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FOUR
Social systems and data  

structures: Relational ties and  
actor attributes

In Chapter 3, I wrote that there was no unique network abstraction to be universally 
applied. We need to think carefully about how best to represent the features of the 
particular social system or social context that we are studying, and adapt our net-
work conceptualization accordingly.

In this chapter, I present different types of data structures applicable to the types 
of research designs and questions in Chapter 3. The research question obviously has 
implications for the appropriate data to be collected. A given data structure is 
integral to the design of the study and to the method of data collection.

Following this chapter, I will take up general issues for network data collection 
in Chapter 5, and different contexts in which network data may be collected in 
Chapter 6. The data structures presented in this chapter can be used for network 
visualization (Chapter 8) and for subsequent analysis (Chapter 9).

Qualitative and quantitative data

Much network research has a strong quantitative aspect, but that does not mean 
that qualitative methods are not applicable. I will discuss qualitative network stud-
ies in more detail in Chapter 6. The current chapter concentrates on the structure of 
numerical network data, but that is not to privilege quantitative methods. Indeed, 
qualitative research based on careful interviews, if it is network-based, will need to 
extract relational information that can then be translated into the data structures of 
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this chapter. This will be necessary, for instance, if the qualitative researcher wishes to 
visualize the networks using standard software. So, if you are a qualitative researcher 
and prefer to exclude quantitative inference, you may still want to produce the 
binary edge lists or matrices described below. Because I talk of data, matrices and 
vectors, that does not mean that this chapter is irrelevant for qualitative research.

Qualitative network research often uses an egonet design, where ego is the inter-
viewee from which qualitative data is obtained. The structure of egonet data is 
described at the end of this chapter. It is important for the qualitative researcher to 
understand this data structure if an explicit network framework is to be used, even 
when the original data is not numeric. For network mixed methods approaches, 
where qualitative and quantitative research are integrated, all the data structures of 
this chapter are potentially relevant.

Some network notation

Not everyone is keen on mathematical notation, so I will keep it to a minimum. 
Nevertheless, it is helpful for this and following chapters to have some simple math-
ematical descriptors of the network structures we examine. My notation is presented 
in Box 4.1. (Note that there is no one standard notation, and different authors have 
different practices.)

From this point, I will start to use terminology such as tie or attribute variables. 
The use of the term variable is again not intended to privilege a quantitative, or 
more particularly, a statistical point of view, although some but certainly not all of 
the methods described in Chapter 9 are statistical. A tie is possible between pairs of 
actors, but need not be present. Hence the presence of a tie can be said to vary across 
pairs of actors. Similarly, an actor may or may not have a particular attribute (e.g., be 
female), so that attribute can be said to vary across actors. At this point, I intend no 
more than this in the use of the term variable.

Often, but not always, tie variables are binary, so that they take the value of 1 or 
0 depending on whether the tie is observed or not. As usual, a variable needs to be 
distinguished from the value it may actually take. For instance, age may be a variable 
in a study, and an actor, John, may have an age of 37. The variable here is age and its 
value for John happens to be 37.

Some network notation

•• Xij denotes a network tie variable between actor i and actor j. If the network is 
directed, Xij denotes an arc variable from i as sender to j as receiver. For binary net-
works, Xij = 1 if the edge or arc is observed, and Xij = 0 if not. If the tie is valued, then 
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Xij may take a value in whatever range is permissible. To differentiate the variable 
from the value it may take, sometimes I write Xij = xij to signify that, in the observed 
data, the tie variable Xij takes the value xij for the pair of actors (i, j). In a unipartite 
network, it is usual (though not universal) for self-ties from a node to itself to be 
excluded, so that xii is forced to be zero.

•• Yi denotes an actor attribute variable for the actor i. To differentiate the variable and 
its observed value, sometimes I write Yi = yi.

•• The set of all the tie variables (i.e., all of the Xij) may be written as X, which then 
represents a variable that describes the whole network (not just for an individual (i, 
j) pair). Sometimes I write x to represent actual network data, so that x is the col-
lection of all observed values xij.

•• Suppose there are k types of relational ties in a multiple or multiplex network study. 
Then I write Xijm to denote a tie variable between actor i and actor j on the mth type 
of relationship.

•• In a longitudinal network study, I write Xijt to denote a tie variable between actor i 
and actor j at time t.

Relational data structures

Now let me describe various network data structures. An understanding of the data 
structures will help you appreciate the possibilities of the designs in Chapter 3. I then 
introduce actor attribute variables. I postpone egonet data structures until late in the 
chapter, because they typically include attribute variables.

Many social science researchers will be used to entering the data into a spread-
sheet or perhaps a favorite statistical package. While this is possible for network data, 
it is quite common to enter the data into simple text files. Most network analytic 
software can read in text files in a straightforward way, although the precise format 
depends on the program.

Whole network data

I begin with a whole network research design because this is so often the standard way 
in which network data is described. Recall that in a whole network we have a subset of 
actors defined within the boundary of the study. The data then comprises relational ties 
among the actors. In short, we represent data as observations xij among pairs of actors.

To begin, we give each of the n actors an identification number (ID), usually 
sequentially from 1 to n. Then there are two standard and equivalent ways to enter 
the network data.

 • An adjacency matrix (sometimes called a sociomatrix for social network data): Here 
each of the rows and columns represent the actors, and the cell in row i and column 
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j takes the value xij. For a binary network, then, the adjacency matrix is a matrix of 
0s and 1s representing the absence or presence of a tie.

 • An edge list: This is simply a list of all the edges present in the network (i.e. where 
xij ≠ 0) in three columns, describing the sender i, the receiver j and the value of the 
tie xij. If the network is binary, the third column xij is often dropped because it is 1 
for all rows in the list.

