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P ropensity score analysis is a class of statistical methods developed for estimating 
treatment effects with nonexperimental or observational data. Specifically, propensity 
score analysis offers an approach to program evaluation when randomized trials are 
infeasible or unethical, or when researchers need to assess treatment effects from survey 
data, census data, administrative data, medical records data, or other types of data “collected 
through the observation of systems as they operate in normal practice without any 
interventions implemented by randomized assignment rules” (Rubin, 1997, p. 757). In the 
social and health sciences, researchers often face a fundamental task of drawing conditioned 
casual inferences from quasi-experimental studies. Analytical challenges in making causal 
inferences can be addressed by a variety of statistical methods, including a range of new 
approaches emerging in the field of propensity score analysis.

This book focuses on seven closely related but technically distinct models for estimating 
treatment effects: (1) Heckman’s sample selection model (Heckman, 1976, 1978, 1979) and 
its revised version (Maddala, 1983), (2) propensity score matching (Rosenbaum, 2002b; 
Rosenbaum & Rubin, 1983) and related models, (3) propensity score subclassification 
(Rosenbaum & Rubin, 1983, 1984), (4) propensity score weighting (Hirano & Imbens, 2001; 
Hirano, Imbens, & Ridder, 2003; McCaffrey, Ridgeway, & Morral, 2004), (5) matching esti-
mators (Abadie & Imbens, 2002, 2006), (6) propensity score analysis with nonparametric 
regression (Heckman, Ichimura, & Todd, 1997, 1998), and (7) propensity score analysis of 
categorical or continuous treatments (Hirano & Imbens, 2004; Imbens, 2000; Joffe & 
Rosenbaum, 1999).

Although statisticians and econometricians have not reached consensus on the scope 
and content of propensity score analysis, the statistical models described in this book share 
several similar characteristics: Each has the objective of assessing treatment effects and 
controlling for covariates, each represents state-of-the-art analysis in program evaluation, 
and each can be employed to overcome various kinds of challenges encountered in 
research.

Although the randomized controlled trial is deemed to be the gold standard in research 
design, true experimental designs are not always possible, practical, or even desirable in 
the social and health sciences. Given a continuing reliance on quasi-experimental design, 
researchers have increasingly sought methods to improve estimates of program effects.

C H A P T E R  1
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PROPENSITY SCORE ANALYSIS2

Over the past 35 years, methods of program evaluation have undergone a significant 
change as researchers have recognized the need to develop more efficient approaches for 
assessing treatment effects from studies based on observational data and for evaluations 
based on quasi-experimental designs. This growing interest in seeking consistent and effi-
cient estimators of program effectiveness led to a surge in work focused on estimating 
average treatment effects under various sets of assumptions. Statisticians (e.g., Rosenbaum 
& Rubin, 1983) and econometricians (e.g., Heckman, 1978, 1979) have made substantial 
contributions by developing and refining new approaches for the estimation of causal 
effects from observational data. Collectively, these approaches are known as propensity 
score analysis.

Econometricians have integrated propensity score models into other econometric mod-
els (i.e., instrumental variable, control function, difference-in-differences estimators) to 
perform less expensive and less intrusive nonexperimental evaluations of social, educa-
tional, and health programs. Furthermore, recent criticism and reformulations of the clas-
sical experimental approach in econometrics symbolize an important shift in evaluation 
methods. The significance of this movement was evidenced by the selection of James 
Heckman as one of the 2000 Nobel Prize award winners in the field of economics. The prize 
recognized his development of theory and methods for data analysis in selective samples.

As a new and rapidly growing class of evaluation methods, propensity score analysis is 
by no means conceived as the best alternative to randomized experiments. In empirical 
research, it is still unknown under what circumstances the approach appears to reduce 
selection bias and under what circumstances the conventional regression approach (i.e., use 
of statistical controls) remains adequate. There are certainly debates about the advantages 
and disadvantages of propensity score modeling. These focus, primarily, on the extent to 
which propensity score methods offer effective and efficient estimates of treatment effects 
and on the degree to which they help address many challenging issues embedded in pro-
gram evaluation, policy evaluation, and causal inference. The call for developing and using 
strong research designs to provide a comprehensive understanding of causal processes in 
program evaluation remains a paramount challenge in all fields of practice. However, it is 
also a consensus among prominent researchers that the propensity score approach has 
reached a mature level. For instance, Imbens and Wooldridge (2009) evaluated recent devel-
opments in the econometrics of program evaluation, primarily the methods described by 
this book, and concluded that

at this stage, the literature has matured to the extent that it has much to offer the 
empirical researchers. Although the evaluation problem is one where identification 
problems are important, there is currently a much better understanding of which 
assumptions are most useful, as well as a better set of methods for inference given 
different sets of assumptions. (p. 8)

