
7 Dummy-Variable
Regression

A n obvious limitation of multiple-regression analysis, as presented in Chapters 5 and 6, is

that it accommodates only quantitative response and explanatory variables. In this chap-

ter and the next, I will show how qualitative (i.e., categorical) explanatory variables, called fac-
tors, can be incorporated into a linear model.1

The current chapter begins by introducing a dummy-variable regressor, coded to represent a

dichotomous (i.e., two-category) factor. I proceed to show how a set of dummy regressors can

be employed to represent a polytomous (many-category) factor. I next describe how interac-

tions between quantitative and qualitative explanatory variables can be included in dummy-

regression models and how to summarize models that incorporate interactions. Finally, I

explain why it does not make sense to standardize dummy-variable and interaction regressors.

7.1 A Dichotomous Factor

Let us consider the simplest case: one dichotomous factor and one quantitative explanatory

variable. As in the two previous chapters, assume that relationships are additive—that is, that

the partial effect of each explanatory variable is the same regardless of the specific value at

which the other explanatory variable is held constant. As well, suppose that the other assump-

tions of the regression model hold: The errors are independent and normally distributed, with

zero means and constant variance.

The general motivation for including a factor in a regression is essentially the same as for

including an additional quantitative explanatory variable: (1) to account more fully for the

response variable, by making the errors smaller, and (2) even more important, to avoid a biased

assessment of the impact of an explanatory variable, as a consequence of omitting a causally

prior explanatory variable that is related to it.

For concreteness, suppose that we are interested in investigating the relationship between

education and income among women and men. Figure 7.1(a) and (b) represents two small

(idealized) populations. In both cases, the within-gender regressions of income on education

are parallel. Parallel regressions imply additive effects of education and gender on income:

Holding education constant, the ‘‘effect’’ of gender is the vertical distance between the two

regression lines, which—for parallel lines—is everywhere the same. Likewise, holding gender

constant, the ‘‘effect’’ of education is captured by the within-gender education slope, which—

for parallel lines—is the same for men and women.2

1Chapter 14 deals with qualitative response variables.
2I will consider nonparallel within-group regressions in Section 7.3.
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In Figure 7.1(a), the explanatory variables gender and education are unrelated to each other:

Women and men have identical distributions of education scores (as can be seen by projecting

the points onto the horizontal axis). In this circumstance, if we ignore gender and regress

income on education alone, we obtain the same slope as is produced by the separate within-

gender regressions. Because women have lower incomes than men of equal education, how-

ever, by ignoring gender, we inflate the size of the errors.

The situation depicted in Figure 7.1(b) is importantly different. Here, gender and education

are related, and therefore if we regress income on education alone, we arrive at a biased assess-

ment of the effect of education on income: Because women have a higher average level of edu-

cation than men, and because—for a given level of education—women’s incomes are lower,

on average, than men’s, the overall regression of income on education has a negative slope

even though the within-gender regressions have a positive slope.3

In light of these considerations, we might proceed to partition our sample by gender and per-

form separate regressions for women and men. This approach is reasonable, but it has its lim-

itations: Fitting separate regressions makes it difficult to estimate and test for gender

differences in income. Furthermore, if we can reasonably assume parallel regressions for

women and men, we can more efficiently estimate the common education slope by pooling

sample data drawn from both groups. In particular, if the usual assumptions of the regression

model hold, then it is desirable to fit the common-slope model by least squares.

One way of formulating the common-slope model is

(a)

Education

(b)

Education

Men

Women

In
co

m
e

In
co

m
e

Men

Women

Figure 7.1 Idealized data representing the relationship between income and education for popu-
lations of men (filled circles) and women (open circles). In (a), there is no relationship
between education and gender; in (b), women have a higher average level of educa-
tion than men. In both (a) and (b), the within-gender (i.e., partial) regressions (solid
lines) are parallel. In each graph, the overall (i.e., marginal) regression of income on
education (ignoring gender) is given by the broken line.

3That marginal and partial relationships can differ in sign is called Simpson’s paradox (Simpson, 1951). Here, the mar-
ginal relationship between income and education is negative, while the partial relationship, controlling for gender, is
positive.
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Yi =αþ βXi þ γDi þ εi ð7:1Þ

where D, called a dummy-variable regressor or an indicator variable, is coded 1 for men and

0 for women:

Di =
1 for men
0 for women

�

Thus, for women, the model becomes

Yi =αþ βXi þ γð0Þ þ εi =αþ βXi þ εi

and for men

Yi =αþ βXi þ γð1Þ þ εi = ðαþ γÞ þ βXi þ εi

These regression equations are graphed in Figure 7.2.

This is our initial encounter with an idea that is fundamental to many linear models: the dis-

tinction between explanatory variables and regressors. Here, gender is a qualitative explana-

tory variable (i.e., a factor), with categories male and female. The dummy variable D is a

regressor, representing the factor gender. In contrast, the quantitative explanatory variable edu-
cation and the regressor X are one and the same. Were we to transform education, however,

prior to entering it into the regression equation—say, by taking logs—then there would be a

distinction between the explanatory variable (education) and the regressor (log education). In

subsequent sections of this chapter, it will transpire that an explanatory variable can give rise

to several regressors and that some regressors are functions of more than one explanatory

variable.

Returning to Equation 7.1 and Figure 7.2, the coefficient γ for the dummy regressor gives

the difference in intercepts for the two regression lines. Moreover, because the within-gender

X

Y

0

α

α + γ
γ

1

β

1

β

D = 1

D = 0

Figure 7.2 The additive dummy-variable regression model. The line labeled D = 1 is for men; the
line labeled D = 0 is for women.
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regression lines are parallel, γ also represents the constant vertical separation between the lines,

and it may, therefore, be interpreted as the expected income advantage accruing to men when

education is held constant. If men were disadvantaged relative to women with the same level

of education, then γ would be negative. The coefficient α gives the intercept for women, for

whom D = 0, and β is the common within-gender education slope.

