
Hypothesis Tests  
Involving Two Population 

Means or Proportions

C H A P T E R  9

‘‘ ’’
Basic research is what I am doing when I don’t know what I’m doing.

—Wernher von Braun

LEARNING OBJECTIVES

1.	 Identify the appropriate sampling distribution to use for a hypothesis test for large samples when you 
have a two-category independent variable and an interval- or ratio-level dependent variable.

2.	 Explain why you must use a slightly different hypothesis test when you cannot assume the variances for 
two groups are equal.

3.	 Describe the difference between independent groups and matched groups.

4.	 Conduct a hypothesis for the difference between means using the three variations of the t test and inter-
pret the results.

5.	 Conduct a hypothesis for the difference between proportions and interpret the results.
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222    Essentials of Statistics for Criminology and Criminal Justice

22 Introduction
Imagine you are working for a state prison system and are in charge of testing a new batterer intervention program 
(BIP) designed to reduce recidivism for those convicted of intimate partner assaults. You have several individuals 
in the prison who were convicted of assaulting their intimate partners whom you randomly assign to either get the 
new BIP (called an experimental group) or be in a control group, whose group members do not receive the program. 
To measure individuals’ approval of using violence to settle conflicts, you give all participants a survey both before 
the treatment (called a pretest) and after the treatment (called a posttest). To determine whether the BIP actually 
decreased the participants’ approval of violence, you would have to conduct a hypothesis test between mean approval 
ratings for the pretest and posttest. In this case, the dependent variable would be the approval of violence scores and 
the independent variable would be a two-category variable indicating whether individuals were in the BIP or the con-
trol group. Luckily for you, you will be an expert on these types of tests after reading this chapter!

In this chapter, we will examine the statistical procedures that enable us to test hypotheses about the differences 
between two population means and two population proportions. We examine two different types of mean differ-
ence tests: one for independent samples and one for dependent or matched samples. The independent-samples test is 
designed to measure mean differences between two samples that are independent of each other or two subsets within 
the same sample (i.e., males and females). The key here is that we have two samples that are assumed to be indepen-
dent. There are two different statistical tests for the difference between two independent samples; the appropriate one 
to use depends on what assumption we can make about the population variances. In contrast, the matched-groups 
or dependent-samples test is designed to measure the difference between means obtained for the same sample at two 
points in time or between two samples that are matched on certain characteristics so as to be as much alike as possible. 
This is the scenario we presented at the beginning of this section regarding the batterer intervention program. We also 
examine a test for the difference between two proportions in this chapter, which is a special case of a test for mean dif-
ferences. In this chapter, we may use the terms “sample” and “group” interchangeably. Let’s get started.

22 Explaining the Difference Between Two Sample Means
The hypothesis tests in this chapter are appropriate for the following variables: The independent variable is a two-level 
or binary categorical variable, and the dependent variable is continuous (interval/ratio). For example, one of the most 
persistent findings in criminology is the relationship between gender and the number of delinquent offenses commit-
ted. Consistently, males report having committed more delinquent acts than females. In a random sample of young 
males and females, then, the mean number of delinquent acts committed by the males is expected to be greater than 
the mean for females. In the language of causal analysis, gender is the independent variable that is predicted to “cause” 
high levels of delinquency, the dependent variable. In this example, gender is the dichotomous independent variable 
(male/female) and the number of committed delinquent acts is the dependent variable. Let’s follow this example 

through to illustrate the kinds of problems we will encounter in this 
chapter.

If we were to take a random sample of 70 young males from 
some population, independently select an equal number of young 
females, and then ask each youth to self-report the number of 
times during the past year that he or she committed each of four 
delinquent offenses (theft, vandalism, fighting, and use of drugs), 
we would have two means: a mean for the sample of young men 
(Xmen) and a mean for the sample of young women (Xwomen). We also 
would have two population means—one from the population of 
men (mmen) and one from the population of women (mwomen)—that 
we have not directly measured. Both the sample and the population 
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Chapter 9    Hypothesis Tests Involving Two Population Means or Proportions     223

also have standard deviations (remember, the sample standard 
deviation is s and the population standard deviation is σ). 
To keep these different components of samples and popula-
tions straight, we show them and their respective notations in  
Table  9.1.

Let’s say that, consistent with previous research, the mean 
number of delinquent offenses committed for the sample of 
young males is greater than the mean for the sample of young 
females >X X( )m w . As we learned in Chapter 9, we can 
account for the difference between these two sample means in 
two very different ways.

One possible explanation for the difference between the 
male and female sample means is that there really is a differ-
ence between the rate at which young men and young women 
offend. What this explanation implies is that males and 
females come from different offending populations with dif-
ferent population means (Figure 9.1). This means that there 
are two distributions of the rate of delinquent offending: one for females (on the left) and one for males (on the right). 
The population mean for the number of delinquent acts committed is greater for men (mm = 20) than it is for women  
(mw = 10). Note that if this is true, then when we randomly select a sample of men and record their mean, and randomly 
select a sample of women and record their mean, more frequently than not the sample mean for men will be greater 
than the sample mean for women.

A second explanation for the observed difference in sample means between young men and young women is that 
the two population means are equal (µ = 17), and it was just by chance that we happened to select a sample of males 
with a higher mean of delinquent offending than our female mean. This is illustrated in Figure 9.2, which shows two 
distributions of offending: one for the population of males and one for the population of females. Although they may 
differ in some respects (e.g., their respective standard deviations may be different), the two population means are the 
same, implying that the mean level of offending is the same for both genders. If this explanation is true, when we draw 
random samples from both populations, the two sample means will sometimes differ by chance alone, with the male 
mean sometimes being the larger of the two and the female mean other times being the larger of the two, and some-
times the two means will be equal. Over a large number of mean differences, the mean or average of those differences 
will be zero. The important point is that if the two population means are equal, the two sample means we obtained in 
this sample are different because of random sample variation and chance alone.

These two explanations have very different 
substantive implications. If the first explanation 
is true, then we will conclude that the mean num-
ber of delinquent offenses committed by males 
is significantly different from the mean number 
of offenses committed by females. Because the 
frequency of committing delinquent acts is sig-
nificantly different between males and females, 
we will say that there is a “statistically significant” 
relationship between the independent variable of 
gender and the dependent variable of delinquency. 
What we are saying here is that the difference 
between the male and female sample means is so 
large that “chances are” the samples came from 
different populations. In a sense, this means that 
the sample difference is “real” (a real population 

Characteristics and Notations 
for Two-Sample Problems

Table 9.1

Population 1 Population 2

Population mean m1 m2

Population 
standard deviation

s1 s2

Sample mean Χ1 Χ2

Sample standard 
deviation

s1 s2

Sample size n1 n2

Figure 9.1
Distribution of Male and Female 
Delinquent Offending With Different 
Population Means

10 20
µw µm
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224    Essentials of Statistics for Criminology and Criminal Justice

difference). On the other hand, if the second explanation 
is true, then we will conclude that the observed difference 
between the male and female means is no greater than what 
we would expect to observe by chance alone despite the 
sample means being different. In this case, the sample dif-
ference does not reflect a real difference in the population—
it’s due to luck or chance or random sampling variation, 
whatever you want to call it.

In sum, because we have sample data, not population 
data, any difference we actually observe in our sample 
means may be due to “real differences” between males and 
females in how frequently they commit delinquent acts or 
just due to chance/sampling variability. Enter probability 
theory! With the help of probability theory, we can deter-
mine which explanation is more likely to be true. In deciding 
which of these two possible explanations is more likely, we 
will proceed exactly as we did in the last two chapters when 
we conducted formal hypothesis tests.

We will begin by assuming that there is no difference 
between the two population means. That is, we will begin 
with the null hypothesis that assumes the populations from 
which both of the samples were drawn have equal means  
(mm = mw). With the use of probability theory and a new 
kind of sampling distribution, we will then ask, “Assuming 
that the population means are equal, how likely is it that we 

would have observed the difference between the two sample means that we actually observed?” If it is a likely event, 
where “likely” is defined by our alpha level, then we will conclude that our assumption of equal population means can-
not be rejected. If, however, we find that the difference between our sample means is an unlikely or very rare event (say, 
an event with a probability of .05, .01, or .001), we will instead conclude that our assumption of equal population means 
is not likely true, and we will reject the null hypothesis.

In this chapter, we are interested in something called the sampling distribution of sample mean differences. We 
illustrate the process of hypothesis testing with two sample means in Figure 9.3.

22 Sampling Distribution of Mean Differences
To understand what a sampling distribution of mean differences is, imagine that we take a sample of males and an 
equal-sized sample of females from their respective populations, compute a mean for each sample, and then calculate 
the difference between the two sample means −X X( )1 2 . Imagine that we do this for 10,000 samples, calculating the 
mean for each group and the difference between the two means so that we now have 10,000 of these mean difference 
scores −X X(10,000 )1 2 . We can then create a frequency distribution of these 10,000 mean difference scores. This 

theoretical distribution of the difference between 10,000 sample means is our 
sampling distribution of sample mean differences. We illustrate what this 
distribution might look like in Figure 9.4 and provide a summary of the charac-
teristics of this sampling distribution here:

1.	� The mean of the sampling distribution of the difference between two means, 
m1 – m2, is equal to the difference between the population means.

Sampling distribution of sample mean 
differences: Theoretical distribution 
of the difference between an infinite 
number of sample means.

Figure 9.2
Distribution of Male and Female 
Delinquent Offending With Equal 
Population Means

µm = 17

µw = 17
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Chapter 9    Hypothesis Tests Involving Two Population Means or Proportions     225

2.	 The standard deviation of the sampling distribution of the difference between two means σ −( )X X1 2  is called 
the standard error of the difference between two means, and it reflects how much variation exists in the dif-
ference from sample to sample. In other words, it is the standard deviation of the large number of sample 
mean differences.

This sampling distribution of mean differences is analogous to the sampling distribution of the mean that we 
discussed in Chapter 8. What changes is that the sampling distribution in Figure 9.4 is composed of the difference 
between two sample means rather than the distribution of a single mean. In addition, the distribution of mean dif-
ferences is centered about the difference between the two population means (m1 – m2), not around a single population 
mean (µ).

