of interest is the number of correct responses on the crossword puzzle.

In this situation, the null hypothesis is that H0: μ1 - μ0 = 0 and a directional alternative 
hypothesis that H1: μ1 - μ0 < 0 has been chosen to increase the power of the experiment. 
(As noted in Chapter 8, one-tailed tests are more powerful than two-tailed tests, if your 
prediction is correct.) The alternative hypothesis states that following video game playing, 
the participants are expected to get fewer words correct on the crossword puzzle. Because 
this is a directional test that predicts m - μ0 < 0, zcritical = -1.645, with α = .05; i.e., the  
p < .05 criterion for statistical significance. After running the experiment, the researcher 
finds that the average number of words completed is m = 25.6, which corresponds to 
zobs = 2. Now she faces a conundrum; zobs is large, but she is only allowed to reject H0 if  
zobs < -1.645. Should she say there is no statistically significant effect of video game playing 
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on crossword performance? This would be an odd conclusion because zobs = 2 would be 
unusual if H0 were true.

This conundrum occurs only because the Fisher-Neyman hybrid model forces us 
to make a decision based on the statistic. The simplest way to deal with these data is 
to avoid the decision-making language of significance tests and say something like the 
following:

APA Reporting

Following 30 minutes of video gaming, the mean number of correctly completed 
crossword items was M = 25.6, 95% CI [24.03, 27.17]. This is an improvement over the 
population mean of μ0 = 24 and corresponds to an effect size of d = .33, 95% CI [.01, .66]. 
The magnitude of effect size is in line with past research, but its sign is opposite of what 
was expected. Therefore, further analysis is required to determine what features of this 
experiment may have differed from those of past experiments.

Decisions Versus Measurements

In this chapter and in Chapters 6 to 8, we have considered two approaches to inferential sta-
tistics: estimation and significance testing. Even though these approaches rest on exactly 
the same foundations, they differ fundamentally in emphasis. Estimation emphasizes what 
a parameter is. The hybrid model of significance testing emphasizes what a parameter is 
not. The estimation approach is the more general of the two, because once we have an esti-
mate of what the parameter is (e.g., mmen = 102.96, 95% CI [100.02, 105.90]), we can, if we 
wish, make a statistical judgment about what it is not (e.g., we can reject the null hypothesis 
that µmen = 100).

The questions raised in the two preceding sections (“What if H1: μ1 - μ0 ≠ 0, and zobs = 
1.96?” and “What if H1: μ1 - μ0 < 0, and zobs = 2?”) arise from a focus on decision making. 
When we establish a criterion for statistical significance (α, zcritical, or mcritical), it leads us to 
binary thinking: either H0 is true or it is false; exercise either affects IQ or it does not; either 
the earth is round or it is not. That is, the answers are either yes or no, black or white. From 
the estimation point of view, the questions are more along the lines of “How wrong is H0?,” 
“How big is the effect of exercise on IQ?,” and “How round is the earth?” Estimation does 
not lure us into binary thinking.

Addressing any research question should be thought of as part of an ongoing effort to 
understand a phenomenon of interest to researchers, or to society in general. Therefore, 
no single study should be seen as providing a verdict on such questions. Ideally, evidence 
accumulates as more studies are run, and researchers eventually form a consensus about 
the size of some effect. The hybrid model of significance testing, with its focus on decision 
making, can obscure the fact that no single study is definitive. When making a decision 
about H0, one can be led to feel that the decision is final, particularly if we misunderstand 
p-values. With estimation, however, our view is more like that of a pollster, who finds that 
on August 10, 2016, 48% of decided voters prefer Hillary Clinton and 40% prefer Donald 
Trump. This result is seen as a single, more or less imprecise estimate. A better estimate 
would come from combining many such imprecise estimates. In statistics, we refer to the 
combination of many imprecise estimates as meta-analysis. We will discuss meta-analysis 
in Part III of this book. There we will see that it is easier to combine parameter estimates 
in a meta-analysis than the results of significance tests. For a meta-analysis to be valid, 
however, it is important to combine all relevant results, not just those that have made it into 
the literature through the p < .05 filter.
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SUMMARY

Throughout their existence, significance tests have 
been criticized by many distinguished psychologists. 
The criticisms include the following points:

•• The requirement for statistical significance for 
publication leads to publication bias and the file-
drawer problem, causing the published literature 
to misrepresent the true effect of an intervention 
or the true difference between two populations.

•• The requirement for statistical significance for 
publication also makes it more likely that Type I 
errors will be published.

•• The requirement for statistical significance 
encourages p-hacking, which also distorts the 
literature and increases the probability that 
Type I errors will be published.

•• A focus on obtaining small p-values is like the 
tail wagging the dog and distracts from the 
important questions of practical significance.