Figure 7.3 reveals the fundamental geometric ‘‘trick’’ underlying the coding of a dummy

regressor: We are fitting a regression plane to the data, but the dummy regressor D is defined

only at the values 0 and 1. The regression plane intersects the planes fX ; Y jD = 0g and

fX ; Y jD = 1g in two lines, each with slope β. Because the difference between D = 0 and D = 1

is one unit, the difference in the Y -intercepts of these two lines is the slope of the plane in the

D direction, that is, γ. Indeed, Figure 7.2 is simply the projection of the two regression lines

onto the fX ; Yg plane.

Essentially similar results are obtained if we instead code D equal to 0 for men and 1 for

women, making men the baseline (or reference) category (see Figure 7.4): The sign of γ is

reversed, because it now represents the difference in intercepts between women and men

(rather than vice versa), but its magnitude remains the same. The coefficient α now gives the

income intercept for men. It is therefore immaterial which group is coded 1 and which is coded

0, as long as we are careful to interpret the coefficients of the model—for example, the sign of

γ—in a manner consistent with the coding scheme that is employed.

X

D

Y

0

1
1

1
1

α
β

β

γ

Figure 7.3 The geometric ‘‘trick’’ underlying dummy regression: The linear regression plane is
defined only at D = 0 and D = 1, producing two regression lines with slope β and ver-
tical separation γ. The hollow circles represent women, for whom D = 0, and the solid
circles men, for whom D = 1.
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To determine whether gender affects income, controlling for education, we can test H0:

γ = 0, either by a t-test, dividing the estimate of γ by its standard error or, equivalently, by

dropping D from the regression model and formulating an incremental F-test. In either event,

the statistical-inference procedures of the previous chapter apply.

Although I have developed dummy-variable regression for a single quantitative

regressor, the method can be applied to any number of quantitative explanatory variables, as

long as we are willing to assume that the slopes are the same in the two categories of the fac-

tor—that is, that the regression surfaces are parallel in the two groups. In general, if we fit the

model

Yi =αþ β1Xi1 þ � � � þ βkXik þ γDi þ εi

then, for D = 0, we have

Yi =αþ β1Xi1 þ � � � þ βkXik þ εi

and, for D = 1,

Yi = ðαþ γÞ þ β1Xi1 þ � � � þ βkXik þ εi

A dichotomous factor can be entered into a regression equation by formulating a dummy

regressor, coded 1 for one category of the factor and 0 for the other category. A model

incorporating a dummy regressor represents parallel regression surfaces, with the con-

stant vertical separation between the surfaces given by the coefficient of the dummy

regressor.

X

Y

0

α

α + γ

γ
1

β

1

β

D = 0

D = 1

Figure 7.4 The additive dummy-regression model coding D = 0 for men and D = 1 for women
(cf. Figure 7.2).
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7.2 Polytomous Factors

The coding method of the previous section generalizes straightforwardly to polytomous factors.

By way of illustration, recall (from the previous chapter) the Canadian occupational prestige

data. I have classified the occupations into three rough categories: (1) professional and manage-

rial occupations, (2) ‘‘white-collar’’ occupations, and (3) ‘‘blue-collar’’ occupations.4

Figure 7.5 shows conditioning plots for the relationship between prestige and each of income

and education within occupational types.5 The partial relationships between prestige and the

explanatory variables appear reasonably linear, although there seems to be evidence that the

income slope (and possibly the education slope) varies across the categories of type of occupa-

tion (a possibility that I will pursue in the next section of the chapter). Indeed, this change in

slope is an explanation of the nonlinearity in the relationship between prestige and income that

we noticed in Chapter 4. These conditioning plots do not tell the whole story, however,

because the income and education levels of the occupations are correlated, but they give us a

reasonable initial look at the data. Conditioning the plot for income by level of education (and

vice versa) is out of the question here because of the small size of the data set.

The three-category occupational-type factor can be represented in the regression equation by

introducing two dummy regressors, employing the following coding scheme:

A model for the regression of prestige on income, education, and type of occupation is then

Yi =αþ β1Xi1 þ β2Xi2 þ γ1Di1 þ γ2Di2 þ εi ð7:3Þ

where X1 is income and X2 is education. This model describes three parallel regression planes,

which can differ in their intercepts:

Professional : Yi = ðαþ γ1Þ þ β1Xi1 þ β2Xi2 þ εi

White collar :Yi = ðαþ γ2Þ þ β1Xi1 þ β2Xi2 þ εi

Blue collar : Yi =αþ β1Xi1 þ β2Xi2 þ εi

The coefficient α, therefore, gives the intercept for blue-collar occupations; γ1 represents the

constant vertical difference between the parallel regression planes for professional and blue-

collar occupations (fixing the values of education and income); and γ2 represents the constant

vertical distance between the regression planes for white-collar and blue-collar occupations

(again, fixing education and income). Assuming, for simplicity, that all coefficients are positive

and that γ1 > γ2, the geometry of the model in Equation 7.3 is illustrated in Figure 7.6.

Category D1 D2

Professional and managerial 1 0
White collar 0 1
Blue collar 0 0

(7.2)

4Although there are 102 occupations in the full data set, several are difficult to classify and consequently were dropped
from the analysis. The omitted occupations are athletes, babysitters, farmers, and ‘‘newsboys,’’ leaving us with 98
observations.
5In the preceding chapter, I also included the gender composition of the occupations as an explanatory variable, but I
omit that variable here. Conditioning plots are described in Section 3.3.4.
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Because blue-collar occupations are coded 0 for both dummy regressors, ‘‘blue collar’’

implicitly serves as the baseline category to which the other occupational-type categories are

compared. The choice of a baseline category is essentially arbitrary, for we would fit precisely

the same three regression planes regardless of which of the three occupational-type categories

is selected for this role. The values (and meaning) of the individual dummy-variable coeffi-

cients γ1 and γ2 depend, however, on which category is chosen as the baseline.

It is sometimes natural to select a particular category as a basis for comparison—an experi-

ment that includes a ‘‘control group’’ comes immediately to mind. In this instance, the individ-

ual dummy-variable coefficients are of interest, because they reflect differences between the

‘‘experimental’’ groups and the control group, holding other explanatory variables constant.