The mean of this distribution of mean differences is determined by the difference between the two population 
means. If the two population means are equal (mm = mw) as in Figure 9.2, the mean of the sampling distribution 
of mean differences will be 0 (m1 – m2 = 0). As we stated earlier, even if the means in the population are equal, not 
every sample mean difference is expected to be equal to zero. Sometimes the male sample mean will be greater 
than the female sample mean, sometimes the female sample mean will be greater than the male sample mean, and 
sometimes they will be equal. What will be true, however, is that with a very large number of samples, the mean 
of the distribution of sample differences (the mean difference of the infinite number of sample differences) will be 
zero.

If the two population means are different, however, as they are in Figure 9.1 with the population mean for 
men being greater than that for women (mm > mw), then most of the sample mean differences −X X( )1 2  will be 
positive. This will be true because in most of the sample comparisons the male mean will be greater than the 
female mean. In this case, the mean of the sampling distribution of differences will be greater than zero. More 
specifically, the mean of the sampling distribution will be equal to the difference between the two population 
means (mm – mw).

Figure 9.3 Hypothesis Test for Difference Between Two Means or Proportions

Population 1 Population 2

Obtain
Sample 1

Obtain
Sample 2

Calculate Sample
Statistics

Mean
Proportion

Calculate Sample
Statistics

Mean
Proportion

Make Decision
About Null
Hypothesis

Compare Sample
Statistics
(X1 − X2)
(p1 − p2)

− −
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226    Essentials of Statistics for Criminology and Criminal Justice

Up to now, we have repeatedly stated that no matter 
what the value of the means for the two populations, when 
repeated random samples are taken, means are calculated, 
and differences between sample means are taken, not every 
mean difference will be exactly the same. There will, then, 
be dispersion about the mean of the sampling distribution of 
differences. You can see the spread about the mean of the sam-
pling distribution of differences in Figure 9.4. This dispersion 
is measured by the standard deviation of sample mean differ-
ences, otherwise known as the standard error of the difference 
σ −( )X X1 2

, which is defined as

	
σ = σ + σ

− n nX X
1
2

1

2
2

2
1 2

	
(9-1)

where

s1 = the standard deviation of the first population

s2 = the standard deviation of the second population

Not only do we know the mean and standard deviation of the sampling distribution of differences, we also are in a 
position to know its shape. An important statistical theorem states the following: If two independent random samples 
of size n1 and n2 are drawn from normal populations, then the sampling distribution of the difference between the two 
sample means −X X( )1 2  will be normally distributed.

We now can use the central limit theorem to generalize this to include any population whenever the sample sizes 
are large. That is, no matter what the shape of the two populations, if independent random samples of size n1 and n2 
are drawn, the sampling distribution of the difference between the two sample means will approximate a normal 
distribution as n1 and n2 become large (both sample sizes > 30). With normal populations or with large enough sam-
ples from any population, then, the sampling distribution of differences between sample means will approximate 
normality.

This should sound very familiar to you because it is similar to what we did in Chapter 7. An appropriate statisti-
cal test for the difference between two sample means is either a z test or t test. Therefore, an appropriate sampling 
distribution would be either a z distribution or a t distribution. The z test for two means is appropriate whenever 
the two population variances (s1 and s2) are known. If these values are unknown, the t test for two means is the 
appropriate statistical test. Since we are seldom in a position to know the value of the population variances, the t test 
is more frequently applied. Keep in mind, however, that when the sample size gets large, the t and z distributions 
start to look the same. Now, let’s go through some examples of different types of hypothesis tests involving two 
population means.

22 �Testing a Hypothesis About the Difference Between  
Two Means: Independent Samples

In this section, we will discuss the case of hypothesis tests for the difference 
between two independent sample means. In the case of independent random 
samples, we have two samples whose elements are randomly and independently 
selected. Random and independent selection occurs whenever there is a known 

Independent random samples: Samples 
that are randomly and independently 
selected.

Figure 9.4
Sampling Distribution of 
the Difference Between Two 
Sample Means

(µ1 − µ2)
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Chapter 9    Hypothesis Tests Involving Two Population Means or Proportions     227

probability of any element being selected into a sample, and the selection of an element into one sample has no effect 
on the selection of any element into the other sample. In other words, both samples are randomly selected and are 
independent of each other.

In our example, independence would occur if the selection of a male into one sample had no effect on the selection 
of a female into the other sample. The independence assumption is violated in the case of matched groups or depen-
dent samples where an element is deliberately selected into a sample or when the same observations are found in both 
samples. We will review the special case of hypothesis testing presented by matched groups and dependent samples 
later in this chapter.

The statistical test we will conduct here is different from the t test we used in Chapter 7 in three ways: (1) Our sam-
ple statistic is not a single sample mean but rather the difference between two sample means −X X( )1 2 ; (2) the mean 
of the sampling distribution is not the population mean (µ) but rather the difference between two population means 
(m1 – m2); and (3) the estimated standard deviation of the sampling distribution is the estimated standard deviation of 
the sampling distribution of the difference between sample means σ −( )X X1 2 . The general formula for the t test involv-
ing the difference between two sample means can be expressed as

	
= −

σ −

t X X
ˆ

X X
obt

1 2

1 2 	
(9-2)

This t test requires that the two samples be independent random samples and that the dependent variable be mea-
sured at the interval or ratio level.

As you can see from equation 9-2, the t statistic is obtained by dividing the difference between the two sample 
means by the estimated standard deviation of the sampling distribution (the standard error of the difference). There 
are, however, two versions of the t test between two means. In one test, we can assume that the unknown population 
standard deviations are equal (s1 = s2); in the second case, we cannot make that assumption (s1 ≠ s2). The importance of 
this is that our estimate of the standard error of the difference σ − 2

( ˆ )X X1
 is different for the two cases. We will examine 

the t test for both of these cases separately.

Model 1: Pooled Variance Estimate (s1 = s2)

If we can assume that the two unknown population standard deviations are equal (s1 = s2), we estimate the standard 
error of the difference using what is called a pooled variance estimate. Because the population standard deviations 
are not known, the decision of whether they are equal is based on the equality of the sample standard deviations  
(s1 and s2). Something called an F test is the appropriate test for the significance of the difference between the two 
sample standard deviations. Without going into too much detail here, the F test tests the null hypothesis that 
σ = σ1

2
2
2 . If we fail to reject this null hypothesis, we can assume that the population standard deviations are equal 

and that the t test we will discuss in this section for the difference between two population means is the right test. If, 
however, we are led to reject this null hypothesis, we cannot make the assumption that the two population standard 
deviations are equal (σ ≠ σ1

2
2
2 ), and we must estimate the standard error of the difference using what is called a 

separate variance estimate, which we will discuss later as Model 2: separate variance estimate. Since the F test has 
not yet been discussed, we will simply provide the information for you whether you can assume that the population 
standard deviations are equal (Model 1) or whether you cannot make that assumption (Model 2). We cover the F test 
in the next chapter.

In the pooled variance case, our estimate of the denominator of equation 9.2 above (the standard error of the  
difference) is

σ =
− + −

+ −
+

−
∧ n s n s

n n
n n
n n

( 1) ( 1)
2

X X
1 1

2
2 2

2

1 2

1 2

1 2
1 2
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228    Essentials of Statistics for Criminology and Criminal Justice

and the formula for the pooled variance t test is

	

( )
=

−

− + −
+ −

+
t

X X

n s n s
n n

n n
n n

1 ( 1)
2

obt
1 2

1 1
2

2 2
2

1 2

1 2

1 2 	

(9-3)

As we have done with other hypothesis tests, once we have our obtained value of t (tobt), we will compare it with 
our critical value (tcrit) taken from our probability distribution (the t distribution) and make a decision about the null 
hypothesis. The critical value of t is based on our chosen alpha level, whether we have a one- or two-tailed test, and our 
degrees of freedom and is obtained from the t table (Table B.3 of Appendix B).You will remember from Chapter 7 that 
before using the t table, we need to determine the appropriate degrees of freedom in addition to our selected alpha level. 
When we are testing the difference between two sample means, the degrees of freedom are equal to (n1 + n2 – 2) in the 
independent-samples two-sample case for the t test. Once we have determined our degrees of freedom, we can go to the 
t table with our chosen alpha level and a one- or two-tailed test and find our critical value.

Let’s go through an example of a formal hypothesis test using the t test. In this example, we will assume that we 
have conducted our F test and have failed to reject the null hypothesis about equal population standard deviations. 
Because we can assume that the population standard deviations are equal, then, we can use the pooled variance esti-
mate of the standard error of the difference (Model 1).

State Prison Expenditures by Region

Suppose that we are interested in regional differences in the cost of housing state prison inmates. Table 9.2 displays 
data from state prisons for two regions in the United States (West and Northeast). The dependent variable of interest 
is the cost per inmate per day, which is measured at the interval or ratio level. Let’s say we believe that the average 
annual cost to house an inmate in state prisons will differ between the West and the Northeast, but we cannot say in 
which region it will be more costly. In this scenario, region would be the two-category independent variable (West vs. 
Northeast), and cost would be the dependent variable. We have reviewed the steps necessary to conduct a hypothesis 
test in Table 9.3. We will go through each of these steps using this example.

Step 1: Since we have no real idea about the nature of the relationship between region of the country and 
prison costs, a non-directional (two-tailed) hypothesis test is appropriate. The null hypothesis (H0) will state 
that the mean annual cost to house prison inmates in the West is equal to the mean cost in the Northeast. The 
alternative hypothesis (H1) will represent our belief that the regional means are not equal to each other. These 
hypotheses are formally stated as follows:

H0: There is no relationship between region and prison costs OR mWest = mNortheast

H1: There is a relationship between region and prison costs OR mWest ≠ mNortheast

Step 2: To determine the validity of this null hypothesis, we will rely on the t statistic along with its corre-
sponding probability sampling distribution. Because we can assume that the unknown population standard 
deviations are equal, we can estimate the standard error of the difference using a pooled variance estimate 
(Model 1).