Figure 4.1 depicts a small example of an undirected four-node network, with both its 
adjacency matrix and edge list. Figure 4.1(a) visualizes the network with the nodes 
labelled by numbers. Figure 4.1(b) shows the adjacency matrix where the first row 
and column in the table are headings for the node numbers. So, for instance, cell 
(1,1) is 0, because self-ties are not permitted; whereas cell (1,2) is 1 because there is a 
tie between nodes 1 and 2. Because xii = 0 (no self-ties), the diagonal of the matrix is 
forced to be 0. Notice that because the network is undirected the matrix is symmetric 
(the top right of the matrix above the diagonal is the same as the bottom left below 
the diagonal).

Figure 4.1(c) presents the same matrix without the row and column headings of 
node numbers. This is how it is usually presented in network data, where the first 
column is assumed to apply to node 1 and so on (it is for this reason that it is often 
convenient to label the node IDs sequentially from 1 to n). Figure 4.1(d) provides the 
edge list. Notice that because the network is undirected, the order of i and j does not 
matter. It is common for the full adjacency matrix to be included as in (b) and (c) 
even though it is symmetric (so some of the information is redundant), but it is not 
usual in the edge list to repeat the same undirected tie for i and j and for j and i. In 
other words, for an edge list, if there is a tie between nodes 1 and 2, it is entered once, 
and not repeated for nodes 2 and 1. Notice that in the edge list in Figure 4.1(d), the 
last column xij has been dropped because this is a binary network.

Figure 4.2 now presents an example where there are values on the edges. In this 
case, the ties may be weighted 1, 2, or 3. Now the adjacency matrix is no longer 
binary and the edge list includes the third column xij to indicate the values on the 
edges. The thickness of the lines in the visualization indicates the weights.

Figure 4.3 depicts an example of a binary directed network. Note now that the 
adjacency matrix is not symmetric and the order of actors in the edge list is impor-
tant. (Strictly speaking, it is now an arc list, although the term edge list is still often 
used for directed networks.) We can see from Figure 4.3 (a) that there is an arc from 
node 2 to 1 but not from 1 to 2. This is represented in the matrix as a 1 in cell (2,1) 
but a 0 in cell (1,2). In the edge list, there is an entry for ‘2 1’ but not for ‘1 2’. The 
presence of an arc from i to j as well as from j to i means that there are reciprocated 
or mutual ties between those two actors. We can see this with ties from actors 2 to 3 
and from 3 to 2, with both cells in the matrix entered as 1 and both arcs entered in 
the edge list.

Commonly, network analysis software will require an adjacency matrix or an edge 
list to enter network data. The edge list seems a more efficient way to enter the data 
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Figure 4.1 Undirected binary network data structure

(a) visualization; (b) and (c) adjacency matrices; (d) edge list.

Figure 4.2 Undirected valued network data structure

(a) visualization; (b) adjacency matrix; (c) edge list.

because, of course, by definition it does not require any 0s to be entered, whereas in 
the matrix both 0s and 1s are included. However, it is easy to see that certain features 
of networks can be extracted from the adjacency matrix. In a binary undirected net-
work, the degree of each actor is the sum across the rows (or the columns). For those 
who like mathematical formulae, the degree for actor i then is simply xijj

n
=∑ 1 .
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Figure 4.3 Directed network data structure

(a) visualization; (b) and (c) adjacency matrices; (d) edge list.

Again for a binary undirected network, the total number of edges L is the sum of 
all the cells in the matrix, divided by 2 for an undirected network because the top 
right of the matrix is the same as the bottom left – in short, just count all the 1s in 
the matrix and divide by 2 (i.e., L xijji

nn= == ∑∑1
2 11 ).

The number of cells in the matrix is obviously n2, but n of these are along the diag-
onal and forced to be 0, so cannot be edges. Because the cells below and above the 
diagonal are symmetric, only half of the non-diagonal cells represent distinct data, 
so the largest possible number of edges is (n2 – n)/2 = n(n – 1)/2. Hence, the density of 
the observed network – the proportion of observed ties to possible ties – is 2L/n(n–1), 
as noted in Chapter 2.

In Figure 4.1(b), as n =4, we have n(n – 1)/2 = 6, which means there are six cells 
above (or below) the diagonal, as can readily be seen from the figure. As four of these 
contain 1s, the density is 4/6 = 0.67.

For directed networks, on the other hand, row i in the adjacency matrix repre-
sents the choices of network partners made by i as sender, so that the sum of the 
row is the out-degree of i ( )xijj

n
=∑ 1 . The sum of the i-th column is the in-degree of  

i ( xjij
n
=∑ 1 ). Now there is no symmetry, so the total number of arcs is L xijj

n
i
n= == ∑∑ 11  

and the density is L/n(n–1).

(a)

1

2
3

4

1 2 3 4

1 0 0 1 0

2 1 0 1 0

3 0 1 0 0

4 0 0 1 0

0 0 1 0

1 0 1 0

0 1 0 0

0 0 1 0

(c)
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So just by looking at Figure 4.3(c), we can see that the out-degree of node 1 is 1 
(i.e. the number of 1s in the first row), and the in-degree is also 1 (the number of 
1s in the first column). Node 3 has an in-degree of 3 (the third column). Here the 
number of possible ties (non-diagonal cells in the matrix) is n(n–1) = 12. There are 
five arcs in this network, so the density is 5/12.

If you have some basic programming skills, it is not difficult to convert a binary 
edge list into an adjacency matrix. Box 4.2 describes a simple algorithm to do this. If 
you do not have programming skills, do not worry: if ever you need to do this, there 
is software that will do it for you (Chapter 9).