In most applications, however, the choice of a baseline category is entirely arbitrary, as it is

for the occupational prestige regression. We are, therefore, most interested in testing the null

hypothesis of no effect of occupational type, controlling for education and income,

H0 : γ1 = γ2 = 0 ð7:4Þ

but the individual hypotheses H0: γ1 = 0 and H0: γ2 = 0—which test, respectively, for differ-

ences between professional and blue-collar occupations, as well as between white-collar and

blue-collar occupations—are of less intrinsic interest.6 The null hypothesis in Equation 7.4 can

X2

Y

1

1

1

1

1

1

β2

β2β2

β2β1

β1

β1

α

α + γ1

α + γ2

X1

Figure 7.6 The additive dummy-regression model with two quantitative explanatory variables X1

and X2 represents parallel planes with potentially different intercepts in the fX1; X2;Yg
space.

6The essential point here is not that the separate hypotheses are of no interest but that they are an arbitrary subset of the
pairwise differences among the categories. In the present case, where there are three categories, the individual hypoth-
eses represent two of the three pairwise group comparisons. The third comparison, between professional and white-
collar occupations, is not directly represented in the model, although it is given indirectly by the difference γ1 � γ2.
See Section 7.2.1 for an elaboration of this point.
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be tested by the incremental sum-of-squares approach, dropping the two dummy variables for

type of occupation from the model.

I have demonstrated how to model the effects of a three-category factor by coding two

dummy regressors. It may seem more natural, however, to treat the three occupational cate-

gories symmetrically, coding three dummy regressors, rather than arbitrarily selecting one cate-

gory as the baseline:

Then, for the jth occupational type, we would have

Yi = ðαþ γ jÞ þ β1Xi1 þ β2Xi2 þ εi

The problem with this procedure is that there are too many parameters: We have used four

parameters (α, γ1, γ2, γ3) to represent only three group intercepts. As a consequence, we could

not find unique values for these four parameters even if we knew the three population regres-

sion lines. Likewise, we cannot calculate unique least-squares estimates for the model because

the set of three dummy variables is perfectly collinear; for example, as is apparent from the

table in (7.5), D3 = 1� D1 � D2.

In general, then, for a polytomous factor with m categories, we need to code m� 1 dummy

regressors. One simple scheme is to select the last category as the baseline and to code Dij = 1

when observation i falls in category j, for j = 1; . . . ;m� 1, and 0 otherwise:

A polytomous factor can be entered into a regression by coding a set of 0/1 dummy

regressors, one fewer than the number of categories of the factor. The ‘‘omitted’’ cate-

gory, coded 0 for all dummy regressors in the set, serves as a baseline to which the other

categories are compared. The model represents parallel regression surfaces, one for each

category of the factor.

When there is more than one factor, and if we assume that the factors have additive effects, we

can simply code a set of dummy regressors for each. To test the hypothesis that the effect of a

Category D1 D2 D3

Professional and managerial 1 0 0
White collar 0 1 0
Blue collar 0 0 1

Category D1 D2 � � � Dm�1

1 1 0 � � � 0
2 0 1 � � � 0
..
. ..

. ..
. ..

.

m�1 0 0 � � � 1
m 0 0 � � � 0

(7.5)

(7.6)
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factor is nil, we delete its dummy regressors from the model and compute an incremental F-test

of the hypothesis that all the associated coefficients are 0.

Regressing occupational prestige ðY Þ on income ðX1Þ and education ðX2Þ produces the fitted

regression equation

bY = � 7:621þ 0:001241X1 þ 4:292X2 R2 = :81400

ð3:116Þ ð0:000219Þ ð0:336Þ

As is common practice, I have shown the estimated standard error of each regression coeffi-

cient in parentheses beneath the coefficient. The three occupational categories differ consider-

ably in their average levels of prestige:

Inserting dummy variables for type of occupation into the regression equation, employing the

coding scheme shown in Equation 7.2, produces the following results:

bY = � 0:6229þ 0:001013X1 þ 3:673X2 þ 6:039D1 � 2:737D2

ð5:2275Þ ð0:000221Þ ð0:641Þ ð3:867Þ ð2:514Þ
R2 = :83486

ð7:7Þ

The three fitted regression equations are, therefore,

Professional : bY = 5:416þ 0:001013X1 þ 3:673X2

White collar : bY =�3:360þ 0:001013X1 þ 3:673X2

Blue collar : bY =�0:623þ 0:001013X1 þ 3:673X2

where the intercept for professional occupations is �0:623þ 6:039 = 5:416, and the intercept

for white-collar occupations is �0:623� 2:737 = � 3:360.

Note that the coefficients for both income and education become slightly smaller when type

of occupation is controlled. As well, the dummy-variable coefficients (or, equivalently, the

category intercepts) reveal that when education and income levels are held constant statisti-

cally, the difference in average prestige between professional and blue-collar occupations

declines greatly, from 67:85� 35:53 = 32:32 points to 6:04 points. The difference between

white-collar and blue-collar occupations is reversed when income and education are held con-

stant, changing from 42:24� 35:53 = þ 6:71 points to �2:74 points. That is, the greater pres-

tige of professional occupations compared to blue-collar occupations appears to be due mostly

to differences in education and income between these two classes of occupations. While white-

collar occupations have greater prestige, on average, than blue-collar occupations, they have

lower prestige than blue-collar occupations of the same educational and income levels.7

Category Number of Cases Mean Prestige

Professional and managerial 31 67.85
White collar 23 42.24
Blue collar 44 35.53

All occupations 98 47.33

7These conclusions presuppose that the additive model that we have fit to the data is adequate, which, as we will see in
Section 7.3.5, is not the case.
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To test the null hypothesis of no partial effect of type of occupation,

H0 : γ1 = γ2 = 0

we can calculate the incremental F-statistic

F0 =
n� k � 1

q
·

R2
1 � R2

0

1� R2
1

=
98� 4� 1

2
·
:83486� :81400

1� :83486
= 5:874 ð7:8Þ

with 2 and 93 degrees of freedom, for which p = :0040. The occupational-type effect is there-

fore statistically significant but (examining the coefficient standard errors) not very precisely

estimated. The education and income coefficients are several times their respective standard

errors and hence are highly statistically significant.8

7.2.1 Coefficient Quasi-Variances*

Consider a dummy-regression model with p quantitative explanatory variables and an

m-category factor:

Yi =αþ β1Xi1 þ � � � þ βpXip þ γ1Di1 þ γ2Di2 þ � � � þ γm�1Di;m�1 þ εi

The dummy-variable coefficients γ1; γ2; . . . ; γm�1 represent differences (or contrasts) between

each of the other categories of the factor and the reference category m, holding constant

X1; . . . ;Xp. If we are interested in a comparison between any other two categories, we can sim-

ply take the difference in their dummy-regressor coefficients. Thus, in the preceding example

(letting C1 [ bγ 1 and C2 [ bγ 2 ),

C1 � C2 = 6:039� ð�2:737Þ= 8:776

is the estimated average difference in prestige between professional and white-collar occupa-

tions of equal income and education.

Suppose, however, that we want to know the standard error of C1 � C2. The standard errors

of C1 and C2 are available directly in the regression ‘‘output’’ (Equation 7.7), but to compute

the standard error of C1 � C2, we need in addition the estimated sampling covariance of these

two coefficients. That is,9

SEðC1 � C2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bV ðC1Þ þ bV ðC2Þ � 2 · bCðC1;C2Þ
q

where bV ðCjÞ= SEðCjÞ
� �2

is the estimated sampling variance of coefficient Cj, and bCðC1;C2Þ
is the estimated sampling covariance of C1 and C2. For the occupational prestige regression,
bC ðC1;C2Þ= 6:797, and so

8In classical hypothesis testing, a result is ‘‘statistically significant’’ if the p-value for the null hypothesis is as small as
or smaller than a preestablished level, typically .05. Strictly speaking, then, a result cannot be ‘‘highly statistically sig-
nificant’’—it is either statistically significant or not. I regard the phrase ‘‘highly statistically significant,’’ which appears
commonly in research reports, as a harmless shorthand for a very small p-value, however, and will occasionally, as
here, use it in this manner.
9See online Appendix D on probability and estimation. The computation of regression-coefficient covariances is taken
up in Chapter 9.
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SEðC1 � C2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:867 2 þ 2:5142 � 2 · 6:797
p

= 2:771

We can use this standard error in the normal manner for a t-test of the difference between C1

and C2.10 For example, noting that the difference exceeds twice its standard error suggests that

it is statistically significant.

Although computer programs for regression analysis typically report the covariance matrix

of the regression coefficients if asked to do so, it is not common to include coefficient covar-

iances in published research along with estimated coefficients and standard errors, because

with k þ 1 coefficients in the model, there are kðk þ 1Þ=2 variances and covariances among

them—a potentially large number. Readers of a research report are therefore put at a disadvan-

tage by the arbitrary choice of a reference category in dummy regression, because they are

unable to calculate the standard errors of the differences between all pairs of categories of a

factor.

Quasi-variances of dummy-regression coefficients (Firth, 2003; Firth & De Menezes, 2004)

speak to this problem. Let eV ðCjÞ denote the quasi-variance of dummy coefficient Cj. Then,

SEðCj � Cj 0 Þ »
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eV ðCjÞ þ eV ðCj 0 Þ
q

The squared relative error of this approximation for the contrast Cj � Cj 0 is

REjj 0 [
eV ðCj � Cj 0 Þ
bV ðCj � Cj 0 Þ

=
eV ðCjÞ þ eV ðCj 0 Þ

bV ðCjÞ þ bV ðCj 0 Þ � 2 · bCðCj;Cj 0 Þ

The approximation is accurate for this contrast when REjj 0 is close to 1 or, equivalently, when

logðREjj 0 Þ= log eV ðCjÞ þ eV ðCj 0 Þ
h i

� log bV ðCjÞ þ bV ðCj 0 Þ � 2 · bCðCj;Cj 0 Þ
h i

is close to 0. The quasi-variances eV ðCjÞ are therefore selected to minimize the sum of squared

log relative errors of approximation over all pairwise contrasts,
P

j < j 0 logðREjj 0 Þ
h i2

. The result-

ing errors of approximation are typically very small (Firth, 2003; Firth & De Menezes, 2004).

The following table gives dummy-variable coefficients, standard errors, and quasi-variances

for type of occupation in the Canadian occupational prestige regression:

I have set to 0 the coefficient (and its standard error) for the baseline category, blue collar. The

negative quasi-variance for the white-collar coefficient is at first blush disconcerting (after all,

ordinary variances cannot be negative), but it is not wrong: The quasi-variances are computed

to provide accurate variance approximations for coefficient differences; they do not apply

Category Cj SE(Cj) eV(Cj)

Professional 6.039 3.867 8.155
White collar �2.737 2.514 �0.4772
Blue collar 0 0 6.797

10Testing all differences between pairs of factor categories raises an issue of simultaneous inference, however. See the
discussion of Scheffé confidence intervals in Section 9.4.4.
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directly to the coefficients themselves. For the contrast between professional and white-collar

occupations, we have

SEðC1 � C2Þ »
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8:155� 0:4772
p

= 2:771

Likewise, for the contrast between professional and blue-collar occupations,

C1 � C3 = 6:039� 0 = 6:039

SEðC1 � C3Þ »
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8:155þ 6:797
p

= 3:867

Note that in this application, the quasi-variance ‘‘approximation’’ to the standard error proves

to be exact, and indeed this is necessarily the case when there are just three factor categories,

because there are then just three pairwise differences among the categories to capture.11

7.3 Modeling Interactions

Two explanatory variables are said to interact in determining a response variable when the par-

tial effect of one depends on the value of the other. The additive models that we have consid-

ered thus far therefore specify the absence of interactions. In this section, I will explain how

the dummy-variable regression model can be modified to accommodate interactions between

factors and quantitative explanatory variables.12

The treatment of dummy-variable regression in the preceding two sections has assumed par-

allel regressions across the several categories of a factor. If these regressions are not parallel,

then the factor interacts with one or more of the quantitative explanatory variables. The

dummy-regression model can easily be modified to reflect these interactions.