Step 3: Let’s adopt an alpha level equal to .05 (α = .05). With this level of alpha, using a non-directional test and 
14 (8 + 8 – 2 = 14) degrees of freedom, the critical value of t is equal to ±2.145 (tcrit = ±2.145). Since we have a 

Case Study

Copyright ©2017 by SAGE Publications, Inc.   
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Draf
t P

roo
f - 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter 9    Hypothesis Tests Involving Two Population Means or Proportions     229

non-directional alternative hypothesis, the value of 
t we obtain from our statistical test must be equal 
to or greater than 2.145 or equal to or less than 
–2.145 in order to reject the null hypothesis of equal 
means. In other words, the obtained t value must 
be greater in absolute terms than 2.145 regardless 
of the sign. We show the two critical values and 
critical regions in Figure 9.5.

Step 4: Since we are assuming that the population 
standard deviations are equal, we can use a pooled 
variance estimate of the standard error of the dif-
ference. Please notice that in the preceding data, we 
have given you the sample standard deviation; to get 
the variance that the formula calls for, you will have 
to square the standard deviation. Sometimes we 
will provide the standard deviation, and sometimes 
we will provide the variances; you will have to be on 
your toes and alert as to which one you are given:

=
−

− + −
+ −

+
t

X X

n s n s
n n

n n
n n

( 1) ( 1)
2

obt
1 2

1 1
2

2 2
2

1 2

1 2

1 2

= −

− + −
+ −

+

= −
+

= −
+

=
−

= −

= −

= − 6

t

t

t

t

t

t

t

85.37 132.42

(8 1)(29.33) (8 1)(21.45)
8 8 2

8 8
(8)(8)

47.05
(7)860.25 (7)460.10

14
16
64

47.05
6,021.75 3,220.7

14
.25

47.05

660.18 .25
47.05

25.69(.50)
47.05

12.85
3.6

obt
2 2

obt

obt

obt

obt

obt

obt

Step 5: The obtained value of t (tobt = –3.66) falls 
into the critical region since –3.66 < –2.145 (or is 

Table 9.2
Prison Expenditures per 
Inmate per Day by State 
and Region, 2011

State Daily Mean State Prison 
Operating Expenditures 
per Inmate (in Dollars)

West

Nevada 56.59

Idaho 53.55

Arizona 67.96

Montana 82.81

Colorado 83.22

California 129.92

Washington 128.48

Utah 80.41

Sample Statistics for the West

=
=
=

X

s

n

85.37

29.33

8

1

1

1

Northeast

New Hampshire 93.37

Pennsylvania 116.00

New York 164.59

New Jersey 150.32

Vermont 135.62

Connecticut 137.70

Maine 127.13

Rhode Island 134.61

Sample Statistics for the Northeast

=
=
=

X

s

n

132.42

21.45

8

2

2

2

Source: Adapted from The Cost of Prisons: What 
Incarceration Costs Taxpayers  2012 from the Vera 
Institute of Justice.
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230    Essentials of Statistics for Criminology and Criminal Justice

greater in absolute terms of the 2.145 needed). The data obtained from our sample, then, provide enough evi-
dence for us to reject the null hypothesis that the population means are actually equal. We conclude that there 
is a significant relationship between region and annual cost to house prison inmates. The results of our test 
indicate that region—at least the West versus the Northeast—does affect the cost of incarcerating offenders 
housed in state prisons. In addition, the direction of this difference seems to be that it is significantly more 
expensive to house prison inmates in the Northeast than in the West. Let’s go through another example.

Steps Taken When Conducting a Hypothesis TestTable 9.3

Step 1: Formally state your null (H0) and research (H1) hypotheses.

Step 2: Select an appropriate test statistic and the sampling distribution of that test statistic.

Step 3: �Select a level of significance (alpha = α) and determine the critical value and rejection region of the test 
statistic based on the selected level of alpha and degrees of freedom.

Step 4: Conduct the test: Calculate the obtained value of the test statistic and compare it with the critical value.

Step 5: �Make a decision about your null hypothesis and interpret this decision in a meaningful way based on 
the research question, sample, and population.

Figure 9.5 Critical t and Critical Region for Alpha = .05 (df = 14) and a Two-Tailed Test

tcrit = − 2.145 tcrit = 2.145

Critical RegionCritical Region

Social Disorganization and Crime

Ever since the days of the Chicago School in the 1920s, criminologists have postulated that states of social disorganiza-
tion within a residential community increase the likelihood of various kinds of social problems, including unemploy-
ment, mental illness, and criminal victimization. One indicator that has been used to measure social disorganization 
within communities is the extent to which people move in and out of the community. Communities where very few 
families move in and move out are considered more stable and more organized than those where there is a great deal of 
population “turnover” in the neighborhoods. This is because in communities with relatively little turnover, residents 
live in the same place for a long time and get to know their neighbors, and as a result a sense of community becomes 
established. It is hypothesized that this sense of community and the network of social relationships between commu-
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nity members is responsible for the lower crime rates in these kinds of stable neighborhoods. In this hypothesis, the 
population turnover in a community is the independent variable and the rate of crime is the dependent variable.

Suppose we wanted to investigate the relationship between social disorganization and household crime. To do so, 
we collect a random sample of residents in a neighborhood and ask them how many times something has been stolen 
from or around their home (including their automobile) within the last 6 months (household theft). In addition, we 
ask them how long they have lived at their current address. From this survey, we divide our sample into two groups 
according to the length of time they have resided at their address: (1) those who have resided at their current address 
for less than 1 year, whom we will term “transient,” and (2) those who have resided there for more than 1 year, whom 
we will term “stable.” These two categories are our independent variable. We then calculate the mean number of times 
each group experienced a household theft, which is our dependent variable. For this hypothetical example, we obtain 
the following sample statistics:

Less Than 1 Year More Than 1 Year

=

=
=

X

s

n

22.4

4.3

49

1

1
2

1

=

=
=

X

s

n

16.2

4.1

53

2

2
2

2

Step 1: Because we have some idea about the nature of the relationship between residential stability and risk of 
household victimization, we adopt a directional (one-tailed) hypothesis test. Since we believe that those who 
have lived in an area less than 1 year (the “transients”) will be more vulnerable to becoming victims of house-
hold crime than those who have lived in the neighborhood longer (the “stables”), our alternative hypothesis 
states that the mean number of household victimizations experienced by residents who have lived at their cur-
rent addresses for less than 1 year will be greater than the mean for those who have lived in their residences for 
more than 1 year. The null and alternative hypotheses are formally stated as follows:

H0: mless than 1 year = mmore than 1 year

H1: mless than 1 year > mmore than 1 year

Step 2: To determine the validity of the null hypothesis, we will rely on the t statistic along with its correspond-
ing sampling distribution. Because we can assume that the unknown population standard deviations are 
equal, we can estimate the standard error of the difference using a pooled variance estimate.

Step 3: For this test, let’s select an alpha level of .01. With α = .01, using a directional test and degrees of free-
dom equal to 100 [(n1 + n2 – 2) = (49 + 53 – 2 = 100)], the critical value of t that defines the rejection region can 
be found in Table B.3 of Appendix B. By using the degrees of freedom of 120 listed in the table (since that is the 
closest value we have to 100), we see that the critical value of t that defines the lower limit of the rejection region 
is 2.358. Therefore, to reject the null hypothesis, we must obtain a t value equal to or greater than 2.358. We use 
a positive value of t in this case because our alternative hypothesis states that the value of the first mean (for the 
“transients”) will be greater than the value of the mean for the second group (the “stables”); the obtained value 
of t, therefore, is predicted to be positive. If we obtain a negative value of t, no matter how large it is, we must fail 
to reject the null hypothesis. We show the critical value of t and the critical region for this problem in Figure 9.6.

Step 4: The next step of our hypothesis test is to convert the difference between our sample means into a  
t value. Notice that you have been given the sample variances in this problem, so there is no need to square the 
terms again! We’re just making sure you are paying attention!
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= −

− + −
+ −

+

=
+

t

t

22.4 16.2

(49 1)4.3 (53 1)4.1
49 53 2

49 53
(49)(53)

6.2

(48)4.3 (52)4.1
100

102
2,597

obt

obt

=
+

=

=

=

=

=

8

t

t

t

t

t

t

6.2

206.4 213.2
100

.039

6.2

419.6
100

.039

6.2
4.2 .039

6.2
(2.049)(.19 )
6.2

.406
15.27

obt

obt

obt

obt

obt

obt

Step 5: The t value we obtained of 15.27 is substantially greater than the critical value of t (2.358) that was 
needed in order to reject the null hypothesis—it falls into the critical region. Since tobt > tcrit, we will reject the 
null hypothesis that the population means are equal. This suggests that the observed sample mean difference 
is too large to be attributed to chance or sampling variation; therefore, we can assume that the mean rate of 
household victimization experienced by those who have recently moved to a neighborhood is greater than the 
mean rate experienced by those who have lived in their places of residence for more than 1 year. The results 
of our statistical test lend support to one of the premises of social disorganization theory; we have found that 
individuals who have just recently been in a state of transiency (e.g., have moved within the last year) are more 
likely to become victims of household crime than are those who have been more residentially stable (e.g., have 
not moved within the last year).

Figure 9.6 Critical t and Critical Region for Alpha = .01 (df = 120) and a One-Tailed Test

Critical Region

tcrit = 2.358
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Boot Camps and Recidivism

When crime rates in the United States were high in the mid-1980s to the early 1990s, a correctional program called cor-
rectional boot camps (sometimes called shock incarceration programs) became very popular in both state and federal 
prison systems. Although they were rapidly put in place, it was not always clear whether they reduced recidivism any 
better than regular correctional facilities. Despite their increased popularity, there have been only a few really rigorous 
attempts to evaluate their efficacy in reducing recidivism. Perhaps some of the most ambitious evaluations of boot 
camps have been conducted by Doris MacKenzie and her colleagues, who have compared graduates from boot camps 
with individuals sentenced for the same crimes but sent to prison instead (for a review, see MacKenzie, 2013).