Creating an adjacency matrix from an edge list

1 Determine the number of nodes n and check that the nodes are numbered from 1 
to n in the edge list (change the coding of the node IDs if not.)

2 Determine the number of edges L in the edge list.

3 Create an n × n matrix G with cells G(i, j) = 0.

4 Read in the edge list E as a 2 × L matrix.

5 Loop though the L rows of E.

{{ For each row r in E, set i = E(r, 1) and set j = E(r, 2).

{{ Set G(i, j) = 1.

{{ (If the network is undirected) Set G(j, i) = 1.

6 Finish when the loop in step 5 is complete.

There is an additional method of recording binary network ties – that of a node list 
or an adjacency list. In this method, the ‘focal’ node is placed in a first column and 
then every node connected to it is listed in subsequent columns. A new row presents 
a new focal node. The node list method is convenient for data entry, but usually 
needs to be converted into an edge list or adjacency matrix for entering into network 
software.

Multiplex networks

In a multiplex network study, there are several different types of relational ties on 
the same set of nodes. For instance, an organizational network study might examine 
collaboration, trust and friendship among a set of managers (e.g., Rank et al., 2010). 
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This case is a simple extension of the whole network data structure, except that there 
are now multiple adjacency matrices or edge lists, one for each type of relational tie 
(Xijm where m goes from 1 to k for k different types of relational ties). These may be 
entered into k different files, or in some cases, if required, the matrix can be ‘stacked’ 
into one kn × n matrix in the one file as described below for longitudinal networks. 
(The choice here often depends on how the data will be processed after entry, in par-
ticular the form in which different software tools require the data.)

Cognitive social structures

Cognitive social structure data is an extension of a whole network study, but actors 
within the network boundary are asked about not only their own ties but also their 
perception of the ties among all other actors. In this case there is one adjacency 
matrix or edge list for actors’ reports of their own ties, but each actor also has his 
or her own adjacency matrix reporting knowledge of ties among other actors in the 
network.

If there are many actors in the network, this may be a demanding task for the par-
ticipant. The number of possible ties for an undirected network is n(n – 1)/2, which 
increases with the square of n, so for large n there may be very many possible ties 
for participants to report on. It is perhaps for this reason that this design is not very 
commonly used. The data structure for this design is similar to a multiplex design, 
except that now Xijm indicates actor m perceiving a tie or not between actors i and j.

Snowball samples

Figure 4.4 depicts a two-wave snowball sample design. The first wave of data collec-
tion involves starting from a seed set of actors (perhaps from a random sample of 
nodes) and collecting data on their network ties. Pattison et al. (2013) referred to the 
seed set as zone 0 nodes: in Figure 4.4 they are represented by the dark grey nodes.

The ties from zone 0 nodes include ties among the seed set, but also to another 
set of nodes not in zone 0. In the figure, these are represented by the grey nodes (zone 
1). The second wave of data collection involves ties from the zone 1 nodes. These 
identify additional ties among zone 1 nodes but also ties to new nodes not in zones 0 
and 1: zone 2 nodes (light grey in Figure 4.4). Because this is a two-wave design, net-
work data is not collect from the zone 2 nodes, so we do not have data among those 
nodes, or among other nodes beyond zone 2. If there were more waves, we would 
continue to collect network data from each zone of actors until we reach the requisite 
number of waves. The dotted lines in the figure represent the boundaries of the differ-
ent zones. Notice that a full two-wave snowball sample necessarily reaches all nodes 
within geodesic distance 2 of a seed set node. More generally, if there are k waves, the 
snowball sample comprises all nodes within geodesic distance k of a seed set node.
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Figure 4.4 Snowball sample design

For a snowball sample, the data can still be presented as an edge list or an adjacency 
matrix, but an additional variable should be included for each node: namely, its zone. 
In data entry terms this may be included as an attribute variable, as discussed below 
when we come to attributes.

It is particularly important to note that in a snowball sample there are additional 
forced zeros and unobserved ties. For instance, by design in the data collection, it 
is impossible to have ties between zone 0 and zone 2, so they must be zeros in the 
adjacency matrix. None of the ties among zone 2 nodes are observed. Just as with 
the diagonal in a whole network adjacency matrix, they should not be included in 
any relevant calculations (such as the calculation of density). This shows that simply 
collecting snowball samples, entering data into an adjacency matrix and performing 
standard calculations (e.g., for density) without taking into account the snowball 
sample design is a serious error.

Figure 4.5 represents the adjacency matrix data for an undirected network (hence 
only the matrix above the diagonal is presented) showing what is known when a 
two-wave snowball is used. The nodes in the network are blocked and ordered by 
zones. Ties among zone 0 nodes and between zone 0 and 1 are observed, as are ties 
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between zone 1 and 2 nodes. By design there are no ties between zone 0 and zone 2 
and remaining nodes (i.e. beyond zone 2), and between zone 1 and remaining nodes. 
All other ties are not observed.

Zone 0 
nodes

Zone 1 
nodes

Zone 2 
nodes

Remaining 
nodes

Zone 0 
nodes

Observed Observed 0 0

Zone 1 
nodes

Observed Observed 0

Zone 2 
nodes

Not known Not known

Remaining 
nodes

Not known

Figure 4.5 Regions of an adjacency matrix for a snowball sample design

The point of collecting a snowball sample is to make inferences applicable to the 
whole network using just the snowball data. Figure 4.5 shows that the zone structure 
of the nodes is a crucial part of the data, and if it is ignored incorrect results will fol-
low. In Chapter 9, I will discuss some methods for the analysis of snowball samples.