Representing the interest in—and indeed perceived utility of—these new methods, the 
propensity score approach has been employed in a variety of disciplines and professions 
such as education (Morgan, 2001), epidemiology (Normand et al., 2001), medicine (e.g., Earle 
et al., 2001; Gum, Thamilarasan, Watanabe, Blackstone, & Lauer, 2001), psychology (Jones, 
D’Agostino, Gondolf, & Heckert, 2004), social work (Barth, Greeson, Guo, & Green, 2007; 
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CHAPTER 1    Introduction 3

Barth, Lee, Wildfire, & Guo, 2006; Guo, Barth, & Gibbons, 2006; Weigensberg, Barth, & Guo, 
2009), and sociology (H. L. Smith, 1997). In social welfare studies, economists and others 
used propensity score methods in evaluations of the National Job Training Partnership Act 
program (Heckman, Ichimura, & Todd, 1997), the National Supported Work Demonstration 
(LaLonde, 1986), and the National Evaluation of Welfare-to-Work Strategies Study 
(Michalopoulos, Bloom, & Hill, 2004).

In describing these new methods, the preparation and writing of this book was guided 
by two primary objectives. The first objective was to introduce readers to the origins, main 
features, and debates centering on the seven models of propensity score analysis. We hope 
this introduction will help accomplish our second objective of illuminating new ideas, 
concepts, and approaches that social and health sciences researchers can apply to their 
own fields to solve problems they might encounter in their research efforts. In addition, 
this book has two overarching goals. Our primary goal is to make the past three decades of 
theoretical and technological advances in analytic methods accessible and available in a 
less technical and more practical fashion. The second goal is to promote discussions 
among social and health sciences researchers regarding emerging strategies and methods 
for estimating causal effects using nonexperimental methods.

The aim of this chapter is to provide an overview of the propensity score approach. 
Section 1.1 presents a definition of observational study. Section 1.2 reviews the history 
and development of the methods. Section 1.3 is an overview of the randomized experi-
mental approach, which is the gold standard developed by statisticians and the model 
that should serve as a foundation for the nonexperimental approach. Section 1.4 offers 
examples drawn from literature beyond the fields of econometrics and statistics. These 
examples are intended to help readers determine the situations in which the propensity 
score approach may be appropriate. Section 1.5 reviews the computing software pack-
ages that are currently available for propensity score analysis and the main features of 
the package used in the models presented throughout this book. Section 1.6 outlines the 
organization of the book.

1.1 OBSERVATIONAL STUDIES

The statistical methods we discuss may be generally categorized as methods for obser-
vational studies. According to Cochran (1965), an observational study is an empirical 
investigation whose objective is to elucidate causal relationships (i.e., cause and effect) 
when it is infeasible to use controlled experimentation and to assign participants at 
random to different procedures.

In the general literature related to program evaluation (i.e., nonstatistically oriented litera-
ture), researchers use the term quasi-experimental more frequently than observational stud-
ies, with the term defined as studies that compare groups but lack the critical element of 
random assignment. Indeed, quasi-experiments can be used interchangeably with observa-
tional studies, as described in the following quote from Shadish, Cook, and Campbell (2002):

Quasi-experiments share with all other experiments a similar purpose—to test 
descriptive causal hypotheses about manipulable causes—as well as many 
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PROPENSITY SCORE ANALYSIS4

structural details, such as the frequent presence of control groups and pretest 
measures, to support a counterfactual inference about what would have happened 
in the absence of treatment. But, by definition, quasi-experiments lack random 
assignment. Assignment to conditions is by means of self-selection, by which units 
choose treatment for themselves, or means of administrator selection, by which 
teachers, bureaucrats, legislators, therapists, physicians, or others decide which 
persons should get which treatment. (pp. 13–14)