Suppose we want to conduct our own experiment on the issue. We get the help of a local judge and randomly 
select, from a group of young adult offenders convicted of felony offenses, those who will go to a military-style 
boot camp and those who will be sent to the state prison for regular correctional programming. After their 
release, individuals are followed for 2 years. To collect information on offending behavior, we conduct interviews 
with the individuals and obtain official arrest data. Mean levels of offending behavior (for all crimes, including 
violent, property, and drug offenses) are calculated for both groups as follows:

Boot Camp Group Prison Group

=

=
=

X

s

n

15.2 offenses

4.7

32

1

1
2

1

=

=
=

X

s

n

15.9 offenses

5.1

29

2

2
2

2

In this example, the type of custody (boot camp vs. prison) is our independent variable and the number 
of offenses committed is our dependent variable. To determine whether there is a significant difference in the 
mean rates of offending between the boot camp graduates and those released from prison, we must conduct a 
formal hypothesis test about the difference between two means. To help you learn the steps of formal hypothesis 
testing, we ask that you check off each step as we go through them.

Because there has been so little research on the efficacy of boot camps, and because the research that does 
exist is inconsistent, it would be hard to predict in advance which type of programming is more effective in 
reducing recidivism, so let’s select a non-directional alternative hypothesis. The formal hypothesis statements 
are as follows:

H0: mboot camps = mprison

H1: mboot camps ≠ mprison

The t test, along with its corresponding sampling distribution, is an appropriate statistical test for our data. 
Let’s select an alpha level of .05. With a non-directional hypothesis test, α = .05, and 59 degrees of freedom (32 + 
29 – 2 = 59), we will use the critical value of t for 60 degrees of freedom because that is the closest value in Table 
B.3. We will reject the null hypothesis if our obtained t is either less than or equal to –2.00 or greater than or equal 
to +2.00. The critical values and corresponding critical regions are displayed in Figure 9.7. The obtained value of t 
is calculated as follows:

= −

− + −
+ −

+
t 15.2 15.9

(32 1)4.7 (29 1)5.1
32 29 2

32 29
(32)(29)

obt
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= −

+

= −

+

= −

= −

= −

= −

= −

t

t

t

t

t

t

t

.7

(31)4.7 (28)5.1
59

61
928

.7

145.7 142.8
59

.066

.7
288.5

59 .066

.7
4.89 .066

.7
(2.21)(.26)

.7
.57

1.23

obt

obt

obt

obt

obt

obt

obt

Our statistical test results in an obtained t value of –1.23. An obtained t of –1.23 does not lie within the critical 
region, so we must fail to reject the null hypothesis. Because we failed to reject the null hypothesis, we must conclude 
that the mean offending rates after release for boot camp and regular prison inmates are not significantly different 
from one another. This would be in line with much of the research to date on boot camps, which has shown that the 
core elements of boot camp programs—military-style discipline, hard labor, and physical training—do not reduce 
offender recidivism any better than regular prison (MacKenzie, 2013).

Model 2: Separate Variance Estimate (s1 ≠ s2)

In the previous examples, we have assumed that the two population standard deviations were equal. Unfortunately, 
it will not always be possible for us to make this assumption about equal population standard deviations. In many 
instances, our F test will lead us to reject the null hypothesis that s1 = σ 2 and we must conclude that the two popula-
tion standard deviations are different. When this happens, we cannot use the pooled variance estimate of the standard 
error of the difference that we learned in the last section. Instead, we must estimate what is called a separate variance 
estimate of the standard error of the difference. The formula for this estimate is

Figure 9.7 Critical t and Critical Regions for Alpha = .05 (df = 60) and a Two-Tailed Test

tcrit = − 2.00 tcrit = 2.00

Critical RegionCritical Region
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σ =
−

+
−−



s
n

s
n1 1

1
2

1

2
2

2
X X1 2

With a separate variance estimate of the standard error of the difference, the formula for our t test now becomes

	

=
−

−
+

−

t
X X

s
n

s
n1 1

obt
1 2

1
2

1

2
2

2 	

(9-4)

The steps necessary to conduct a hypothesis test remain exactly the same as before except for determining the degrees 
of freedom. The correct degrees of freedom for the separate variance t test are not as easy as n1 + n2 – 2. In fact, the formula 
to calculate the degrees of freedom for a t test using the separate variance estimate is quite a bit more complicated. The fol-
lowing formula has been suggested to obtain the appropriate degrees of freedom for this test (Blalock, 1979; Hays, 1994):
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(9-5)

Wow! And you thought the degrees of freedom were relatively unimportant! The results of this formula should be 
rounded to the nearest integer to obtain the approximate degrees of freedom. Let’s go through two examples using the 
separate variance estimate approach for the t test.

Formal Sanctions and Intimate Partner Assault

In 1981, the first large-scale experiment to test the deterrent effects of arrest on domestic batterers, called the Min-
neapolis Domestic Violence Experiment, was conducted by Lawrence Sherman and Richard Berk (1984a, 1984b). The 
theoretical impetus for this experiment was guided by notions of specific deterrence. The primary research question 
driving the study was as follows: “Does arresting a man who has assaulted his partner decrease the probability that  
he will assault her in the future compared with less punitive interventions that are typically used such as separating 
the parties?” From their study, the researchers concluded that arrest provided the strongest deterrent to future violence 
and consequently was the preferred police response to domestic violence. This led to many jurisdictions implementing 
mandatory arrest policies for intimate partner assault.

To test the validity of experimental findings, an important canon of science is replication. Accordingly,  
the National Institute of Justice funded replication experiments of the Minneapolis experiment in six other cities. Unlike 
the original Minneapolis experiment, the published findings from these replications, which became known as the Spouse 
Assault Replication Program (SARP), did not uniformly find that arrest is an effective deterrent in spouse assault cases. 
The effect of arrest on intimate partner assault was revisited recently by Lawrence Sherman and Heather Harris (2015), 
who examined death rates among the original victims of domestic violence 23 years after the first study in Minneapolis. 
They found that victims whose abusers were arrested were more likely to die prematurely than those victims whose abus-
ers were simply warned. Clearly, this latest study calls into further question the effectiveness of mandatory arrest policies.
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Let’s say we attempted to conduct our own study on a much smaller scale about the effects of an arrest policy on future 
domestic violence. By working with a police department, we would randomly assign arrested suspects who had assaulted 
their intimate partners to either short-term (no more than 3 hours) or long-term (4 or more hours) detention in jail after their 
arrest. We would then follow these offenders and victims for a 120-day period and record the number of new victimizations 
the partners reported to interviewers along with the number of calls to police during that period. The independent variable 
is the type of detention and the dependent variable is the number of intimate partner assaults perpetrated post-release. The 
hypothetical mean numbers of post-detention assaults, along with other sample statistics for both groups, are as follows:

Short-Term Detention Long-Term Detention

X1= 6.4 X2= 8.1

s1 = 2.2 s2 = 3.9

n1 = 14 n2 = 42

We would like to test the null hypothesis that the population means for the two groups are equal. In saying this, we 
are suggesting that the length of detention after an arrest has no effect on the frequency with which intimate partner 
assault is committed in the immediate future. Suppose also that, based on an F test, we rejected the null hypothesis that 
the population standard deviations are equal; therefore, we must assume they are significantly different and use the 
separate variance t test as our statistical test.

Step 1: Because the literature on the efficacy in deterring intimate partner assault with stiff penalties is 
unclear, we will conduct a non-directional (two-tailed) alternative hypothesis that states the two population 
means are simply different. Our null hypothesis states that the two population means are equal or, stated in 
words, that there is no relationship between the type of detention experienced by arrested suspects and rates of 
intimate partner assault post-release. The hypotheses are formally stated as follows:

H0: mshort detention = mlong detention

H1: mshort detention ≠ mlong detention

Step 2: As mentioned earlier, our statistical test will be the separate variance t test, and our sampling distribu-
tion will be the t distribution.

Step 3: We will select an alpha level of .01. To find our critical value of t and the critical region, we first need 
to determine the appropriate degrees of freedom. Based on formula 9-5, we can approximate our degrees of 
freedom as equal to

Figure 9.8 Critical t and Critical Region for alpha = .01 (df = 40) and a Two-Tailed Test

tcrit = − 2.704 tcrit = 2.704

Critical RegionCritical Region
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With 40 degrees of freedom and an alpha of .01 for a two-tailed test, our critical values of t are ±2.704 (per 
Table B.3 in Appendix B). Because we are doing a two-tailed or non-directional test, our critical region will con-
sist of any tobt less than or equal to –2.704 or greater than or equal to 2.704. We show the critical values and critical 
region in Figure 9.8.

We now calculate our obtained value of t as shown here (notice that we have given you the sample standard 
deviations rather than the variances):
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Our obtained t statistic is –1.98. Because this does not fall below the critical negative value of t (and, therefore, it 
does not fall into the critical region), we fail to reject the null hypothesis. Our conclusion, based on our sample results, 
is that there is no significant difference between the mean number of post-detention assaults for those who were given 
short-term detention and that for those who were given long-term detention in the population. Thus, it seems that 
there is no significant relationship between detention time and an arrested batterer’s propensity to commit acts of 
violence in the future. Note that we also had to square the standard deviation that was provided to obtain the variance! 
Let’s go through another quick example.

Gender and Sentencing

An area that has received a great deal of research in criminology and criminal justice revolves around the idea of 
gender disparity in sentencing in both state and federal courts (Daly, 1987; Engen, Gainey, Crutchfield, & Weis, 2003; 
Starr, 2015; Steffensmeier, Kramer, & Streifel, 1993).