The data structure for respondent-driven sampling has some similarities to snow-
ball sampling but can differ in that some chains of referrals can be much longer than 
others. In this case, the data is best not conceptualized as a neat square matrix (albeit 
with gaps) as in Figure 4.5. You are more likely to have a tree-like structure, possibly 
with some intersecting branches (Heckathorn, 1997). Some branches in the tree will 
be short (or non-existent) when respondents do not recruit or recruit few partners. 
It is very important, however, to know who has recruited whom and for this to be 
recorded in your datafiles. Because RDS is typically applied to actor attributes rather 
than to network structure (the network structure is used as a sampling device to get 
at the attributes), this recruiting information will usually suffice in drawing sensible 
conclusions about the attribute distribution (Chapter 9).

Bipartite network data

Recall that a bipartite network has two types of nodes with ties between nodes of 
different types but not between nodes of the same type. Bipartite data often rep-
resents memberships, participation or attendance. For instance, bipartite data on 
company directors has ties from directors to their various company boards (reflecting 
membership), but no ties between companies or between directors.
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Suppose that there are m and n nodes of the two different types. It may be more 
convenient to code IDs for the nodes from 1 to m+n, rather than have two separate 
codings for different node types. Bipartite data can then be represented in edge list 
or adjacency matrix form. In edge list form, it is probably best that the two columns 
(assuming binary data, i.e. no third column of tie strength xij) consistently represent 
the two different types of nodes (i.e. nodes of one type always in the first, and of the 
second type always in the second). The adjacency matrix is an m × n matrix and no 
longer square (unless it so happens that m = n), with no forced zeros on the diagonal.

Figure 4.6 presents an example of a bipartite network, together with its associated 
edge list and adjacency matrix. Suppose this is a network of two people (nodes 1 
and 2) attending three events (nodes 3, 4, 5). The first row of the 2 × 3 matrix in 
Figure 4.6(c) represents the attendances by person 1 (i.e., at all three events), while 
the second row shows that person 2 did not attend event 4.

Again, many simple network properties can be calculated from the matrix. The 
sums of the rows still constitutes a degree distribution as for unipartite networks, 
but here each row sum indicates how many events were attended be each actor (3 
for person 1, and 2 for person 2). The sum of each columns shows how many people 
attended each event (2 for events 3 and 5, and 1 for event 4). There are no forced zeros 
in this matrix, so the total possible number of ties is the number of cells (2 × 3 = 6). As 
there are five 1s in the matrix, the density of the bipartite network is 5/6.

It is relatively rare for a study to collect k-partite data with k > 2 – that is, with 
k types of nodes. Mische (2008) provided an example of tripartite data, when she 
studied a Brazilian political movement with three types of nodes: political activists, 
organizations and events. Activists could be members of (multiple) organiza-
tions and attend events; organizations could be officially represented at events. 
Formally, in this case there is a three-way data array, rather than a two-way matrix 
as in Figure 4.6(c). More conveniently, tripartite data can be represented by three 
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(a)

1 3

1 4

1 5

2 3

2 5

1 1 1

1 0 1

(b) (c)

Figure 4.6 Bipartite network data structure

(a) visualization; (b) edge list; (c) adjacency matrix
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two-way matrices: for the Mische data, these were activist × organization, activist  
× event, and organization × event.

Multilevel networks

Recall that multilevel networks have two types of nodes (thought of as at different 
levels) with a bipartite network representing associations between the two types of 
nodes, and unipartite networks among the nodes at each level: that is, two types of 
nodes and three types of ties.

Figure 4.7 shows an example bipartite network and how it can be represented in 
three matrices. Here, following Wang et al. (2013), I have labelled the two types 
of nodes A - circular in the visualization in Figure 4.7(a)) – and B (square), so that 
we have an A network among the circular nodes, a B network among the square 
nodes and an X network of bipartite ties between A and B nodes. The A, X and 
B adjacency matrices are presented in Figure 4.7(b), (c) and (d), respectively. The  

4

1

2

3 5

6

7

(a)

0 1 0

1 0 1

0 1 0

0 1 1 1

0 0 1 0

1 1 0 1

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

(b) 

(c)

(d)

Figure 4.7 Multilevel network data structure

(a) visualization; (b) A-matrix (circular nodes); (c) X-matrix (bipartite); (d) B-matrix (square nodes)
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A and B matrices are square with 0s down the diagonal, just as one would expect for 
unipartite whole networks. The X network is rectangular as for a bipartite network.

Of course, the three matrices in Figure 4.7 can be combined into one larger 7 × 7 
matrix with the cells representing the links present in the visualization. In organi-
zational and defence network research, Kathleen Carley (2003) proposed such a 
meta-matrix where the nodes represented people, resources and tasks: people have 
resources and tasks (as well as social ties), tasks require resources, and so on.

Longitudinal panel network data

The most commonly used network longitudinal design is for whole network data to 
be collected at multiple time-points. For instance, for the four-node network in Figure 
4.1(a), the ties among the four nodes might be measured across three time periods. 
This assumes that the network ties change but the nodes are present throughout. 
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Time 1

1
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Time 2

1

2

3

4

Time 3

Figure 4.8 Panel longitudinal network data structure
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This assumption may be appropriate in certain contexts, but not in others. In a 
school classroom, for example, the students may be unchanged across the one term, 
but their friendships may change.

In this case, we have three adjacency matrices, one for each time-point, which can 
be ‘stacked’ into the one rectangular matrix, as long as it is understood that the first 
n rows belongs to the first time-point, the second n to the second time-point, and so 
on (Figure 4.8). Alternatively, the three matrices can be stored in three separate data-
files. In Figure 4.8, supposing that the relationship is friendship, we see that from 
time 1 to time 2, actor 2 ceases to be a friend with actor 3, and a new friendship is 
formed between actors 1 and 4. By time 3, actor 2 has ceased to be friends with the 
other actors.