Two features of observational studies merit particular emphasis. First, an 
observational study concerns treatment effects. A study without a treatment—often 
called an intervention or a program—is neither an experiment nor an observational 
study. Most public opinion polls, forecasting efforts, investigations of fairness and 
discrimination, and many other important empirical studies are neither experiments 
nor observational studies (Rosenbaum, 2002b). Second, observational studies can 
employ data from nonexperimental, nonobservational studies as long as the focus is 
on assessing treatment or the effects of receiving a particular service. By this definition, 
observational data refer to data that were generated by something other than a 
randomized experiment and typically include surveys, censuses, or administrative 
records (Winship & Morgan, 1999).

1.2 HISTORY AND DEVELOPMENT

The term propensity score first appeared in a 1983 article by Rosenbaum and Rubin, 
who described the estimation of causal effects from observational data. Heckman’s 
(1978, 1979) work on dummy endogenous variables using simultaneous equation mod-
eling addressed the same issue of estimating treatment effects when assignment was 
nonrandom; however, Heckman approached this issue from a perspective of sample 
selection. Although Heckman’s work on the dummy endogenous variable problem 
employed different terminology, he used the same approach toward estimating a par-
ticipant’s probability of receiving one of two conditions. Both schools of thought (i.e., 
the econometric tradition of Heckman and the statistical tradition of Rosenbaum and 
Rubin) have had a significant influence on the direction of the field, although the term 
propensity score analysis, coined by Rosenbaum and Rubin, is used more frequently as 
a general term for the set of related techniques designed to correct for selection bias in 
observational studies.

The development of the propensity score approach signified a convergence of two tradi-
tions in studying causal inferences: the econometric tradition that primarily relies on struc-
tural equation modeling and the statistical tradition that primarily relies on randomized 
experiments (Angrist, Imbens, & Rubin, 1996; Heckman, 2005). The econometric tradition 
dates back to Trygve Haavelmo (1943, 1944), whose pioneering work developed a system of 
linear simultaneous equations that allowed analysts to capture interdependence among 
outcomes, to distinguish between fixing and conditioning on inputs, and to parse out true 
causal effects and spurious causal effects. The task of estimating counterfactuals, a term 
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CHAPTER 1    Introduction 5

generally developed and used by statisticians, is explored by econometricians in the form 
of a switching regression model (Maddala, 1983; Quandt, 1958, 1972). Heckman’s (1978, 
1979) development of a two-step estimator is credited as the field’s pioneering work in 
explicitly modeling the causes of selection in the form of a dummy endogenous variable. As 
previously mentioned, Heckman’s work followed econometric conventions and solved the 
problem through structural equation modeling.

Historically quite distinct from the econometric tradition, the statistical tradition can 
be traced back to Fisher (1935/1971), Neyman (1923), and Rubin (1974, 1978). Unlike 
conventions based on linear simultaneous equations or structural equation models, the 
statistical tradition is fundamentally based on the randomized experiment. The principal 
notion in this formulation is the study of potential outcomes, known as the Neyman-Rubin 
counterfactual framework. Under this framework, the causal effects of treatment on 
sample participants (already exposed to treatments) are explored by observing outcomes 
of participants in samples not exposed to the treatments. Rubin extended the counter-
factual framework to more complicated situations, such as observational studies without 
randomization.

For a detailed discussion of these two traditions, readers are referred to a special issue of 
the Journal of the American Statistical Association (1996, Vol. 91, No. 434), which presents 
an interesting dialogue between statisticians and econometricians. Significant scholars in 
the field—including Greenland, Heckman, Moffitt, Robins, and Rosenbaum—participated 
in a discussion of a study that used instrumental variables to identify causal effects, particu-
larly the local average treatment effect (Angrist et al., 1996).