Controversy still exists over whether disparity in sentencing truly exists or whether observed gender differences 
in sentencing are due to legal characteristics of the offense or the offender. Some research has found that female defen-
dants were sentenced for shorter prison terms than male defendants (Spohn & Spears, 1997; Starr, 2015), whereas 
other studies have found little or no evidence of gender disparity (Daly, 1994; Rapaport, 1991; Steffensmeier et al., 
1993). Darrell Steffensmeier and his colleagues (1993), for example, went so far as to conclude, “When men and women 
appear in (contemporary) criminal court in similar circumstances and are charged with similar offenses, they receive 
similar treatment” (p. 411). You should have immediately recognized that gender in this scenario is the independent 
variable (a two-category, nominal-level variable) and the length of the sentence received is the continuous dependent 
variable.

Let’s assume that we have a random sample of 50 male and 25 female defendants who were found guilty of bur-
glary and sentenced to some time in prison. The mean sentence lengths received for male and female defendants, along 
with their respective standard deviations and sample sizes, are as follows:

Male Defendants Female Defendants

X1 = 12.02 X2 = 3.32

s1 = 72.68 s2 = 11.31

n1 = 50 n2 = 25

Step 1: Let’s say we believe that males will be sentenced more harshly than females. Accordingly, we state a 
directional (one-tailed) alternative hypothesis that the population mean sentence length is greater for male 
defendants than for female defendants. The null hypothesis is that the population means are equal:

H0: mmales = mfemales

H1: mmales > mfemales

Step 2: Our test statistic is the separate variance t test, and our sampling distribution is the t distribution.

Step 3: We will choose an alpha level of .05 (α = .05). Based on formula 9-5, we determine that the 
approximate degrees of freedom is 56. (We will not show the work here, but it would be a good idea 
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to compute this for yourself just for practice.) With 56 degrees of freedom, α = .05, and a one-tailed 
test, we can see from the t table that our critical t value is 1.671 (actually, this t score corresponds to 
60 degrees of freedom, but it is the closest value we have to 56 degrees of freedom in the table). Since 
we have predicted that the population mean for males will be greater than the population mean for 
females, we will reject the null hypothesis if tobt ≥ 1.671 and we will fail to reject the null hypothesis if  
tobt < 1.671. We show the critical value and the critical region in Figure 9.9.

Step 4: We will now calculate our obtained t value using the separate variance estimate, as shown:

= −

−
+

−

=
+

=

=

=
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t

t

t

12.02 3.32
(72.68)

50 1
(11.31)

25 1
8.7

107.80 5.33
8.7
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10.64
.82

obt
2 2

obt

obt
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obt

Note that we again had to square the standard deviation to obtain the variance! Our obtained t score of .82 is con-
siderably less than the critical t of 1.671 and does not fall into the critical region. Our decision, then, will be to fail 
to reject the null hypothesis that there is no difference in the population means. We will conclude that, based on our 
sample data, there is not a significant relationship between sentence length received for burglary and gender of defen-
dant in the population. Thus, the sentences handed down by judges for males convicted of robbery do not seem to be 
greater than the sentences received by females convicted of the same offense in the population. You may be thinking 
that the vast difference between the means should certainly have produced a significant result. However, remember 
that the test is also greatly influenced by the variation in each group—note the huge standard deviation around the 
mean sentence length for males!

So far, we have examined ways of comparing means across two independent samples or groups of cases. In the next 
section, we will examine a procedure called the matched-groups t test that is used to compare two means within the 
same or comparable group or sample. In this case, we cannot assume that we have two independent samples.

Figure 9.9 Critical t and Critical Region for Alpha = .05 (df = 60) and a One-Tailed Test

tcrit = 1.671

Critical Region
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22 Matched-Groups or Dependent-Samples t Test
In our application of the t test for the difference between two means in the previous section, we assumed that the two 
samples were independent of each other. That is, we assumed that the selection of the elements of one sample had 
no effect on the selection of the elements of the other sample. There are times when this assumption is deliberately 
violated. One instance of this lack of independence occurs when we have a “treatment” group and a “control” group. 
To make sure that the two groups are comparable with one another in as many ways as possible, each observation in 
one group is sometimes “matched” with an observation in the other group on relevant characteristics. Matching of 
samples can be done whenever it is not practical or ethical to randomly assign the “treatment.” Matching subjects is 
done so that the only thing that differentiates the two groups is that one group received a certain type of treatment or 
was exposed to some phenomenon and the other group did not or was not.

For example, one way to determine the effect of counseling on future delinquency would be to collect data from 
two samples that are very similar to each other with the exception that one has received counseling (treatment group) 
and the other has not (control group). In such a study, an 18-year-old White male who lives in an urban area and has no 
criminal history might be placed in a sample that is to receive treatment (counseling), while another 18-year-old White 
male who lives in an urban area and has no criminal history might be “matched” to this treatment male but placed in a 
sample that is to receive no treatment (no counseling). In this case, the two subjects are matched with respect to five 
characteristics: age (they are both 18 years old), ethnicity (both White), gender (both males), residence (both urban 
dwellers), and criminal history (both have no criminal history). If the members of the two groups are effectively 
matched on important characteristics that are related to the dependent variable (such as age, minority status, gender, 
location of residence, and criminal history), then any observed differences between the two groups on the dependent 
variable after treatment (future delinquency) are unlikely to be due to these demographic characteristics. Rather, they 
are more likely to be due to the treatment, which in this example is counseling. The important point here is that by 
matching someone in one sample with a counterpart in a second sample, we have violated our assumption that the two 
samples are independent and so cannot use either of our two independent-samples t tests.

A second common use of matched or dependent samples occurs with “before-and-after” research designs, more 
generally referred to as pre–post designs. In this type of study, there is only one sample, but measures of the depen-
dent variable are taken at two different points in time, “before” some intervention or treatment and again “after.” For 
example, suppose we have access to only one group of arrested delinquents and all of them are going to receive counsel-
ing. In this case, we would have access to the individuals before and after they received counseling. Here, we might 
use self-report or official arrest data before and after counseling to determine whether counseling actually decreased 
rates of offending. However, this type of sample also violates our assumption of independence since the same persons 
appear in both groups. The subjects before the intervention cannot be independent of those after the intervention since 
they are the same people.

It should be clear to you that the two previously described t tests would not be appropriate because we would not 
have independent samples given that the elements of each sample were deliberately selected to be alike or, in fact, are 
the same people. In both the matched-groups and the pre–post designs, the independent observation is actually a pair 
of cases, not two independent groups. If we now consider each pair as an independent observation, we can conduct a 
statistical test based on the difference between the scores for each pair. In other words, we will make a pair-by-pair 
comparison by obtaining a difference score for each pair. Unlike the t test for independent samples that tests for the dif-
ference between two sample means (X2 – X1), the matched-groups or dependent-samples t test calculates the difference 

between the scores for each pair of subjects (x2 – x1) where a pair is either a pair of 
subjects who have been matched on some characteristics or the same person mea-
sured at two different points in time. In this example, one population consists of 
one of the matched groups or the group before the treatment, whereas the second 
population consists of the other matched group or the group after the treatment.

In the null hypothesis of the t test for matched groups or dependent samples, 
we will assume that the two populations are equal, which implies that the treat-
ment or intervention has no effect. Under the null hypothesis, the difference 

Matched or dependent samples: 
Samples in which individuals are either 
dependent or matched on several 
characteristics (age, race, gender, etc.) 
or “before-and-after” samples of the 
same people.
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between each pair of observations is expected to be zero, and the mean of the differences is also expected to be zero. 
The null hypothesis, then, presumes that the population mean of group differences will be zero. We will symbolize the 
mean of the population of group differences as µD, with the subscript D indicating that this is the difference between 
the two populations. The statistical test in a dependent-samples t test, then, is really a single-sample test of the hypoth-
esis that µD = 0 (the sample XD statistic is the mean of the difference between each pair of scores in the sample).

Our procedure will be to determine the difference between each pair of scores (XD = x2 – x1) in the sample, calculate 
the mean of these differences (XD), and then test whether this sample mean difference is equal to the expected population 
mean difference (µD) of zero. If the null hypothesis is true, then most of these XD differences will be close to zero, as will 
the mean of the differences XD. If, however, the null hypothesis is not true, then the two scores will tend to be different 
from each other and the mean difference score will be greater than or less than zero. The greater the difference between 
each pair of scores, the greater the mean difference will be and the more likely we will be to reject the null hypothesis.

The formula for the t test with dependent samples is

	
=

−µ
t

X
s n/

D D

D 	
(9-6)

Remember that we have drawn an analogy between the t test for matched samples and a hypothesis test involving 
a single population mean. In the t test in Chapter 7, where we dealt with one-population problems, we subtracted the 
population mean from the sample mean and divided by the standard deviation of the sampling distribution. This is 
exactly what we do in the independent-samples or matched-groups t test in formula 9-6. We subtract the population 
mean (µD) from the sample mean (XD), where the sample mean is the mean of the differences between each pair of 
scores in the sample, and we divide by the estimated standard deviation of the sampling distribution, which is the 
standard deviation of the observed difference scores. Note that the dependent-samples t test is based solely on the dif-
ference scores XD (where XD = x2 – x1) and the standard deviation of the difference scores (sD).

Since the null hypothesis assumes that the population mean is zero (µD = 0), we can drop that term from the 
numerator and the formula for the dependent-samples t test can be reduced to

	
=t X

s n/
D

D
obt

	
(9-7)

where

=
Σ −

−
s

x X
n

( )
1D

D D
2

or

( )

=

Σ − Σ











−
s

D D
n

n 1D

2
2

The term sD in equation 9-7 is just our old friend the standard deviation, and we gave you two ways to calculate it 
that you should recognize from Chapter 4 as the definitional and computational formulas for the standard deviation 
respectively.

Once we have our obtained the t value, we do the same thing we have done with any t test discussed so far. We 
compare tobt with tcrit and make a decision about our null hypothesis. We even go to the same t table as for independent-
samples t tests (Table B.3 of Appendix B). The difference is that in the case of matched groups or dependent samples, 
since we have only n pairs of independent observations (rather than n1 + n2 observations as in the case of independent 
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samples), we have n – 1 degrees of freedom where n is equal to the number of pairs of observations. If this sounds a bit 
confusing right now, no worries. A couple of examples will help to illustrate what is going on here. In each example, we 
will conduct a formal hypothesis test.