Further complexity is introduced when the node set is not constant across time. 
For instance, a student may leave the school or a new student may arrive; or a com-
pany may cease to do business, or a new company may start up operations. So nodes 
can come into and out of existence. There is no unique method to enter network 
data with a changing node set: much depends on the proposed method of analy-
sis. Sometimes researchers simply enter distinct panels for each time step, including 
both the adjacency matrix and a listing of the nodes present at that time. This would 
enable, for instance, calculation of the density at each time-point, irrespective of the 
nodes present. Sometimes it may be convenient to treat the boundary of the network 
as all nodes that appear at any time-point, but for a particular time the rows and 
columns for ‘dead’ nodes are forced to be zero.
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Time 1
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2
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Time 2
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0 1 1 0 0

1 0 0 0 0

1 0 0 0 1

0 0 0 0 0

0 0 1 0 0

0 1 1 0 0

1 0 1 0 0

1 1 0 1 0

0 0 1 0 0

0 0 0 0 0

Figure 4.9 Panel network data with changing node set

Time 1

Time 2
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For instance, in Figure 4.9, a two-panel longitudinal study, node 5 is not present 
at time 1 and node 4 is not present at time 2, as indicated by the non-filled nodes in 
the figure. There are some changes to ties among the nodes that are present across 
both time-points, and of course if a node is ‘dead’ at a particular time-point it can 
have no ties. Here the stacked matrix comprises two 5×5 adjacency matrices, but 
with row and column 5 fixed at 0 for time 1 and row and column 4 fixed at 0 for 
time 2 (these are shaded grey in the figure). The forced zeros need to be taken into 
account in doing any calculations: for instance, these cells need to be excluded when 
calculating the density, just as we excluded the diagonal cells from the original den-
sity calculation.

Event-based and other time-stamped  
relational data

Sometimes, instead of having panel network data, we have transactions between 
actors at a given time-point. For instance, the data might comprise telephone call 
data, where actor i phones actor j at time t. At its simplest, only the sequence of 
events might be recorded, perhaps in an edge list, where the first edge is the caller 
and receiver for the first phone call, the second edge the caller and the receiver for 
the second phone call, and so on. If the times that the calls started and ended are 
recorded, these would usually be entered as a third and fourth column, perhaps min-
utes or seconds after time 0, where time 0 could be the start of the first phone call.

Often event-based relational data need to be further processed for analysis. For 
instance, in some event history models, the number of possible phone calls at the 
given time (the ‘risk set’ of possible events at t) needs to be included in the dataset 
before analysis. This requires knowing which nodes are active at which time. Special 
purpose software is often used for this additional processing of the basic data structure.

Actor attributes: Putting individuals  
back into the network

Social networks are representations of social systems. Social systems are not just a 
collection of relational ties but also include individual actors. The best of social net-
work research captures a balance between the individual and the system, between 
actor attributes and social structure. While much network research might focus on 
the network structure, it would be an unusual social network study that did not take 
into account individual variables of some type. Of course, the precise nature of the 
individual observations depends on the research question, the theoretical impetus 
behind the study, and the effects that need to be controlled in order to draw correct 
inferences about the processes at the centre of the research.
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In this section, I describe the types of individual measures that can be used, the 
types of construct that might be considered, and appropriate data structures. I also 
make a few comments about dyadic covariates, which are network-like data struc-
tures that might help explain the network data under consideration. Often these are 
derived from observations on individuals. I will conclude the chapter by describing 
egonet data, a particular combination of individual and network variables.

Before we proceed, however, it is worth noting that sometimes research decisions 
need to be made about what counts as an individual, a node in our network. This 
is not a matter of defining the network boundary; rather, sometimes the definition 
of a node itself may be ambiguous. For most studies this issue is irrelevant and so is 
usually overlooked in texts on network analysis.

Let me explain. If the study is of students in a classroom, then the nodes are 
obviously the students. A study of organizations, however, is not always so clear-
cut. Should a local government be seen as one organization, or should its different 
departments be treated as separate nodes? Should a bank be seen as one node, or 
separate bank branches? In a study of social ecological systems, Bodin and Tengö 
(2012) treated forests as separate nodes, but some forests were in close proximity, 
almost to the point of overlap. In this case the researchers could rely on distinctions 
between forests made by the local people, but in other contexts it may not be so 
clear-cut. When node definition is vague, there is no hard and fast solution, nor is 
there a general method. Rather, a careful research decision needs to be made based 
on theoretical grounds, knowledge of the specific context, or reasonable pragmatic 
considerations.

Types of individual constructs

The constructs to be considered are of course entirely dependent on the research 
question and include any individual effect relevant to the social system. In short, 
any construct used in other areas of social science is potentially applicable. Box 4.3 
describes some of the types of individual constructs used in social network research, 
where the actors are people. Several different types may be relevant to the one study. 
There would be a different set of constructs for organizations, animals and so on.

These types of constructs will be familiar to social science researchers. It is at this 
point that other areas of social science most directly intersect with network research. 
If you have a carefully designed scale of attitudes, for instance, with reliability tested 
and the factor analytic structure of the scale well understood, this can still be used 
in social network research. Indeed, network researchers could learn much from the 
careful approach to observation of individual attributes adopted in other areas of 
social science. Too often, network researchers think that the skill lies in the network 
analysis, not in the observation and measurement. But with poor measurement of 
actor attributes, the finely tuned analysis is likely to prove meaningless in drawing 
conclusions about the individuals and possibly about the network structure.
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Common types of individual constructs

1. Demographic: It is usual in social science research to collect some simple demographics 
on participants, such as sex or age. These remain relevant in social network research. 
For a start, it is good to report descriptive statistics about your actors, just as we 
would with a more traditional sample. But, additionally, the possibility of homophily 
effects for sex or age means that such attributes may be important factors in network 
structure.