For simplicity, I return to the contrived example of Section 7.1, examining the regression of

income on gender and education. Consider the hypothetical data shown in Figure 7.7 (and con-

trast these examples with those shown in Figure 7.1 on page 129, where the effects of gender

and education are additive). In Figure 7.7(a) [as in Figure 7.1(a)], gender and education are

independent, because women and men have identical education distributions; in Figure 7.7(b)

[as in Figure 7.1(b)], gender and education are related, because women, on average, have

higher levels of education than men.

It is apparent in both Figure 7.7(a) and Figure 7.7(b), however, that the within-gender regres-

sions of income on education are not parallel: In both cases, the slope for men is larger than

the slope for women. Because the effect of education varies by gender, education and gender

interact in affecting income.

It is also the case, incidentally, that the effect of gender varies by education. Because the

regressions are not parallel, the relative income advantage of men changes (indeed, grows) with

education. Interaction, then, is a symmetric concept—that the effect of education varies by gen-

der implies that the effect of gender varies by education (and, of course, vice versa).

The simple examples in Figures 7.1 and 7.7 illustrate an important and frequently misunder-

stood point: Interaction and correlation of explanatory variables are empirically and logically dis-

tinct phenomena. Two explanatory variables can interact whether or not they are related to one

11For the details of the computation of quasi-variances, see Chapter 15, Exercise 15.11.
12Interactions between factors are taken up in the next chapter on analysis of variance; interactions between quantitative
explanatory variables are discussed in Section 17.1 on polynomial regression.
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another statistically. Interaction refers to the manner in which explanatory variables combine to

affect a response variable, not to the relationship between the explanatory variables themselves.

Two explanatory variables interact when the effect on the response variable of one

depends on the value of the other. Interaction and correlation of explanatory variables

are empirically and logically distinct phenomena. Two explanatory variables can interact

whether or not they are related to one another statistically. Interaction refers to the man-

ner in which explanatory variables combine to affect a response variable, not to the rela-

tionship between the explanatory variables themselves.

7.3.1 Constructing Interaction Regressors

We could model the data in Figure 7.7 by fitting separate regressions of income on educa-

tion for women and men. As before, however, it is more convenient to fit a combined model,

primarily because a combined model facilitates a test of the gender-by-education interaction.

Moreover, a properly formulated unified model that permits different intercepts and slopes in

the two groups produces the same fit to the data as separate regressions: The full sample is

composed of the two groups, and, consequently, the residual sum of squares for the full sample

is minimized when the residual sum of squares is minimized in each group.13

(a)

Education

Men

Women

(b)

Education

Men

Women

In
co

m
e

In
co

m
e

Figure 7.7 Idealized data representing the relationship between income and education for popu-
lations of men (filled circles) and women (open circles). In (a), there is no relationship
between education and gender; in (b), women have a higher average level of educa-
tion than men. In both cases, the within-gender regressions (solid lines) are not paral-
lel—the slope for men is greater than the slope for women—and, consequently,
education and gender interact in affecting income. In each graph, the overall regres-
sion of income on education (ignoring gender) is given by the broken line.

13See Exercise 7.4.
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The following model accommodates different intercepts and slopes for women and men:

Yi =αþ βXi þ γDi þ δðXiDiÞ þ εi ð7:9Þ

Along with the quantitative regressor X for education and the dummy regressor D for gender, I

have introduced the interaction regressor XD into the regression equation. The interaction

regressor is the product of the other two regressors; although XD is therefore a function of X
and D, it is not a linear function, and perfect collinearity is avoided.14

For women, model (7.9) becomes

Yi =αþ βXi þ γð0Þ þ δðXi � 0Þ þ εi

=αþ βXi þ εi

and for men

Yi =αþ βXi þ γð1Þ þ δðXi � 1Þ þ εi

= ðαþ γÞ þ ðβþ δÞXi þ εi

These regression equations are graphed in Figure 7.8: The parameters α and β are, respectively,

the intercept and slope for the regression of income on education among women (the baseline

category for gender); γ gives the difference in intercepts between the male and female groups;

and δ gives the difference in slopes between the two groups. To test for interaction, therefore,

we may simply test the hypothesis H0: δ= 0.

X

Y

0

α

α+γ
1

β

1

β+δ

D = 1

D = 0

Figure 7.8 The dummy-variable regression model with an interaction regressor. The line labeled
D = 1 is for men; the line labeled D = 0 is for women.

14If this procedure seems illegitimate, then think of the interaction regressor as a new variable, say Z [ XD. The model
is linear in X, D, and Z. The ‘‘trick’’ of introducing an interaction regressor is similar to the trick of formulating dummy
regressors to capture the effect of a factor: In both cases, there is a distinction between explanatory variables and regres-
sors. Unlike a dummy regressor, however, the interaction regressor is a function of both explanatory variables.

142 Chapter 7. Dummy-Variable Regression

                                                               Copyright ©2016 by SAGE Publications, Inc. 
This work may not be reproduced or distributed  in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Interactions can be incorporated by coding interaction regressors, taking products of

dummy regressors with quantitative explanatory variables. The resulting model permits

different slopes in different groups—that is, regression surfaces that are not parallel.

In the additive, no-interaction model of Equation 7.1 and Figure 7.2 (page 130), the dummy-

regressor coefficient γ represents the unique partial effect of gender (i.e., the expected income

difference between men and women of equal education, regardless of the value at which educa-

tion is fixed), while the slope β represents the unique partial effect of education (i.e., the

within-gender expected increment in income for a one-unit increase in education, for both

women and men). In the interaction model of Equation 7.9 and Figure 7.8, in contrast, γ is no

longer interpretable as the unqualified income difference between men and women of equal

education.

Because the within-gender regressions are not parallel, the separation between the regression

lines changes; here, γ is simply the separation at X = 0—that is, above the origin. It is gener-

ally no more important to assess the expected income difference between men and women of 0

education than at other educational levels, and therefore the difference-in-intercepts parameter

γ is not of special interest in the interaction model. Indeed, in many instances (although not

here), the value X = 0 may not occur in the data or may be impossible (as, for example, if X is

weight). In such cases, γ has no literal interpretation in the interaction model (see Figure 7.9).