Problem-Oriented Policing and Crime

Several recent studies have found that more than half of all crimes in a city are committed in only a few places. Some 
criminologists have called these places “hot spots” (Braga et al., 1999; Caplan, Kennedy, & Piza, 2013; Kennedy, 
Caplan, & Piza, 2013; Sherman, Gartin, & Buerger, 1989). Even within the most crime-ridden neighborhoods, it has 
been found that crime clusters at a few locations, while other areas remain relatively free of crime. The clustering of 
violent crime at particular locations suggests that there are important features of, or key dynamics at, these locations 
that give rise to frequent violence. Thus, focused crime prevention efforts have recently sought to modify these “crimi-
nogenic” conditions and reduce violence.

Problem-oriented policing strategies (similar to community policing) are increasingly used by urban jurisdictions 
to reduce crime in these high-activity or “hot spot” crime places. Problem-oriented policing challenges officers to iden-
tify and analyze the causes of problems behind a string of criminal incidents. Once the underlying conditions that give 
rise to crime problems are known, police officers can then develop and implement appropriate responses to reduce 
crime. For example, strategies include using community members as information sources to discuss the nature of the 
problems the community faces, the possible effectiveness of proposed responses, and the assessment of implemented 
responses. Other strategies target the social disorder problems inherent in these neighborhoods such as cleaning up the 
environment of the place and making physical improvements, securing vacant lots, and removing trash from the street.

Suppose we are interested in the efficacy of these policing strategies in reducing acts of violence in neighborhoods 
plagued by high rates of crime. We target 20 neighborhoods within a city and send out teams of community police offi-
cers to implement problem-oriented policing strategies in these neighborhoods. Before the program begins, we obtain 
the number of arrests for violent offenses that were made in each neighborhood within the 60 days prior to program 
implementation. After the program has been in place, we again obtain the number of arrests for violent offenses that 
were made in each neighborhood for a 60-day period. In this case, the program of having problem-oriented policing in 
the community is the independent variable and the number of violent offenses is the dependent variable. Notice that 
we have the same neighborhoods here; we have the number of crimes before and after the introduction of problem-
oriented policing. We want to know whether the average number of arrests for violent offenses increased or decreased 
after the policing program was implemented. The hypothetical numbers of arrests for each time point are reported in 
the second and third columns of Table 9.4. We now are ready to conduct our hypothesis test.

Step 1: First, we state our null and research hypotheses. Our null hypothesis is that the mean difference score 
in the population is equal to zero. This implies that the problem-oriented policing had no effect on the number 
of arrests for violent offenses within neighborhoods. Since we are unsure what the exact effect of our problem-
oriented policing strategy will be (maybe it will make things better, but maybe with more police it will make 
things worse or more crime will simply be seen), we will opt for a non-directional alternative hypothesis stat-
ing our belief that, on average, the number of arrests in neighborhoods after the new policing strategy was 
implemented will be different from the number of arrests before problem-oriented policing was implemented. 
The null and research hypotheses are formally stated as follows:

H0: µD = 0. This implies that the same number of crimes were committed before and after the policing 
program was put in place

H1: µD ≠ 0. This implies that there is some effect of the policing program on crime, but we cannot state in 
advance if it decreases or increases crime

Case Study
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Chapter 9    Hypothesis Tests Involving Two Population Means or Proportions     243

Step 2: The next step is to state our test statistic and the sampling distribution of that test statistic. Because we 
have dependent samples (the same community is used before and after the policing program was introduced), 
we use the dependent-samples t test as the statistical test and use the t distribution as our sampling distribution.

Step 3: The third step is to select our alpha level and determine the critical value and region. Let’s select an 
alpha level of .01 (α = .01) for this example. Because we have 20 pairs of observations (n = 20), we have 19  
(20 – 1 = 19) degrees of freedom. We go to Table B.3 of Appendix B and find that for a two-tailed hypothesis test,  
α = .01, and 19 degrees of freedom, the critical value of t is ±2.861. Therefore, we will reject the null hypothesis if 
tobt is less than or equal to –2.861 or if tobt is greater than or equal to 2.861. We illustrate this for you in Figure 9.10.

Step 4: The fourth step of our hypothesis-testing procedure is to calculate the test statistic and compare it with 
our critical value.

For our first example of a matched-groups t test, we illustrate the calculations in detail. From equation 9-6, we see that 
we need to determine the mean of the difference scores and the estimated standard deviation of the difference scores. 
In Table 9.4, we report that the sum of the difference scores is equal to –48 (Σ XD or Σ (x2 – x1) = –48). Note how these 
difference scores are created. For each neighborhood, we subtract the first score (before the policing program was 
implemented) from the second score (after the policing program was implemented). For example, the first pair of cases 

Table 9.4
Number of Arrests for Violent Offenses in Neighborhoods Before (First Score) 
and After (Second Score) Implementation of Problem-Oriented Policing

Pair Number First Score x1 Second Score x2 x2 – x1 (x2 – x1)
2

1 25 21 –4.00 16

2 29 25 –4.00 16

3 32 32 0.00 0

4 42 39 –3.00 9

5 21 25 4.00 16

6 29 25 –4.00 16

7 33 29 –4.00 16

8 35 36 1.00 1

9 32 29 –3.00 9

10 36 35 – 1.00 1

11 39 40 1.00 1

12 25 21 –4.00 16

13 27 25 –2.00 4

14 41 35 –6.00 36

15 36 35 – 1.00 1

16 21 23 2.00 4

17 38 31 –7.00 49

18 25 21 –4.00 16

19 29 25 –4.00 16

20 25 20 – 5.00 25

Σ = – 48 Σ = 268

XD = –2.40
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244    Essentials of Statistics for Criminology and Criminal Justice

had 21 arrests after the problem-oriented policing strategy was implemented and 25 arrests before. The difference, 
then, is 21 – 25 = –4, or a reduction by 4 crimes. We do this for each neighborhood (each pair), sum across the pairs, 
and then divide by the number of pairs to obtain a mean difference score. All scores are added in calculating this mean 
difference score, including zeros and scores with negative signs. With 20 pairs of scores, the mean difference score for 
these data is –48 / 20, or –2.40 (XD = –2.40).

We now calculate the estimated standard deviation of the difference scores. This is just like calculating the 
standard deviation for any other group of scores except that the raw data are the difference scores and the mean is  
the mean of the difference scores. First, we will use the definitional formula for the standard deviation. We subtract the 
mean difference score from each difference score, square this difference, sum these squared differences, divide by the 
number of pairs minus 1, and then take the square root. This is equal to the standard deviation of the difference scores. 
To get the standard error or the standard deviation of the sampling distribution, divide this standard deviation by the 
square root of the sample size. The calculations necessary to find this are shown in Table 9.5.

We can place this into our definitional formula for the standard deviation (Chapter 4):

=
Σ −

−
s

X X
n

( )
1D

D D
2

The standard deviation of the difference scores is symbolized as sD and, for this example, is calculated using 
the earlier standard deviation formula:

=

=
=

s

s
s

152.80
19

8.042
2.836

D

D

D

Now that we have the standard deviation of the difference scores, we can calculate our test statistic:

=

= −

= −

= −

= −

t X
s n

t

t

t

t

/
2.40
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2.40
2.836 / 4.472
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Figure 9.10 Critical t and Critical Regions for Alpha = .01 (df = 19) and a Two-Tailed Test

tcrit = − 2.861 tcrit = 2.861

Critical RegionCritical Region
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Step 5: Finally, we compare our obtained value of t (–3.785) with our critical value (±2.861) and the criti-
cal region. Since tobt falls within the critical region (–3.785 < –2.861), we can reject the null hypothesis that 
the mean of the differences is equal to zero. We will conclude that the number of post-arrests for violence is 
significantly different from the number of pre-arrests. The implementation of problem-oriented policing 
within our sample of neighborhoods seems to have had a significant impact in reducing the number of arrests 
for violent offenses made within neighborhoods in the population.

Table 9.5

Standard Deviations of the Sampling Distribution for the Number of 
Neighborhood Arrests for Violent Offenses Before (First Score) and After 
(Second Score) Problem-Oriented Policing Implementation

Pair xD - XD (xD - XD)2

  1 –4 – (–2.4) = –1.60 2.56

  2 –4 – (–2.4) = –1.60 2.56

  3 0 – (–2.4) = 2.40 5.76

  4 –3 – (–2.4) = –0.60 0.36

  5 4 – (–2.4) = 6.40 40.96

  6 –4 – (–2.4) = –1.60 2.56

  7 –4 – (–2.4) = –1.60 2.56

  8 1 – (–2.4) = 3.40 11.56

  9 –3 – (–2.4) = –0.60 0.36

10 – 1 – (–2.4) = 1.40 1.96

11 1– (–2.4) = 3.40 11.56

12 –4 – (–2.4) = –1.60 2.56

13 –2 – (–2.4) = 0.40 0.16

14 –6 – (–2.4) = –3.60 12.96

15 – 1 – (–2.4) = 1.40 1.96

16 2 – (–2.4) = 4.40 19.36

17 –7 – (–2.4) = –4.60 21.16

18 –4 – (–2.4) = –1.60 2.56

19 –4 – (–2.4) = –1.60 2.56

20 –5 – (–2.4) = –2.60 6.76

n = 20 Σ(XD - XD2) = 152.80
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Siblings and Delinquency

One of the most comprehensive studies ever undertaken on the causes of delinquent behavior was reported more 
than 60 years ago by Sheldon and Eleanor Glueck (1950). The Gluecks compared 500 institutionalized chronic delin-
quents with a matched group of 500 non-delinquents. Among their findings, the Gluecks reported that members 
of the delinquent group were more likely than the non-delinquents to come from broken homes and economically 
disadvantaged families, to have friends who were also delinquents, and to have parents who were cruel and erratic in 
their discipline.