2. Social (or other) categories: Individuals can belong to various groups that might be 
relevant in the network. Sometimes these might be considered demographic (e.g., 
ethnicity), but on other occasions the categories might be important aspects of the 
social setting within which the research takes place. For instance, in an organization, 
workers might be part of different divisions or work teams.

3. Physical: Certain physical attributes of the individual may be relevant, depending on 
the study. For instance, disease status is obviously relevant when studying the spread 
of contagious diseases. De la Haye et al. (2010) used the Body-Mass Index of ado-
lescents in a study of eating behaviors in networks. External physical attributes may 
also be considered, such as the physical location of individuals if geospatial effects 
are considered.

4. Behavioral: The behavior of the actors can be relevant: for example, adoption of an 
innovation (Valente, 2005); a health-related behavior such as smoking or drinking 
(Light et al., 2013); teenage delinquency (Snijders and Baerveldt, 2003).

5. Attitudinal: The attitudes of individuals may be the topic of an influence study, where 
attitudinal change may be influenced by network partners. Attitudes may also affect 
other individual variables in a study, or the network structure itself.

6. Psychological: There is a small but growing body of work on the intersection of psy-
chological factors, such as personality traits, and network structure (for more, see 
Chapter 6).

Types of individual measurement and  
data structures

There are basically three types of observations that can be applied to actor attributes. 
These are familiar from regular social science research.

 • Binary: Binary observations include variables such as sex (male/female). It is often 
good to code these as 0 or 1.

 • Categorical: Actors may be grouped into certain categories: for instance, ethnic 
group or work division. Numbers may be assigned to these categories but they are 
no more than indicators of similarities or differences (i.e. actors may be members 
of the same or different categorical group) and the actual values should not be 
considered.
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{{ Sometimes in social science, the categories may be ordered (ordinal measure-
ment) so that a larger number does indicate a difference in a particular direction. 
Ranks are a good example: for instance, ordinal measures of a horse race indicate 
which horse comes 1st, 2nd, 3rd, …. Ordinal actor attributes are not as common 
in social network research.

 • Continuous: Actors will have different ages, for instance, where the numbers repre-
sent a continuous measure of time.

Irrespective of the type of measure, each actor attribute variable can be entered into 
a dataset as a separate column, as is the standard practice in social science research. 
Mathematically, each attribute variable can be thought of as a vector (a single column 
of numbers). It is important that the row numbers coincide with the numbering of 
the nodes and hence with the row numbering of the adjacency matrix. In network 
visualizations, binary and categorical attributes are often represented with different 
colors on the nodes, and continuous attributes by different node sizes.

Figure 4.10 shows an example of the three different types of attribute variables for the 
network of four nodes in Figure 4.1. Here, the binary variable ‘Sex’ represents males (0) 
and females (1); the categorical variable ‘Dept’ represents three different departments 
in an organization; and the continuous variable ‘Age’ represents the age of the actors.

Node ID Sex Dept Age

1 1 1 27

2 0 3 36

3 0 2 25

4 1 3 27

Figure 4.10 Attribute variables

For those who know some basic matrix algebra, simple results can be derived from 
a combination of the adjacency matrix and the attribute vector. For instance, mul-
tiplying the adjacency matrix by a binary attribute variable (coded 0 and 1) gives a 
vector with each row signifying how many network partners with attribute value 
1 the row actor has. So, for instance, multiplying the adjacency matrix in Figure 
4.1(c) by the vector for the attribute ’Sex’ in Figure 4.10 gives the number of female 
network partners for each actor, as shown in Figure 4.11. We see, for instance, that 
actors 1 and 4 are female; actor 1 is a network partner of actors 2 and 3; so actor 1 
has no female network partner. Actors 2 and 3 have one and two female partners, 
respectively, and actor 4 none. The entry for each row in the final vector is x yij jj

n
=∑ 1 .
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Matrix multiplication can also be used for other purposes in network analysis: for 
instance, multiplying an adjacency matrix by itself gives a matrix where each cell 
contains a count of the number of 2-paths between the two nodes. There are other 
different results, depending on the power and order of multiplication. These are the 
domain of network algebras. Mathematically inclined readers who are interested in 
following the topic further will find some directions in Chapter 9.

For most empirical network studies, however, we need not be too bothered by 
these details and you will typically not have to worry about matrix algebra.

Dyadic covariates

A study may include dyadic variables that, strictly speaking, do not constitute a 
social network, but do have the same data structure as a network. Such data are typi-
cally not at the centre of interest in a study but may be treated as ‘covariates’, in that 
the network structure that is the focus of attention may be affected in some way by 
the dyadic covariate. A good example is geospatial distance between actors. In some 
studies, the distance between actors (e.g., between the locations of their homes) may 
be theorized to affect the social network relationship between them. Current work 
on the integration of social networks in space is exemplified by articles in a recent 
special issue of the journal Social Networks (adams et al., 2012).