It is worth noting that the development of propensity score models did not occur in 
isolation from other important developments. At the same time that propensity score 
methods were emerging, the social, behavioral, and health sciences witnessed progress 
in the development of other statistical methods, such as methods for the control of clus-
tering in multilevel data—for instance, the linear mixed model (Laird & Ware, 1982), 
hierarchical linear modeling (Raudenbush & Bryk, 2002), and robust standard error esti-
mator (Huber, 1967; White, 1980); methods to analyze latent variables and to model 
complex structural relationships among latent variables (e.g., analyzing moderating as 
well as mediating effects, or models to depict nonrecursive relationship between latent 
variables)—that is, the structural equation modeling (Bollen, 1989; Jöreskog, 1971); meth-
ods for analyzing categorical and limited dependent variables—that is, the generalized 
linear models (Nelder & Wedderburn, 1972); methods for analyzing time-to-event data—
for instance, the proportional hazards model (Cox, 1972) and marginal approaches to 
clustered event data (Lee, Wei, & Amato, 1992; Wei, Lin, & Weissfeld, 1989); and more. 
When researchers are engaged in observational studies, many of these newly developed 
models need to be applied in conjunction with propensity score methods, and by the 
same token, a successful propensity score analysis always requires a careful examination 
of other issues of data analysis, including addressing potential violations of statistical 
assumptions by employing these newly developed methods. In this book, whenever pos-
sible, we describe the application of propensity score models in settings where other data 
issues are present, and we show how to employ propensity score models in conjunction 
with the application of other statistical approaches.
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PROPENSITY SCORE ANALYSIS6

1.3 RANDOMIZED EXPERIMENTS

The statistical premise of program evaluation is grounded in the tradition of the random-
ized experiment. Therefore, a natural starting point in a discussion of causal attribution in 
observational studies is to review key features of the randomized experiment. According to 
Rosenbaum (2002b), a theory of observational studies must have a clear conceptual linkage 
to randomization, so that the consequences of the absence of randomization can be under-
stood. For example, sensitivity analysis is among Rosenbaum’s approaches to handling data 
with hidden selection bias; this approach includes the use of test statistics that were devel-
oped primarily for randomized experiments, such as Wilcoxon’s signed rank statistic and 
Hodges-Lehmann estimates. However, the critiques of social experiments by econometri-
cians (e.g., Heckman & Smith, 1995) frequently include description of the conditions under 
which randomization is infeasible, particularly under the setting of social behavioral 
research. Thus, it is important to review principles and types of randomized experiments, 
randomization tests, and the challenges to this tradition. Each of these topics is addressed 
in the following sections.

1.3.1 Fisher’s Randomized Experiment
The invention of the randomized experiment is generally credited to Sir Ronald Fisher, one of 
the foremost statisticians of the 20th century. Fisher’s book, The Design of Experiments 
(1935/1971), introduced the principles of randomization, demonstrating them with the now-
famous example of testing a British woman’s tea-tasting ability. This example has been cited 
repeatedly to illustrate the power of randomization and the logic of hypothesis testing (see, 
e.g., Maxwell & Delaney, 1990; Rosenbaum, 2002b). In a somewhat less technical fashion, we 
include this example as an illustration of important concepts in randomized experimentation.

In Fisher’s (1935/1971) words, the problem is as follows:

A lady declares that by tasting a cup of tea made with milk she can discriminate 
whether the milk or the tea infusion was first added to the cup. We will consider 
the problem of designing an experiment by means of which this assertion can be 
tested. (p. 11)

During Fisher’s time, the dominant practice in experimentation was to control covariates 
or confounding factors that might contaminate treatment effects. Therefore, to test a 
person’s tasting ability (i.e., the true ability to discriminate two methods of tea preparation), 
a researcher would control factors that could influence the results, such as the temperature 
of tea, the strength of the tea, the use of sugar, and the amount of milk added, in addition 
to the myriad potential differences that might occur among the cups of tea used in an 
experiment. As Maxwell and Delaney (1990) pointed out,

The logic of experimentation up until the time of Fisher dictated that to have a 
valid experiment here all the cups to be used “must be exactly alike,” except for 
the independent variable being manipulated. Fisher rejected this dictum on two 
grounds. First, he argued that it was logically impossible to achieve, both in the 
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CHAPTER 1    Introduction 7

example and in experimentation in general. . . . Second, Fisher argued that, even if 
it were conceivable to achieve “exact likeness,” or more realistically, 
“imperceptible difference” on various dimensions of the stimuli, it would in 
practice be too expensive to attempt. (p. 40)