Likewise, in the interaction model, β is not the unqualified partial effect of education but

rather the effect of education among women. Although this coefficient is of interest, it is not

X

Y

0 x

α

D = 1

D = 0

α + γ

Figure 7.9 Why the difference in intercepts does not represent a meaningful partial effect for a
factor when there is interaction: The difference-in-intercepts parameter γ is negative
even though, within the range of the data, the regression line for the group coded
D = 1 is above the line for the group coded D = 0.
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necessarily more important than the effect of education among men (βþ δ), which does not

appear directly in the model.

7.3.2 The Principle of Marginality

Following Nelder (1977), we say that the separate partial effects, or main effects, of educa-

tion and gender are marginal to the education-by-gender interaction. In general, we neither test

nor interpret the main effects of explanatory variables that interact. If, however, we can rule

out interaction either on theoretical or on empirical grounds, then we can proceed to test, esti-

mate, and interpret the main effects.

As a corollary to this principle, it does not generally make sense to specify and fit models

that include interaction regressors but that omit main effects that are marginal to them. This is

not to say that such models—which violate the principle of marginality—are uninterpretable:

They are, rather, not broadly applicable.

The principle of marginality specifies that a model including a high-order term (such as

an interaction) should normally also include the ‘‘lower-order relatives’’ of that term (the

main effects that ‘‘compose’’ the interaction).

Suppose, for example, that we fit the model

Yi =αþ βXi þ δðXiDiÞ þ εi

which omits the dummy regressor D but includes its ‘‘higher-order relative’’ XD. As shown in

Figure 7.10(a), this model describes regression lines for women and men that have the same

(a)

X

Y

0

α

1
β

1

β + δ
D = 0

D = 1

(b)

X

Y

0

α
α + γ

1

δ

D = 1

D = 0

Figure 7.10 Two models that violate the principle of marginality: In (a), the dummy regressor D
is omitted from the model EðYÞ=αþ βX þ δðXDÞ; in (b), the quantitative explanatory
variable X is omitted from the model EðYÞ=αþ γDþ δðXDÞ. These models violate
the principle of marginality because they include the term XD, which is a higher-
order relative of both X and D (one of which is omitted from each model).
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intercept but (potentially) different slopes, a specification that is peculiar and of no substantive

interest. Similarly, the model

Yi =αþ γDi þ δðXiDiÞ þ εi

graphed in Figure 7.10(b), constrains the slope for women to 0, which is needlessly restrictive.

Moreover, in this model, the choice of baseline category for D is consequential.

7.3.3 Interactions With Polytomous Factors

The method for modeling interactions by forming product regressors is easily extended to

polytomous factors, to several factors, and to several quantitative explanatory variables. I will

use the Canadian occupational prestige regression to illustrate the application of the method,

entertaining the possibility that occupational type interacts both with income (X1) and with edu-

cation (X2):

Yi =αþ β1Xi1 þ β2Xi2 þ γ1Di1 þ γ2Di2

þ δ11Xi1Di1 þ δ12Xi1Di2 þ δ21Xi2Di1 þ δ22Xi2Di2 þ εi ð7:10Þ

We require one interaction regressor for each product of a dummy regressor with a quantitative

explanatory variable. The regressors X1D1 and X1D2 capture the interaction between income

and occupational type; X2D1 and X2D2 capture the interaction between education and occupa-

tional type. The model therefore permits different intercepts and slopes for the three types of

occupations:

Professional : Yi = ðαþ γ1Þ þ ðβ1 þ δ11ÞXi1 þ ðβ2 þ δ21ÞXi2 þ εi

White collar : Yi = ðαþ γ2Þ þ ðβ1 þ δ12ÞXi1 þ ðβ2 þ δ22ÞXi2 þ εi

Blue collar : Yi = α þ β1Xi1 þ β2Xi2 þ εi

ð7:11Þ

Blue-collar occupations, which are coded 0 for both dummy regressors, serve as the baseline

for the intercepts and slopes of the other occupational types. As in the no-interaction model,

the choice of baseline category is generally arbitrary, as it is here, and is inconsequential.

Fitting the model in Equation 7.10 to the prestige data produces the following results:

bY i = 2:276

ð7:057Þ
þ 0:003522X1

ð0:000556Þ
þ 1:713X2

ð0:957Þ
þ 15:35D1

ð13:72Þ
� 33:54D2

ð17:65Þ
� 0:002903X1D1

ð0:000599Þ
� 0:002072X1D2

ð0:000894Þ
þ 1:388X2D1

ð1:289Þ
þ 4:291X2D2

ð1:757Þ
R2 = :8747 ð7:12Þ

This example is discussed further in the following section.

7.3.4 Interpreting Dummy-Regression Models With Interactions

It is difficult in dummy-regression models with interactions (and in other complex statistical

models) to understand what the model is saying about the data simply by examining the
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regression coefficients. One approach to interpretation, which works reasonably well in a rela-

tively straightforward model such as Equation 7.12, is to write out the implied regression equa-

tion for each group (using Equations 7.11):

Professional : dPrestige = 17:63þ 0:000619 · Incomeþ 3:101 · Education

White collar : dPrestige =� 31:26þ 0:001450 · Incomeþ 6:004 · Education

Blue collar : dPrestige = 2:276þ 0:003522 · Incomeþ 1:713 · Education

ð7:13Þ

From these equations, we can see, for example, that income appears to make much more differ-

ence to prestige in blue-collar occupations than in white-collar occupations and has even less

impact on prestige in professional and managerial occupations. Education, in contrast, has the

largest impact on prestige among white-collar occupations and has the smallest effect in blue-

collar occupations.

An alternative approach (from Fox, 1987, 2003; Fox & Andersen, 2006) that generalizes

readily to more complex models is to examine the high-order terms of the model. In the illus-

tration, the high-order terms are the interactions between income and type and between educa-

tion and type.

� Focusing in turn on each high-order term, we allow the variables in the term to range

over their combinations of values in the data, fixing other variables to typical values.