Dyadic covariates may also be derived from actor attribute data. For instance, if 
our interest is in age homophily, then the absolute difference in ages between pairs 
of actors can be treated as a dyadic covariate of the network tie. The age difference 
between each pair of actors is calculated, signs ignored, and the results placed in a 
dyadic covariate matrix as in Figure 4.12(a), which uses the age data from Figure 4.10 
(mathematically, |yi – yj|). In this case, given that the data is an absolute difference, 
the matrix is naturally symmetric. In Figure 4.12(b), the categorical attribute variable 
‘Dept’, describing an actor’s department, is used to derive a binary dyadic covariate, 
‘Same department’. Figure 4.10 shows that only actors 2 and 4 come from the same 
department, so there is a 1 only in cells (2,4) and (4,2) in the matrix. Again the result-
ing matrix is naturally symmetric. A study involving such data could investigate 

0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0

1

0

0

1

0

1

2

0

× =

Figure 4.11 Matrix multiplication of binary adjacency matrix and attribute vector
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whether friendship was related to age difference or working in the same department, 
using these dyadic covariates.

Notice that a positive association between a network tie and age difference implies 
that a tie is more likely to occur when there is a larger difference in age: that is, 
in situations of heterophily (the opposite of homophily). So the direction of effect 
needs to be taken into account when interpreting the result.

0  9  2 0

9  0 11 9

2 11  0 2

0  9  2 0

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

Figure 4.12 Dyadic covariate matrices

(a) absolute difference in ages; (b) same department (derived from Figure 4.10)

(a) (b)

Of course, there can be additional transformations applied in creating 
dyadic covariates. For instance, given that some spatial distances may be 
very large and some comparatively small, it may be helpful to use a loga-
rithm of the distance between actors in analysis (Daraganova et al., 2012).

Egocentric network data

I have saved a description of egocentric network data structures until the 
end of this chapter, because although egocentric data are often the easiest 
to collect, several of the features discussed above are relevant.

Recall that an egonet comprises the network neighborhood around an 
actor (ego), including the network partners of ego, referred to as alters. The 
neighborhood includes the ties from ego to each alter, and often alter–alter 
ties. An egonet is akin to a one-wave snowball sample with a seed set size 
of one (ego). This data can be collected by survey, but may also be avail-
able by other means (electronically, or egos might be extracted from larger 
whole network data.)

There are several different levels of data here and it is often helpful to 
enter the data into three different files:
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 • An ego-level file which will contain all the attribute data collected on the egos;
 • An alter-level file which will contain attribute data about each alter, as well as the 

ego to which each alter refers (this variable links cases across the different files), and 
data about the relationship between ego and alter (e.g., type of tie, strength of tie);

 • For each ego, an alter–alter file containing data on the network ties between alters 
(if this data is collected).

Figure 4.13 illustrates the type of files from a small example with three egos (usually, 
of course, there would be many more). Here the ego-level file contains an ID for each 
ego and a variable for the sex of each (1 for female, 2 male). In a real study, of course, 
there may be many such variables.

The alter file contains ID variables for the alters as well as for the relevant ego. 
For instance, alter 11 is an alter for ego 1. In this case, I have coded the alter ID as a 
two-digit number with the first digit representing the relevant ego. Of course, this 
only works here because there are fewer than 10 egos and fewer than 10 alters per 
ego; more generally, some thought should be given to the most convenient method 
for numbering alter IDs. In an egonet study, it is typically assumed that the alters 
are different from one another (i.e. that the egonets do not overlap), so the coding 
is unique (e.g., alter 13 is not the same as alter 32). The ego-ID variable is important 
here because it links the alter and the ego files. In this particular example, there are 
three alters for each of the three egos, but of course that does not have to be so, and 
usually egos will differ in the number of alters.

Additionally, in the alter file we see a variable for sex of alter with the variable 
name ‘Sex-A’ to emphasize that this variable relates to alters, not to egos. There is 
also a variable named ‘Close’ for the closeness of the relationship, here measured as 
binary where ‘1’ indicates a close relationship. Notice how the tie between ego and 
alter becomes an attribute variable for alter: this is a peculiarity of an egonet study.

Alter-ID Ego-ID Sex-A Close

11 1 1 1

12 1 2 0

13 1 2 0

21 2 2 1

22 2 2 1

23 2 2 0

31 3 1 1

32 3 1 1

33 3 2 1

0 1 1

1 0 0

1 0 0

Ego-ID Sex

1 1

2 2

3 1

Ego file Alter file Alter-alter file for Ego1 

Figure 4.13  Data structure for an egonet study
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Figure 4.13 also presents the alter–alter file for ego 1 in the form of an adjacency 
matrix. In this egonet, alter 11 is tied to alter 12 and 13 but there is no tie between 
alters 12 and 13. The egonet for ego 1 is visualized in Figure 4.14. The node for ego is 
a box, and nodes for alters are circles. A filled node indicates Sex and Sex-A = 1, and a 
thicker line represents Close = 1. Ego is of course tied to all alters but only to alter 11 
with a thick line. Alters 12 and 13 are not tied.

There could be separate alter–alter files for each ego, but sometimes it is more con-
venient to enter this data into one file with an additional variable to indicate which 
matrix belongs to which ego. It is also possible to code this as an edge list, rather 
than a matrix. An edge list might include three columns, one for the ego and one 
each for the relevant pair of alters.

What is often done in terms of analysis is to create some additional variables from 
the alter–alter file to add to the ego file. For instance, the density of the alter–alter 
network indicates the extent of closure in ego’s social environment: conversely, a 
lower density suggests that ego is in more of a brokerage position. Ignoring the vari-
able Close, the alter–alter file for ego 1 is an undirected network and has two out of 
a possible three ties (remember ego and ego’s ties are not included), so the density is 
0.67. Let us suppose that the densities for the alter–alter networks for egos 2 and 3 
(not shown in Figure 4.13) are 0.33 and 1.00, respectively.