Instead of controlling for every potential confounding factor, Fisher proposed to control 
for nothing, namely, to employ a method of randomization. Fisher (1935/1971) described 
his design as follows:

Our experiment consists in mixing eight cups of tea, four in one way and four in 
the other, and presenting them to the subject for judgment in a random order. The 
subject has been told in advance of what the test will consist, namely that she will 
be asked to taste eight cups, that these shall be four of each kind, and that they 
shall be presented to her in a random order, that is in an order not determined 
arbitrarily by human choice, but by the actual manipulation of the physical 
apparatus used in games of chance, cards, dice, roulettes, etc., or more 
expeditiously, from a published collection of random sampling numbers purporting 
to give the actual results of such a manipulation. Her task is to divide the 8 cups 
into two sets of 4, agreeing, if possible, with the treatments received. (p. 12)

Before going further, it is crucial to note several important points regarding Fisher’s design. 
First, in this example, the unit of analysis is not individual (N ≠ 1), but rather the presentation 
of the tea cups to the tea taster (i.e., N = 8, in which a total of 8 cases comprise the sample). 
Second, there is a treatment assignment process in this example, namely, the order of 
presentation of tea cups. Using Rosenbaum’s (2002b) notation, this is a random variable Z, 
and any specific presentation of the tea cups to the taster is a realization of Z, or Z = z. For 
instance, if a specific presentation of the tea cups consists of four cups with milk added first 
followed by four cups with tea added first, then we may write z = (11110000), where z is just 
one of many possible assignments. In Rosenbaum’s notation, these possible treatment 
assignments form a set of W, and z ∈ W. Determining the total number of elements in W 
(which Rosenbaum denoted as K) is an important task for experimental design and a task that 
can be accomplished using probability theory. This point will be discussed in more detail 
elsewhere. Third, there is an actual outcome r, which is the result of tasting the eight cups of 
tea. If the taster gives exactly the same order of tea cups as in the treatment assignment (i.e., 
she correctly identifies the first four cups as having the milk added first and the next four 
cups as having the tea added first), then the outcome would be recorded as r = (11110000). 
Last, the test essentially aims to determine whether the tea taster had the true ability to 
discriminate the two kinds of tea or whether she made her correct judgment accidentally by 
guessing. Thus, the null hypothesis (H0) under testing would be “She has no ability to 
discriminate,” and the test involves finding statistical evidence to reject the null hypothesis 
at a given significance level.

Building on these explanations, we continue with the tea-tasting test and describe how 
Fisher implemented his randomized experiment. One important feature of randomized 
experiments is that, in advance of implementation, the researcher must calculate probable 
outcomes for each study unit. Fisher (1935/1971) emphasized “forecasting all possible 
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PROPENSITY SCORE ANALYSIS8

outcomes,” even at a design stage when outcome data are completely absent: “In consider-
ing the appropriateness of any proposed experimental design, it is always needful to fore-
cast all possible results of the experiment, and to have decided without ambiguity what 
interpretation shall be placed upon each one of them” (p. 12).

The key of such calculation is to know the total number of elements in the set of W (i.e., 
the value of K). In the above example, we simply made an arbitrary example of treatment 
assignment 11110000, although many other treatment assignments can be easily figured 
out, such as alternating cups of tea with the milk added first with the cups prepared by 
adding the tea infusion first (i.e., 10101010), or presenting four cups with tea infusion added 
first and then four cups with milk added first (i.e., 00001111). In statistics, the counting rules 
(i.e., permutations and combinations) inform us that the number of total possible ways to 
present the eight cups can be solved by finding out the number of combinations of eight 
things taken four at a time, or 8C4, as

n rC
n n n n r

r r r

n

r n r
=

− − − +
− −

=
−

( )( ) . . . ( )
( )( ) . . .

!
!( ) !

.
1 2 1

1 2 1

The solution to our problem is

k C= = =8 4
18

4 4
70

!
! !

.

Therefore, there are 70 possible ways to present the tea taster with four cups with milk 
added first and four cups with tea added first. We can keep writing 11110000, 10101010, 
00001111, . . . until we exhaust all 70 ways. Here, 70 is the number of total elements in the 
set of W or all possibilities for a treatment assignment.