Case Study

Table 9.6

Number of Delinquent Siblings for 15 Delinquent Youths and a Matched 
Group of 15 Non-delinquent Youths and the Calculations Necessary for a 
Matched-Group t Test

Pair Non-delinquent 
Score

x1

Delinquent 
Score

x2

xD

x2 – x1

xD
2

 

(x2 – x1)
2 xD – XD (xD – XD)2

1 1 3 2 4 2 – 1.40 = 0.60 0.36

2 0 2 2 4 2 – 1.40 = 0.60 0.36

3 0 1 1 1 1 – 1.40 = –0.40 0.16

4 1 4 3 9 3 – 1.40 = 1.60 2.56

5 2 1 –1 1 –1 – 1.40 = –2.40 5.76

6 0 3 3 9 3 – 1.40 = 1.60 2.56

7 2 2 0 0 0 – 1.40 = –1.40 1.96

8 1 4 3 9 3 – 1.40 = 1.60 2.56

9 0 1 1 1 1 – 1.40 = –0.40 0.16

10 0 2 2 4 2 – 1.40 = 0.60 0.36

11 0 0 0 0 0 – 1.40 = –1.40 1.96

12 1 2 1 1 1 – 1.40 = –0.40 0.16

13 0 2 2 4 2 – 1.40 = 0.60 0.36

14 1 3 2 4 2 – 1.40 = 0.60 0.36

15 0 0 0 0 0 – 1.40 = –1.40 1.96

n = 15 Σ =
= =

Σ =

x

X

x

21

21 /15 1.40

51

D

D

D
2

Σ − =

=
−

=

x X

s

( ) 21.60

21.60
15 1

1.24

D D
2

D
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Let’s presume that, like the Gluecks, we have a group of 15 non-delinquents and a group of 15 delinquents who 
are matched with respect to social class, gender, age, race, and whether both parents are in the home. For each youth, 
we also have the number of siblings who he or she reports have been arrested for a crime. What we want to know  
is whether the delinquent youths have more delinquent siblings than the non-delinquent youths. In this scenario, 
whether a youth has been arrested for delinquency is the independent variable and the number of delinquent siblings is 
the dependent variable. The data from the two groups are reported in the second and third columns of Table 9.6.

Step 1: Our null hypothesis is that the number of delinquent siblings is not different between the two matched 
groups. In other words, we are assuming that the population mean for the difference between the pair of 
scores is zero. Based on our knowledge of the delinquency literature, we will make the directional (one-tailed) 
alternative hypothesis that the delinquent group will have more siblings who have violated the law than the 
non-delinquent group. Our prediction, therefore, is that if the number of law-violating siblings for the non-
delinquent group is the first score and the number of law-violating siblings for the delinquent group is the 
second score, then the difference scores (x2 – x1) will generally be positive and the population mean for the 
differences will be greater than zero. The hypotheses are formally stated as follows:

H0: µD = 0

H1: µD > 0

Step 2: Our test statistic will be the dependent-samples t test, and the sampling distribution will be the t distri-
bution.

Step 3: For our hypothesis test, we will choose an alpha level of .05. Since our alternative hypothesis stated that 
the true population mean was greater than zero, our critical region will lie in the right tail of the sampling dis-
tribution. With n – 1 or 14 degrees of freedom, α = .05, and a one-tailed test, we can find in the t table (Table 
B.3) that tcrit = 1.761. The critical region consists of all obtained t scores that are greater than or equal to 1.761. 
Therefore, we will fail to reject the null hypothesis if tobt < 1.761. We show the critical t value and critical region in 
Figure 9.11.

Step 4: The second and third columns of Table 9.6 show the calculations necessary to determine both the 
mean and the standard deviation of the difference scores. We use the definitional formula for the standard 
deviation of the difference scores, but you would have obtained the same value with the computational for-
mula! The value of tobt is calculated as follows:

=
Σ −

−

=

=

=

=

=

t X

D X
n

n

t

t

t

t

t

( )
1

/

1.40
21.60

14
/ 15

1.40
1.54 / 15

1.40
1.24 / 3.87
1.40
.32

4.375

D

D

obt
2

obt

obt

obt

obt

obt
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Step 5: The obtained value of our test statistic is 4.375. Because tobt > tcrit, we can reject the null hypothesis that the 
mean population difference is zero. We conclude that there is a significant relationship in the population between 
delinquency and the number of delinquent siblings a youth has. In the population, we can assume delinquents 
have significantly more siblings who have violated the law than non-delinquents.

In this and the previous two sections of this chapter, we have examined several different types of statistical tests to 
test a hypothesis about two population means. This must present a somewhat bewildering picture, and we admit that it 
might seem a bit overwhelming right now. In selecting the appropriate test statistic for the two-sample mean problem, 
however, a good deal of confusion can be eliminated if you remember that you need to answer only a few fundamental 

Critical t and Critical Regions for alpha = .05 (df = 14) and a One-Tailed TestFigure 9.11

Critical Region

tcrit = 1.761

Decision Chart for Using the Appropriate Statistical Test for Two-Sample  
Mean Problems

Figure 9.12

X1 – X2

(n1 – 1) s1
2 + (n2 – 1) s2

2

n1 + n2 – 2

t  =
n1

 + n2

n1n2

Pooled Variance
t Test

X1 – X2

s1
2

n1 – 1

t  =

+
s2

2

n2 – 1

Separate Variance
t Test

Are the Population
Variances Known?

Can the Sample Variances
Be Assumed to Be Equal?

Do You Have
Independent Samples?

z Test

XDt  =
n – 1sD /

Matched-Pairs
Dependent-Samples

t Test

Yes

No

Yes

Yes

No

No
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questions before deciding which test is appropriate for your problem. Figure 9.12 summarizes these decisions. Think 
of this figure as a road map in deciding which statistical test you should use for two-sample mean problems. In the next 
section, we will examine hypothesis tests about the difference between two sample proportions.

22 �Hypothesis Tests for the Difference Between  
Two Proportions: Large Samples

In this section, we will examine a statistical test for the significance of the difference between two population propor-
tions (P1 and P2). Think of the difference of proportions test as a special case of the difference of means test. There are 
many cases in our discipline where this test is applicable.

Let’s say we have a random sample of 100 persons and we asked each of them whether they favor the death penalty for 
those who commit first-degree murder. We arbitrarily assign a score of “0” for those who say no and a score of “1” for those 
who say yes. Let’s assume that 89 of the 100 persons said they approved of the death penalty under that circumstance and 
11 said they did not. Since there are only two values (0 = no and 1 = yes), we can treat this variable as being measured at 
the interval level. We can determine the mean of this variable by counting the number of “1” scores (or “0” scores) and  
dividing by n. Since we have 89 “1” scores, the mean would be 89 / 100, or .89. The mean for a binary variable (a vari-
able with only two values coded as “0” and “1”), then, is the proportion of “1” scores—in this case, the proportion of our 
sample that was in favor of the death penalty. The mean, therefore, is actually the proportion of “1” scores. Even though  
the population is dichotomous (it is made up of 0s and 1s), we know from the central limit theorem that with a large 
enough sample, the distribution of sample means and the difference between two sample means will be approximately 
normal. Hence, we can use a z test and the z distribution to test hypotheses about the difference between two proportions.

In this section, we will consider only tests appropriate for data obtained from large independent samples. If  
n p  ≥ 5 and n q  ≥ 5 for each of the two samples (where p  is the sample proportion and q  = 1 – p), the sampling distri-
bution of the difference between proportions will be approximately normal and we can use a z test as our test statistic.

In calculating the test statistic for the t test for two sample means, we subtracted one sample mean from the other 
and divided by the standard error of the difference between means. We will conduct the same procedure in our test for 
the difference between two proportions. In our z test for two proportions, we will subtract the two sample proportions 
( p 1 – p 2) and divide by our estimate of the standard deviation of the sampling distribution of the difference between 

proportions ( )σ − P P1 2 . This estimated standard deviation is also referred to as the standard error of the difference 

between proportions. The z test for the difference between proportions is

	

=
−

σ
=

−
+−

 



 

 

z
p p p p

p q
n n
n n

obt
1 2 1 2

1 2

1 2

P P1 2

	

(9-8)

where
p

1 = the sample proportion for the first sample

p
2 = the sample proportion for the second sample

=
+
+

= −



 

 

p
n p n p

n n
q p1

1 1 2 2

1 2
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Again, notice that in formula 9-8 the p terms in the numerator have a subscript because they come from our two 
samples, whereas the p and q terms under the first radical in the denominator do not. Just as with all of the preceding 
hypothesis tests, once we have obtained the test statistic, we compare our zobt with zcrit and make a decision about the 
null hypothesis. Let’s go through an example.

Education and Recidivism

One of the primary questions in the correctional literature is to determine what programs within the correctional set-
ting decrease inmates’ rates of recidivism once they are released. Recently, Ryang Kim and David Clark (2013) exam-
ined recidivism rates between inmates who participated in prison-based college programs and those who did not. Not 
surprisingly to some, they found that the recidivism rate for the inmates who had participated in the college program 
was lower than the recidivism rate for those who did not participate.

Let’s say we have an independent random sample of 120 inmates from a correctional institution where 60 inmates 
in this group have received either their associate or baccalaureate degree while in prison and the remaining 60 inmates 
have received no educational curriculum whatsoever. Of the 60 who had received an education, 18% ( p 1 = .18) were 
rearrested within 1 year of their release from prison. Of the 60 who had not received any education, 38% ( p 2 = .38) 
were rearrested within the same time period. We wonder whether there is a significant difference between the percent-
age of released inmates who were rearrested (our measure of recidivism) for those who received an education in prison 
compared with those who did not. To answer this question, we need to conduct an explicit hypothesis test.

Step 1: Our null hypothesis is that the two samples came from populations with the same proportion of 
inmates who were rearrested after release. In other words, receiving an education while in prison had no effect 
on the likelihood of recidivating during the year after release. To be on the safe side, we test a non-directional 
(two-tailed) alternative hypothesis that the two proportions are simply different from each other. These 
hypotheses are stated as follows:

H0: P1 = P2

H1: P1 ≠ P2

Step 2: To test these hypotheses, we select as our test statistic the z test for a difference of proportions. Since we 
have a large sample size, the z distribution will be our sampling distribution.