For example, for the interaction between type and income, we let type of occupation

take on successively the categories blue collar, white collar, and professional [for which

the dummy regressors D1 and D2 are set to the corresponding values given in the table

(7.5) on page 136], in combination with income values between $1500 and $26,000 (the

approximate range of income in the Canadian occupational prestige data set); education

is fixed to its average value in the data, X 2 = 10:79.
� We next compute the fitted value of prestige at each combination of values of income

and type of occupation. These fitted values are graphed in the ‘‘effect display’’shown in

the upper panel of Figure 7.11; the lower panel of this figure shows a similar effect dis-

play for the interaction between education and type of occupation, holding income at its

average value. The broken lines in Figure 7.11 give – 2 standard errors around the fitted

values—that is, approximate 95% pointwise confidence intervals for the effects.15 The

nature of the interactions between income and type and between education and type is

readily discerned from these graphs.

7.3.5 Hypothesis Tests for Main Effects and Interactions

To test the null hypothesis of no interaction between income and type, H0: δ11 = δ12 = 0, we

need to delete the interaction regressors X1D1 and X1D2 from the full model (Equation 7.10)

and calculate an incremental F-test; likewise, to test the null hypothesis of no interaction

between education and type, H0: δ21 = δ22 = 0, we delete the interaction regressors X2D1 and

X2D2 from the full model. These tests, and tests for the main effects of income, education, and

occupational type, are detailed in Tables 7.1 and 7.2: Table 7.1 gives the regression sums of

squares for several models, which, along with the residual sum of squares for the full model,

15For standard errors of fitted values, see Exercise 9.14.
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RSS1 = 3553, are the building blocks of the incremental F-tests shown in Table 7.2. Table 7.3

shows the hypothesis tested by each of the incremental F-statistics in Table 7.2.

Although the analysis-of-variance table (Table 7.2) conventionally shows the tests for the

main effects of education, income, and type before the education-by-type and income-by-type

interactions, the structure of the model makes it sensible to examine the interactions first:

Conforming to the principle of marginality, the test for each main effect is computed assuming

that the interactions that are higher-order relatives of the main effect are 0 (as shown in Table

7.3). Thus, for example, the test for the income main effect assumes that the income-by-type

Table 7.1 Regression Sums of Squares for Several Models Fit to the Canadian
Occupational Prestige Data

Regression
Model Terms Parameters Sum of Squares df

1 I,E,T,I · T,E · T
α; β1;β2; γ1; γ2;
δ11; δ12; δ21; δ22

24,794. 8

2 I,E,T,I · T
α; β1;β2; γ1; γ2;

δ11; δ12
24,556. 6

3 I,E,T,E · T
α; β1;β2; γ1; γ2;

δ21; δ22
23,842. 6

4 I,E,T α;β1;β2; γ1; γ2 23,666. 4

5 I,E α;β1;β2 23,074. 2

6 I,T,I · T
α; β1; γ1; γ2;

δ11; δ12
23,488. 5

7 E,T,E · T
α; β2; γ1; γ2;

δ21; δ22
22,710. 5

NOTE: These sums of squares are the building blocks of incremental F-tests for the main and

interaction effects of the explanatory variables. The following code is used for ‘‘terms’’ in the

model: I, income; E, education; T, occupational type.

Table 7.2 Analysis-of-Variance Table, Showing Incremental F-Tests for the
Terms in the Canadian Occupational Prestige Regression

Source Models
Contrasted

Sum of
Squares

df F p

Income 3�7 1132. 1 28.35 <.0001
Education 2�6 1068. 1 26.75 <.0001
Type 4�5 592. 2 7.41 <.0011
Income · Type 1�3 952. 2 11.92 <.0001
Education · Type 1�2 238. 2 2.98 .056
Residuals 3553. 89

Total 28,347. 97

148 Chapter 7. Dummy-Variable Regression

                                                               Copyright ©2016 by SAGE Publications, Inc. 
This work may not be reproduced or distributed  in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



interaction is absent (i.e., that δ11 = δ12 = 0), but not that the education-by-type interaction is

absent (δ21 = δ22 = 0).16

The principle of marginality serves as a guide to constructing incremental F-tests for the

terms in a model that includes interactions.

In this case, then, there is weak evidence of an interaction between education and type of occu-

pation and much stronger evidence of an income-by-type interaction. Considering the small

number of cases, we are squeezing the data quite hard, and it is apparent from the coefficient

standard errors (in Equation 7.12) and from the effect displays in Figure 7.11 that the interac-

tions are not precisely estimated. The tests for the main effects of income, education, and type,

computed assuming that the higher-order relatives of each such term are absent, are all highly

statistically significant. In light of the strong evidence for an interaction between income and

type, however, the income and type main effects are not really of interest.17

The degrees of freedom for the several sources of variation add to the total degrees of free-

dom, but—because the regressors in different sets are correlated—the sums of squares do not

add to the total sum of squares.18 What is important here (and more generally) is that sensible

hypotheses are tested, not that the sums of squares add to the total sum of squares.

7.4 A Caution Concerning Standardized Coefficients

In Chapter 5, I explained the use—and limitations—of standardized regression coefficients. It

is appropriate to sound another cautionary note here: Inexperienced researchers sometimes

Table 7.3 Hypotheses Tested by the Incremental F-Tests in Table 7.2

Source Models Contrasted Null Hypothesis

Income 3–7 β1 = 0 jδ11 = δ12 = 0
Education 2–6 β2 = 0 jδ21 = δ22 = 0
Type 4–5 γ1 = γ2 = 0 jδ11 = δ12 = δ21 = δ22 = 0
Income · Type 1–3 δ11 = δ12 = 0
Education · Type 1–2 δ21 = δ22 = 0

16Tests constructed to conform to the principle of marginality are sometimes called ‘‘Type II’’ tests, terminology intro-
duced by the SAS statistical software package. This terminology and alternative tests are described in the next chapter.
17We tested the occupational type main effect in Section 7.2 (Equation 7.8 on page 138), but using an estimate of error
variance based on Model 4, which does not contain the interactions. In Table 7.2, the estimated error variance is based
on the full model, Model 1. As mentioned in Chapter 6, sound general practice is to use the largest model fit to the data
to estimate the error variance, even when, as is frequently the case, this model includes effects that are not statistically
significant. The largest model necessarily has the smallest residual sum of squares, but it also has the fewest residual
degrees of freedom. These two factors tend to offset one another, and it usually makes little difference whether the esti-
mated error variance is based on the full model or on a model that deletes nonsignificant terms. Nevertheless, using the
full model ensures an unbiased estimate of the error variance.
18See Section 10.2 for a detailed explanation of this phenomenon.