•• The quest for small p-values promotes a ten-
dency toward binary thinking, in which only 
statistically significant results are viewed as 
important and meaningful.

•• Many researchers misunderstand p-values and 
thus misinterpret their results.

Many view confidence intervals as the healthiest 
alternative to significance tests because the emphasis is 
taken off decision making and placed on estimation. In a 
world in which estimation is standard practice, estimates 
would enter the literature without having to pass through 
the p < .05 filter of statistical significance. Furthermore, 
confidence intervals can be used to conduct significance 
tests. If μ0 does not fall in the interval

m ± za/2(sm),

then we can reject H0 at the p < α level of significance.
We can also estimate the difference between two 

population means (μ1-μ0) using the statistic m - μ0. 
This statistic has a standard error of σ σµm n− =

0
/ .  A 

confidence interval around m - μ0 is calculated as

m z m−( ) ± ( )−µ σα µ0 2 0/
.

We can not only estimate μ1 - μ0 but also test the null 
hypothesis that μ1 - μ0 = 0 by asking whether 0 falls in 
the confidence interval.

When we think of the hybrid model of significance 
testing that involves power analysis, we become aware 
of the central role that δ should play in our thinking 
about research questions. δ is estimated by

d m= ( )− µ σ
0

/ .

Of course, d is subject to sampling error, so a confidence 
interval can be computed around d. The standard error 
of d is σd n=1/ ,  so the (1-a)100% confidence interval 
around d can be computed as

d ± za/2 (sd).

Many researchers feel that estimating, μ, μ1 - μ0, or 
δ is healthier and more informative than testing a null 
hypothesis about μ0. Because confidence intervals for 
μ, μ1 - μ0, or δ can be used to test hypotheses about μ0, 
μ1 - μ0, or δ, they represent a more general approach to 
data analysis. Estimation avoids the binary (black-and-
white) thinking that we may fall into with significance 
tests and lends itself more readily to meta-analysis, 
which we’ll cover in Part III.

KEY TERMS

file-drawer problem  205 p-hacking  207 publication bias  205

EXERCISES

Definitions and Concepts

  1.	 What is the definition of a p-value?

  2.	 Why does the file-drawer problem happen?

  3.	 Why should one not use the run-until-statistically-
significant procedure?

  4.	 How will the literature be biased if only statisti-
cally significant results (p < .05) are published?

  5.	 Why is it important for replications to be published?
  6.	 Give three examples of p-hacking.
  7.	 Explain why failing to reject the null hypothesis 

does not mean that the null hypothesis is true.
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True or False

State whether the following statements are true or false.

  8.	 If I retain H0, then it is true.

  9.	 If I reject H0, then H1 is true.

10.	 I ran an experiment in which H1: μ1 - μ0 < 0. I 
obtained zobs = -1.43. Therefore, my study is not 
worth submitting for publication.

11.	 �μ0 = 22 and my 95% confidence interval around 
m is [21, 28]. Therefore, I should retain a two-
tailed test of H0, assuming α = .05.

12.	 �μ0 = 5 and my 95% confidence interval around 
m - μ0 is [-1, 6]. Therefore, I should retain a two-
tailed test of H0, assuming α = .05.

13.	 �μ0 = 22 and my 95% confidence interval around 
m is [18, 21]. Therefore, I should retain a two-
tailed test of H0, assuming α = .05.

14.	 �μ0 = 5 and my 95% confidence interval around 
m - μ0 is [1, 6]. Therefore, I should reject a two-
tailed test of H0, assuming α = .05.

15.	 If μ0 = 5 and my 95% confidence interval around 
m - μ0 is [1, 7], then m = 4.

16.	 If μ0 = 5 and my 95% confidence interval around 
m - μ0 is [1, 7], then m = 9.

Calculations

17.	 If μ0 = 32, σ0 = 10, m = 27, and n = 25, answer the 
following:
(a)	 Calculate the 95% confidence interval 

around m.
(b)	 Calculate the 95% confidence interval 

around m - μ0.
(c)	 Calculate the 95% confidence interval 

around d.
(d)	 Assuming the p < .05 criterion for statisti-

cal significance, explain why these intervals 
would or would not allow you to reject the 
null hypothesis when H1: μ1 - μ0 ≠ 0.

18.	 If μ0 = 16.8, σ0 = 2.4, m = 18.3, and n = 36, answer 
the following:
(a)	 Calculate the 95% confidence interval 

around m.
(b)	 Calculate the 95% confidence interval 

around m - μ0.

(c)	 Calculate the 95% confidence interval 
around d.

(d)	 Assuming the p < .05 criterion for statisti-
cal significance, explain why these intervals 
would or would not allow you to reject the 
null hypothesis when H1: μ1 - μ0 ≠ 0.