Step 3: We will select an alpha level of .01. For a two-tailed test, the critical level of z at α = .01 is zcrit = ±2.58 (see 
Table B.2 in Appendix B or Table 7.1 in Chapter 7 for the critical values of z for common levels of alpha). Since this 
is a two-tailed test, the critical region lies in both tails of the z distribution and consists of all obtained z scores less 
than or equal to –2.58 or greater than or equal to 2.58. We will reject the null hypothesis if zobt is less than or equal 
to –2.58 or greater than or equal to +2.58. Figure 9.13 shows the two critical regions and the critical z values.

Step 4: To make the calculations more manageable, we will find our obtained value of z in a series of steps.

Step 4a: We find the estimated value of the pooled population proportions:

= +
+

= +

=

=









p

p

p

p

(60)(.18) (60)(.38)
60 60

10.8 22.8
120

33.6
120
.28

Case Study
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Step 4b: We find the standard error estimate of the difference between population proportions:

σ =
+

σ = +

σ =

σ =

σ =

σ =

−

−

−

−

−

−

 p q
n n
n n

ˆ

ˆ (.28).72 60 60
60(60)

ˆ .20 120
3,600

ˆ (.45) .033
ˆ (.45)(.18)
ˆ .081

p p

p p

p p

p p

p p

p p

1 2

1 2
1 2

1 2

1 2

1 2

1 2

1 2

Step 4c: Finally, plugging our sample proportions into the numerator and this standard error estimate into the 
denominator of formula 9-8, we calculate the value of our obtained z test:

=
−

+

= −

= −

= −

 

 

z
p p

p q
n n
n n

z

z

z

.18 .38
.081
.2

.081
2.47

obt
1 2

1 2

1 2

obt

obt

obt

Step 5: Our obtained z statistic is –2.47. This value of zobt just misses falling into our rejection region. Since it does 
not lie within the critical region, we must fail to reject the null hypothesis. We cannot conclude, based on our 
sample data, that in the population the proportion of inmates who recidivate is significantly different between 
those inmates who receive an education in prison and those who do not. To test yourself, conduct the same null 
hypothesis using an alpha of .05 (α = .05). What do you conclude?

Critical z and Critical Regions for Alpha = .01 and a Two-Tailed TestFigure 9.13

zcrit = − 2.58 zcrit = 2.58

Critical RegionCritical Region
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22 Summary
In this chapter, we have examined techniques used to perform hypothesis tests to determine the difference between 
two means and two proportions. With unknown population variances, the statistical test for the difference between 
two means is conducted with a t test. If the test involves two independent random samples, we can choose from two 
different kinds of t tests. The first type is called a pooled variance t test. This test for two-sample means is appropriate 
when we can assume that the population standard deviations are equal. When we cannot maintain that assumption, 
the correct t test to use is the separate variance t test.

In addition to these tests for independent samples, we also examined a t test for matched groups or dependent 
samples. In this kind of t test, we are less interested in the difference between two means than in testing whether the 
difference between two sets of scores is equal to zero.

Finally, we learned how to test for the significance of the difference between two proportions and discovered that it 
was a special instance of the two-sample mean test.

Key Terms       Review key terms with eFlashcards.  SAGE  edgeTM

independent random samples  226
matched or dependent samples  240

sampling distribution of sample mean 
differences  224

Key Formulas

Pooled variance t test (equation 9-3):
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Degrees of freedom for separate variance t test (equation 9-5):
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Dependent-samples t test (equation 9-7):
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Difference between proportions z test (equation 9-8):
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Practice Problems     �Test your understanding of chapter content.  
Take the practice quiz.  SAGE  edgeTM

1.	 Explain the difference between independent and depen-
dent variables. If you think that low self-control affects 
crime, which is the independent variable and which is the 
dependent variable?

2.	 When is it appropriate to use an independent-samples t 
test, and when is it appropriate to use a t test for dependent 
samples or matched groups?

3.	 John Worrall and colleagues found that the fear of los-
ing the good opinion of one’s family and peers kept 
people from driving home drunk (Worrall, Els, Piquero, 
& TenEyck, 2014). Let’s say we have two independent 
random samples of people: those who think that their 
peers would disapprove of them for driving drunk and 
those who think that their peers either would not care or 
would approve of their driving drunk. We ask each person 
in each group to self-report the number of times that he or 
she has driven drunk during the past 12 months. Here are 
the results: 

Would Not Approve 
of Driving Drunk

Would Approve of 
Driving Drunk

n1 = 40 n2 = 25

x1 = 2.1 x2 = 8.2

s1 = 1.8 s2 = 1.9

	 Test the null hypothesis that the two population means 
are equal against the alternative hypothesis that the group 
whose peers would not approve of driving drunk has a 
lower mean rate of driving drunk. In your hypothesis test, 
assume that the unknown population standard deviations 
are equal and use an alpha level of .01.

4.	 The use of monetary fines as a criminal sanction is being 
considered as one possible solution to the problem of prison 
overcrowding. Supporters of the use of fines contend that it 
would be both an effective deterrent to crime and a way to 
punish even moderately severe crimes without imprison-
ment. Critics argue that giving criminal offenders fines 
only increases their motivation to commit more crimes in 
order to pay their fines. You want to test the effect of fines 
versus incarceration on criminal behavior. You take a 
random sample of 150 convicted offenders who have been 
given a fine as punishment and follow them up for 3 years. 
You take a second independent random sample of 110 
offenders recently released from prison and follow them up 
for 3 years. At the end of the 3-year follow-up period, you 

find that 33% of those given a fine had been rearrested and 
38% of those given a prison sentence had been rearrested. 
Test the null hypothesis that the proportions rearrested in 
the two groups are equal against the alternative hypothesis 
that they are different. Use an alpha level of .05.

5.	 Jason Ingram and William Terrill (2014) conducted some 
research on the perceptions that female and male police 
officers have of their roles, the public, and their depart-
ments. They concluded that female and male police officers 
do not view their jobs very differently. Let’s say that we 
wanted to continue their work and were interested in 
how female and male police officers view one component 
of police work: the handling of domestic disputes. To do 
this research, we have created a scale that measures how 
important settling domestic disputes is and whether it is 
perceived as part of “police work.” Those who score high 
on this scale think that the fair settling of domestic distur-
bances is of high priority and that it should be an important 
part of a police officer’s duties. We have then taken two 
random samples. One is a sample of 50 male police officers, 
and the other is an independent random sample of 25 
female police officers. We give each officer a questionnaire 
that includes our domestic dispute scale. The mean score 
for female officers is 21.3 with a standard deviation of 3.0. 
The mean score for male officers is 18.8 with a standard 
deviation of 4.5. Test the null hypothesis that the two popu-
lation means are equal against the alternative hypothesis 
that the male mean is lower than the female mean. In your 
hypothesis test, do not presume that the population stan-
dard deviations are equal and use an alpha level of .05.

6.	 Capital punishment law is among the most complex bod-
ies of law in our legal system. As a result, judges make 
frequent errors in capital cases in terms of their rulings 
regarding a change of venue, the decision to sequester 
jurors, questions of voir dire, suppression of evidence, and 
so on. When these errors are made, cases are often won 
on appeal and have to be retried or have a second penalty 
phase hearing. The Trial Judges Association thinks that 
only judges who have received special training should sit 
on capital cases because these judges would commit fewer 
errors and there would be fewer cases lost on appeal. You 
decide to test this hypothesis. You take a random sample 
of 15 judges who have received extensive training in 
capital punishment law. You match these judges with 15 
other judges who have not received such training but are 
matched in terms of their number of years on the bench, 
experience as trial lawyers, gender, and age. You want the 
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two groups of judges to be alike in every way except the 
experience of capital punishment law training. The data 
on your matched groups of judges are as follows:

	 Number of Cases Lost on Appeal

Judge Untrained Trained

1 3 0
2 1 3
3 2 4
4 7 4
5 5 2
6 4 5
7 6 1
8 2 1
9 7 0
10 5 6
11 3 4
12 4 2
13 5 5
14 6 3
15 2 1

	   Test the null hypothesis that the mean difference in the 
number of cases lost on appeal for the two groups of judges 
is zero against the alternative hypothesis that the untrained 
judges lose more cases on appeal. Use an alpha level of .01.

7.	 Adrian Raine (1994) discussed some research in biologi-
cal criminology suggesting that children with criminal 
parents are more likely to be criminals themselves than 
are children with noncriminal parents. Suppose you con-
duct a study on a random sample of 100 delinquent youths 
confined in a correctional institution and a random 
sample of 75 non-delinquent youths. You find that 43% 
of the delinquent youths have at least one criminal par-
ent but that only 17% of the non-delinquent youths have 

a criminal parent. Test the null hypothesis that the two 
population proportions are equal against the alternative 
hypothesis that the delinquent group has a greater propor-
tion of criminal parents. Use an alpha level of .01.

8.	 It is common wisdom to believe that dropping out of high 
school leads to delinquency. For example, Travis Hirschi’s 
(1969) control theory might predict that those with little or 
no commitment to education are delinquent more often 
than those with strong educational commitments. In 
his general strain theory, however, Robert Agnew (1992) 
might predict that dropping out of school would lower 
one’s involvement in delinquency because it would get 
youths out of an aversive and painful environment. You 
want to examine the relationship between dropping out of 
high school and delinquency. You have a random sample 
of 11 students. You have the number of delinquent offenses 
that each student reported committing during the year 
before dropping out of school and the number of offenses 
that each reported committing during the year after drop-
ping out of school. Here are those data:

	 Number of Delinquent Acts

Person Before After

1 5 7

2 9 5

3 2 3

4 7 7

5 8 11

6 11 13

7 8 4

8 8 10

9 5 7

10 2 1

11 9 3

	   Test the null hypothesis that the mean difference between 
the two sets of scores is zero against the alternative hypoth-
esis that it is different from zero. Use an alpha level of .05.
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