7.4 A Caution Concerning Standardized Coefficients 149

                                                               Copyright ©2016 by SAGE Publications, Inc. 
This work may not be reproduced or distributed  in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



report standardized coefficients for dummy regressors. As I have explained, an unstandardized
coefficient for a dummy regressor is interpretable as the expected response-variable difference

between a particular category and the baseline category for the dummy-regressor set (control-

ling, of course, for the other explanatory variables in the model).

If a dummy-regressor coefficient is standardized, then this straightforward interpretation is

lost. Furthermore, because a 0/1 dummy regressor cannot be increased by one standard devia-

tion, the usual interpretation of a standardized regression coefficient also does not apply.

Standardization is a linear transformation, so many characteristics of the regression model—

the value of R2, for example—do not change, but the standardized coefficient itself is not

directly interpretable. These difficulties can be avoided by standardizing only the response

variable and quantitative explanatory variables in a regression, leaving dummy regressors in

0/1 form.

A similar point applies to interaction regressors. We may legitimately standardize a quantita-

tive explanatory variable prior to taking its product with a dummy regressor, but to standardize

the interaction regressor itself is not sensible: The interaction regressor cannot change indepen-

dently of the main-effect regressors that compose it and are marginal to it.

It is not sensible to standardize dummy regressors or interaction regressors.

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 7.1. Suppose that the values �1 and 1 are used for the dummy regressor D in

Equation 7.1 instead of 0 and 1. Write out the regression equations for men and women, and

explain how the parameters of the model are to be interpreted. Does this alternative coding of

the dummy regressor adequately capture the effect of gender? Is it fair to conclude that the

dummy-regression model will ‘‘work’’ properly as long as two distinct values of the dummy

regressor are employed, one each for women and men? Is there a reason to prefer one coding

to another?

Exercise 7.2. Adjusted means (based on Section 7.2): Let Y 1 represent the (‘‘unadjusted’’)

mean prestige score of professional occupations in the Canadian occupational prestige data, Y 2

that of white-collar occupations, and Y 3 that of blue-collar occupations. Differences among the

Y j may partly reflect differences among occupational types in their income and education lev-

els. In the dummy-variable regression in Equation 7.7, type-of-occupation differences are

‘‘controlled’’for income and education, producing the fitted regression equation

bY = Aþ B1X1 þ B2X2 þ C1D1 þ C2D2

Consequently, if we fix income and education at particular values—say, X1 = x1 and X2 = x2—

then the fitted prestige scores for the several occupational types are given by (treating ‘‘blue

collar’’as the baseline type):
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bY 1 = ðAþ C1Þ þ B1x1 þ B2x2

bY 2 = ðAþ C2Þ þ B1x1 þ B2x2

bY 3 = A þ B1x1 þ B2x2

(a) Note that the differences among the bYj depend only on the dummy-variable coeffi-

cients C1 and C2 and not on the values of x1 and x2. Why is this so?

(b) When x1 = X 1 and x2 = X 2, the bYj are called adjusted means and are denoted eYj .

How can the adjusted means eYj be interpreted? In what sense is eYj an ‘‘adjusted’’

mean?

(c) Locate the ‘‘unadjusted’’ and adjusted means for women and men in each of

Figures 7.1(a) and (b) (on page 129). Construct a similar figure in which the difference

between adjusted means is smaller than the difference in unadjusted means.

(d) Using the results in the text, along with the mean income and education values for the

three occupational types, compute adjusted mean prestige scores for each of the three

types, controlling for income and education. Compare the adjusted with the unadjusted

means for the three types of occupations and comment on the differences, if any,

between them.

Exercise 7.3. Can the concept of an adjusted mean, introduced in Exercise 7.2, be extended to

a model that includes interactions? If so, show how adjusted means can be found for the data

in Figure 7.7(a) and (b) (on page 141).

Exercise 7.4. Verify that the regression equation for each occupational type given in Equations

7.13 (page 146) is identical to the results obtained by regressing prestige on income and educa-

tion separately for each of the three types of occupations. Explain why this is the case.

Summary

� A dichotomous factor can be entered into a regression equation by formulating a dummy

regressor, coded 1 for one category of the variable and 0 for the other category. A model

incorporating a dummy regressor represents parallel regression surfaces, with the con-

stant separation between the surfaces given by the coefficient of the dummy regressor.
� A polytomous factor can be entered into a regression by coding a set of 0/1 dummy

regressors, one fewer than the number of categories of the factor. The ‘‘omitted’’ cate-

gory, coded 0 for all dummy regressors in the set, serves as a baseline to which the other

categories are compared. The model represents parallel regression surfaces, one for each

category of the factor.
� Two explanatory variables interact when the effect on the response variable of one

depends on the value of the other. Interactions can be incorporated by coding interaction

regressors, taking products of dummy regressors with quantitative explanatory variables.

The model permits different slopes in different groups—that is, regression surfaces that

are not parallel.
� Interaction and correlation of explanatory variables are empirically and logically dis-

tinct phenomena. Two explanatory variables can interact whether or not they are related

to one another statistically. Interaction refers to the manner in which explanatory
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variables combine to affect a response variable, not to the relationship between the

explanatory variables themselves.
� The principle of marginality specifies that a model including a high-order term (such as

an interaction) should normally also include the lower-order relatives of that term (the

main effects that ‘‘compose’’ the interaction). The principle of marginality also serves as

a guide to constructing incremental F-tests for the terms in a model that includes interac-

tions and for examining the effects of explanatory variables.
� It is not sensible to standardize dummy regressors or interaction regressors.
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