To perform a statistical test of “H0: No ability,” Fisher turned to the task of looking into 
the possible outcomes r. Furthermore, if we define the taster’s true ability to taste discrim-
inately as requiring all eight cups she identified to match exactly what we presented to her, 
we can then calculate the probability of having the true outcome. The significance test 
performed here involves rejecting the null hypothesis, and the null hypothesis is expressed 
as “no ability.” Fisher used the logic of “guessing the outcome right”; that is, the taster has 
no ability to discriminate but makes her outcome correct by guessing. Thus, what is the 
probability of having the outcome r that is identical to the treatment assignment z? The 
outcome r should have one set of values from the 70 possible treatment assignments; that 
is, the taster could guess any outcome from 70 possible outcomes of 11110000, 10101010, 
00001111, . . . . Therefore, the probability of guessing the right outcome is 1/70 = .0124, 
which is a very low probability. Now, we can reject the null hypothesis under a small prob-
ability of making a Type I error (i.e., the tea taster did have the ability, but we erroneously 
rejected the “no ability” hypothesis), and the chance is indeed very low (.0124). In other 
words, based on statistical evidence (i.e., an examination of all possible outcomes), we can 
reject the “no ability” hypothesis at a statistical significance level of .05. Thus, we may 
conclude that under such a design, the taster may have true tasting ability (p < .05).

Rosenbaum (2002b) used t(Z, r) to denote the test statistic. In the preceding test scenario, 
we required a perfect match—a total of eight agreements—between the treatment (i.e., the 
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CHAPTER 1    Introduction 9

order of tea cups presented to the tea-tasting expert) and the outcome (i.e., the actual out-
come identified by the taster); therefore, the problem is to find out the probability {t(Z, r) > 
8}. This probability can be more formally expressed in Rosenbaum’s notation as follows:

prob or prob{ ( , ) }
|{ : ( , ) }|

, { ( , ) } .t T
z t Z r T

K
tZ r Z r≥ =

∈ ≥
≥ = =

Ω
8

1
70

01244.

However, if the definition of “true ability” is relaxed to allow for six exact agreements rather 
than eight agreements (i.e., six cups in the order of outcome match to the order of presentation), 
we can still calculate the probability or significance in testing the null hypothesis of “no 
ability.” As in the earlier computation, this calculation involves the comparison of actual 
outcome r to the treatment assignment z, and the tea taster’s outcome could be any one of 70 
possible outcomes. Let us assume that the taster gives her outcome as r = (11110000). We now 
need to examine how many treatment assignments (i.e., number of z) match this outcome 
under the relaxed definition of “true ability.” The answer to this question is one perfect match 
(i.e., the match with eight agreements) plus 16 matches with six agreements (Rosenbaum, 
2002b, p. 30), for a total of 17 treatment assignments. To illustrate, we provide all 17 treatment 
assignments that match to the taster’s outcome 11110000:

perfect match 11110000, and the following assignments with six exact agreements:

01111000, 01110001, 01110010, 01110100, 10110100, 10110010, 10110001, 
10111000, 11010010, 11010001, 11010100, 11011000, 11100001, 11100010, 
11100100, 11101000,

where bold numbers indicate agreements.2

Thus, the probability of having six exact agreements is 17/70 = .243. In Rosenbaum’s 
notation, the calculation is

prob or prob{ ( , ) }
|{ : ( , ) }|

, { ( , ) } .t T
z t T

K
tZ r

Z r
Z r≥ =

∈ ≥
≥ = =

Ω
6

17
70

2433.

That is, if we define “true ability” as correctly identifying six out of eight cups of tea, 
the probability of having a correct outcome increases to .243. The null hypothesis cannot 
be rejected at a .05 level. In other words, under this relaxed definition, we should be more 
conservative, or ought to be more reluctant, to declare that the tea taster has true ability. 
With a sample of eight cups in total and a relaxed definition of “ability,” the statistical 
evidence is simply insufficient for us to reject the null hypothesis, and, therefore, the 
experimental design is less significant in testing true tasting ability.