In Figure 4.15, I have added these densities as a variable Dens to the ego file. 
Similarly, variables from the alter file can be aggregated into the ego file. I have also 
included additional variables: proportion of same sex alters (Samesx) and proportion 
of close partners (Nclose). For ego1, only one alter is the same sex and only one is 
close, so these proportions are 1/3.

11

12

13

Ego 1

Figure 4.14 Egonet

For ego 1 from Figure 4.13
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There are usually important decisions to be made about the method of aggregation. 
In Figure 4.15, I could have used the number of same sex and close partners, rather 
than the proportion. Such choices are theoretical decisions that need to be thought 
through carefully. In this particular case, it makes no difference because each ego has 
three alters, but in reality the number of alters will differ and quite often dramati-
cally. In that case, the counts of particular alters (e.g., females) may vary considerably 
from the proportion. Suppose, for instance, your egonet study is about social sup-
port. In order to feel well supported, is it sufficient to have a small number of strong 
friends who offer support, irrespective of how many friends you have, or is it neces-
sary to have a high proportion of all your friends as supporters? The number and 
proportion have different theoretical implications.

Often the analysis will then be conducted using standard statistical techniques on 
the expanded ego file: for instance, in Figure 4.15 correlations and regressions could 
be conducted among the continuous variables and differences in means compared 
between sexes. Those readers familiar with hierarchical linear modelling (Snijders 
and Bosker, 2012) will note, however, that the datafile in Figure 4.15 and the alter file 
in Figure 4.13 are jointly suitable for multilevel modelling, with alters nested within 
egos. A multilevel model could then be used to predict alter attribute variables1. This 
could include predicting the type of relationship between ego and alter, given that in 
egonet studies the type of ego–alter tie (close or not close, in our example) becomes 
an attribute variable in the alter file.

In conclusion: The key point

As researchers, we all need to know how to enter data in the right form, but the right 
form itself reveals important aspects of the research design. So this is not just a how 

1Do not confuse a hierarchical linear model – often called a ‘multilevel model’ – with 
multilevel networks. In this context, a multilevel model is a statistical model for nested 
data more generally, not specifically for networks. A multilevel network is a particular 
network data structure as explained earlier.

Figure 4.15 Expanded ego file

Including variables aggregated from the alter file and alter–alter files from Figure 4.13

Ego-ID Sex Dens Samesx Nclose

1 1 0.67 0.33 0.33

2 2 0.33 1.00 0.67

3 1 1.00 0.67 1.00
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to do it chapter. Rather, an understanding of these different data structures will give 
an understanding of network-based research design.

The chapter also emphasizes – albeit, implicitly – choice. We have a variety of data 
structures. The first step is to decide which best applies to our study. This is not just 
a personal preference but crucially determines, and is determined by, our theoretical 
position. If we adopt bipartite data when the theoretical context demands a unipar-
tite representation, we risk making horrible mistakes in inference. Once we have 
made the serious decision about why we should adopt a particular data structure, 
then we have to engage with the difficult question of which types of tie to investi-
gate, which types of attributes and so on. These are not decisions based on numbers 
or measures, convenience or habit: these are matters of theory. I do not mean a 
‘Theory of X, Y or Z’ but, rather, a theoretical argument which involves an under-
standing of the research context, previous work and existing knowledge. Then the 
decisions about the right data structures and the right variables can be made on the 
most solid ground.

Pulling back the curtain: What goes on in real network studies

For the sporting team study, we used a whole network approach. We had a complete list 
of current athletes in the club, so – as explained in Chapter 3 – the network boundary 
was relatively unambiguous. In Chapter 3, I described the difficult decisions made about 
the types of ties and attributes to measure. In the end we had several different types 
of ties, each of which were entered into a separate adjacency matrix analogous to that 
shown in Figure 4.3(c), with attribute variables entered into a datafile in the form shown 
in Figure 4.10.

For the organizational collaboration study, as explained in Chapter 3, the boundary 
was uncertain, so we employed a snowball sampling strategy in an effort to determine 
a sensible boundary. As in Figure 4.4, we had a core set of organizations that we knew 
were definitely relevant: these became our seed set. By asking informants from each of 
these organizations which other bodies were major collaboration partners of their own 
organization, we uncovered the collaboration ties among our seed set and snowballed 
out to a first zone of other organizations. We then sought to interview informants from 
those organizations, and so on. There is an issue of how many waves of snowball sam-
pling are necessary. Ideally, there should be as many waves as required until no new 
organizations are named, but there are usually funding and timing constraints that need 
to be taken into account. For instance, if an organization is nominated by only one, or a 
small number, of the more central organizations, then perhaps that organization could 
be treated as peripheral and not interviewed. What counts as a ‘small number’ needs to 
be decided: there is no established rule.
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In our case, the snowball approach after one wave seemed to capture the most 
central actors, with other actors more peripheral and of lower degree. Due to resource 
constraints, we concentrated our analysis on these central actors. At this point we 
reverted to a whole network study among these central actors, so did not explicitly 
invoke the data structures of Figures 4.4 and 4.5.

A question arises about whether we can find the entire boundary if the network is 
disconnected and our seed set only includes nodes that are likely to be tied to each 
other. Then it may be impossible to find separated components. In our case, due to local 
knowledge and the specific context, we were confident that major players would have 
some connection – perhaps indirect – to our seed set nodes, so this was not an issue 
for us. More generally, the extent of such a problem may be investigated by sampling 
some actors who seem more remote and disconnected from the original seed set, to see 
whether a snowball from them may eventually reconnect. The choice of such actors may 
not be obvious, however, and resource constraints in data collection need to be taken 
into account.
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