19.	 If μ0 = 100, σ0 = 15, m = 101, and n = 225, answer 
the following:
(a)	 Calculate the 95% confidence interval 

around m.
(b)	 Calculate the 95% confidence interval 

around m - μ0.
(c)	 Calculate the 95% confidence interval 

around d.
(d)	 Assuming the p < .05 criterion for statisti-

cal significance, explain why these intervals 
would or would not allow you to reject the 
null hypothesis when H1: μ1 - μ0 ≠ 0.

20.	 If μ0 = 100, σ0 = 15, m = 101, and n = 225, answer 
the following:
(a)	 Calculate the 90% confidence interval 

around m.
(b)	 Calculate the 90% confidence interval 

around m - μ0.
(c)	 Calculate the 90% confidence interval 

around d.
(d)	 Assuming the p < .05 criterion for statisti-

cal significance, explain why these intervals 
would or would not allow you to reject the 
null hypothesis when H1: μ1 - μ0 > 0.

21.	 If μ0 = 100, σ0 = 15, m = 102, and n = 225, answer 
the following:
(a)	 Calculate the 90% confidence interval 

around m.
(b)	 Calculate the 90% confidence interval 

around m - μ0.
(c)	 Calculate the 90% confidence interval 

around d.
(d)	 Assuming the p < .05 criterion for sta-

tistical significance, explain why these 
intervals would or would not allow 
you to reject the null hypothesis when  
H1: μ1 - μ0 > 0.

(e)	 Assuming the p < .05 criterion for statisti-
cal significance, explain why these intervals 
would or would not allow you to reject the 
null hypothesis when H1: μ1 - μ0 < 0.
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22.	 If μ0 = 75, σ0 = 15, m = 80, and n = 25, answer the 
following:
(a)	 Calculate the 90% confidence interval 

around m.
(b)	 Calculate the 90% confidence interval 

around m - μ0.
(c)	 Calculate the 90% confidence interval 

around d.
(d)	 Assuming the p <  .05 criterion for statistical 

significance,  explain why these intervals 
would or would not allow you to reject the null  
hypothesis when H1: μ1 - μ0 > 0.

(e)	 Assuming the p < .05 criterion for statisti-
cal significance, explain why these intervals 
would or would not allow you to reject the 
null hypothesis when H1: μ1 - μ0 < 0.

Scenarios

23.	 A difference threshold is the smallest difference 
between two levels of a stimulus that can be dis-
criminated with a given level of accuracy. Let’s 
say that on average, university students require a 
3% increase in weight to discriminate one weight 
from another. For example, if a standard stimulus 
weighs 100 grams, then a comparison stimulus 
would need to be 3 grams heavier (i.e., 103 grams) 
for the difference to be noticeable. A researcher 
wondered how much difference thresholds could 
be changed by hypnotic suggestion. Each mem-
ber of a random sample of 100 university students 
was given a suggestion under hypnosis that his or 
her sensory sensitivity had increased. Following 
hypnosis, difference thresholds for weights 
were measured in all participants. The standard 
stimulus was 100 grams and the mean difference 
threshold after hypnosis was m = 2.5 grams, with 
an estimated standard deviation of s = 2. Compute 
an approximate 95% confidence interval around  
m - μ0 and use this interval to determine whether 
a two-tailed test of H0 is statistically significant at 
the p < .05 level.

24.	 Cell phone usage is a fact of life for many people 
these days, and there is some evidence of separa-
tion anxiety when individuals cannot access their 
phones. Let’s say that the mean systolic blood 
pressure for cell phone users in possession of their 
phones is 110 mmHg with a standard deviation 
of 18. We wonder if the anxiety associated with 
cell phone separation will lead to increased blood 

pressure. A random selection of 36 cell phone 
users was contacted and asked to complete a 
survey about cell phone use. They were asked to 
leave their phones in a locked cabinet in another 
room while they completed the survey. At the end 
of the survey, their blood pressure was taken and 
the mean was found to be 128 mmHg. Compute 
the 95% confidence interval around m - μ0 and 
state whether a two-tailed test of H0 is statistically 
significant at the p < .05 level.

25.	 People often feel pressure to conform to the atti-
tudes and behaviors of groups. There are experi-
ments showing that people will even deny the 
evidence of their own senses to conform to group 
behaviors (Asch, 1951). Imagine that 16 students 
in a psychology department participant pool vol-
unteered for a study about perceptual judgments. 
They were asked to show up to a large classroom 
to take the test. On the day of the test, there were 
about 64 students in the classroom altogether. All 
64 people were shown a large number of stimuli 
and asked which of three alternatives (A, B, C) 
matched a target line (e.g., the line on the left). 
Twenty-one different stimuli were shown. For 
each stimulus, the experimenter asked for a show 
of hands in response to the questions “How many 
think A is the match?” “How many think B is the 
match?” and “How many think C is the match?”

	

Unbeknownst to the 16 volunteers, the major-
ity of people in the classroom were confeder-
ates of the researcher. Whenever the obvious 
match was C (as in this example), all of the 
confederates raised their hands in response to 
a non-match (e.g., B). The experimenter (and 
colleagues) noted how many times each of  
the 16 volunteers raised their hands along  
with the majority, and thus gave an obviously 
wrong answer. They found that on average the 
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Chapter 9  •  Significance Tests: Problems and Alternatives  227

volunteers gave the wrong answer on m = 5.1 
times out of 7 opportunities, with a standard 
deviation s = 1.2. Compute the approximate 
95% confidence interval around m. If you were 
to compute an approximate confidence interval 
around m-μ0, what would μ0 be? What do you 
think this result says about conformity? Would 
more or less than 95% of all such intervals be 
expected to capture μ1 - μ0?

26.	 It is known that the way a question is posed 
can affect the answer given (Loftus & Palmer, 
1974). This is particularly important in court 
trials. Imagine that a large population of 
American adults had seen a movie of a traf-
fic accident in which a car ran a stop sign and 
struck another. After viewing the movie, they 
were asked to judge how fast the car (that ran 
the stop sign) was going when it contacted the 
other car. On average, they judged that it was 
going μ = 32 mph, with a standard deviation  
σ = 6. In a subsequent study, a random sample 
of 25 participants from the same population 
were shown the movie and asked how fast the 
car was going when it smashed into the other 
car. On average, they judged that it was going 
42 mph (51.5 kph). Compute the 95% confi-
dence interval around d. What value of zobs does 
d correspond to? Do you think that it would be 
easier for a non-statistician to understand a con-
fidence interval around d or a confidence inter-
val around m - μ0?

27.	 Does memory for line drawings change with 
age (Harwood & Naylor, 1969)? A standardized 
test shows that when young adults (mean age 24 
years) have learned to recognize 20 line draw-
ings of common objects, they recognize about 
75% (σ = 5) of these in a surprise test 4 weeks 
later. The same experiment examined the rec-
ognition performance of 36 older adults (mean 
age 71.2 years). The mean percentage of recalled 
items in the older participants was found to be 
lower than the mean percentage recalled in the 
younger participants. A one-tailed test (μ0 = 75,  
σ = 5) showed that this difference was statistically 
significant, zobs = -2.4, p = .0082. Compute the 95% 
confidence interval around d. Use the information 
given, as well as the d-statistic you just computed, 
to determine the mean recognition rate of the older 
adults. (Hint: Remember that d represents change 

in standardized units.) Do you judge the decrease in 
recall ability to be severe?

28.	 Early work by Hetherington and Ranson (1940) 
suggested a role for the ventromedial hypothala-
mus in the regulation of food intake. It is known 
that Wistar rats weigh 275 grams on average, with 
a standard deviation of 12. A random sample of 
four Wistar rats was selected and subjected to a 
surgery that lesioned (destroyed) their ventro-
medial hypothalamus. After a 2-month period, 
during which these brain-damaged rats had free 
access to unlimited food, each was weighed. 
The mean weight of these brain-damaged rats 
was greater than that of the average Wistar rat, 
zobs = 91.7, p < .05. Compute the 95% confidence 
interval around d. What was the mean weight of 
the four brain-damaged rats? Do you think these 
results are of any practical significance?

29.	 Here is a strange passage of text taken from an 
interesting study published in the early 1970s 
(Dooling & Lachman, 1971).

With hocked gems financing him, our hero 
bravely defied all scornful laughter that 
tried to prevent his scheme. “Your eyes 
deceive,” he had said. “An egg, not a table, 
correctly typifies this unexplored planet.” 
Now three sturdy sisters sought proof. 
Forging along, sometimes through calm 
vastness, yet more often over turbulent 
peaks and valleys, days became weeks as 
many doubters spread fearful rumors about 
the edge. At last from nowhere welcome 
winged creatures appeared, signifying 
momentous success.

	 Imagine that a large population of psychology stu-
dents had been read this passage and were asked 
to recall as many words as they could. The mean 
number of correctly recalled words was 13.23, with 
a standard deviation of σ = 4.2. A random sample 
of 16 psychology students was read the same pas-
sage but, unlike for the larger group, the passage 
was preceded by the title “Christopher Columbus.” 
The mean number of words recalled by the 16 par-
ticipants was m = 15.67. Compute the 95% confi-
dence interval around m - μ0. What do you make 
of these results? Can you think of any situations in 
which these results would be seen as having practi-
cal significance?

Draf
t P

roo
f - 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2018 by SAGE Publications, Inc.   
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.