We have described Fisher’s famous example of randomized experiment in great detail. 
Our purpose of doing so is twofold. The first is to illustrate the importance of understand-
ing two processes in generating intervention data: (1) the treatment assignment process 
(i.e., there is a random variable Z, and the total number of possible ways K is inevitably 
large) makes it possible to know in advance the probability of receiving treatment in a 
uniform randomized experiment and (2) the process of generating outcome data (i.e., there 
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PROPENSITY SCORE ANALYSIS10

is an outcome variable r). This topic is revisited both in Chapters 2 and 3, in the discussion 
of the so-called ignorable treatment assignment, and in Chapter 11, in the discussion of 
selection bias and sensitivity analysis. The second purpose in providing a detailed descrip-
tion of Fisher’s experiment was to call attention to the core elements of randomized 
experiments. According to Rosenbaum (2002b),

First, experiments do not require, indeed cannot reasonably require, that 
experimental units be homogeneous, without variability in their 
responses. . . . Second, experiments do not require, indeed, cannot reasonably 
require, that experimental units be a random sample from a population of 
units. . . . Third, for valid inference about the effects of a treatment on the units 
included in an experiment, it is sufficient to require that treatments be allocated at 
random to experimental units—these units may be both heterogeneous in their 
responses and not a sample from a population. Fourth, probability enters the 
experiment only through the random assignment of treatments, a process 
controlled by the experimenter. (p. 23)

1.3.2 Types of Randomized Experiments and Statistical Tests
Fisher’s framework laid the foundation for randomized experimental design. The method 
has become a gold standard in program evaluation and continues to be an effective and 
robust means for assessing treatment effects in nearly every field of interest from agriculture 
and business, to computer science, to education, to medicine and social welfare. Furthermore, 
many sophisticated randomized designs have been developed to estimate various kinds of 
treatment effects under various settings of data generation. For example, within the category 
of uniform randomized experiment,3 in addition to the traditional method of completely 
randomized experiment, where stratification is absent (i.e., S = 1 and S stands for number of 
strata), researchers have developed randomized block experiments where two or more strata 
are permissible (i.e., S ≥ 2) and paired randomized experiments in which nS = 2 (i.e., the num-
ber of study participants within stratum S is fixed at 2), mS = 1 (i.e., the number of partici-
pants receiving treatment within stratum S is fixed at 1), and S could be reasonably large 
(Rosenbaum, 2002b).

A more important reason for studying randomized experiments is that statistical tests 
developed through randomized experiments may be performed virtually without assump-
tions, which is not the case for nonrandomized experiments. The class of randomization 
tests, as reviewed and summarized by Rosenbaum (2002b), includes

	 1.	 Tests for binary outcomes: Fisher’s (1935/1971) exact test, the Mantel-Haenszel 
(1959) statistic, and McNemar’s (1947) test

	 2.	 Tests for an outcome variable that is confined to a small number of values 
representing a numerical scoring of several ordered categories (i.e., an ordinal 
variable): Mantel’s (1963) extension of the Mantel-Haenszel test

	 3.	 Tests for a single stratum S = 1, where the outcome variable may take many 
numerical values (i.e., an interval or ratio variable): Wilcoxon’s (1945) rank sum test
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CHAPTER 1    Introduction 11

	 4.	 Tests for an outcome variable that is ordinal and the number of strata S is large 
compared with sample size N: the Hodges and Lehmann (1962) test using the 
signed rank statistic

As opposed to drawing inferences using these tests in randomized designs, drawing 
inferences using these tests in nonrandomized experiments “requires assumptions that are 
not at all innocuous” (Rosenbaum, 2002b, p. 27).

1.3.3 Critiques of Social Experimentation
Although the randomized experiment has proven useful in many applications since Fisher’s 
seminal work, the past three decades have witnessed a chorus of challenges to the fundamental 
assumptions embedded in the experimental approach. In particular, critics have been quick to 
note the complexities of applying randomized trials in studies conducted with humans rather 
than mechanical components, agricultural fields, or cups of tea. The dilemma presented in social 
and health sciences studies with human participants is that assigning participants to a control 
condition means potentially denying treatment or services to those participants; in many set-
tings, such denial of services would be unethical or illegal. Although the original rationale for 
using a randomized experiment was the infeasibility of controlling covariates, our evaluation 
needs have returned to the point where covariant control or its variants (e.g., matching) becomes 
attractive. This is particularly true in social behavioral evaluations.

In a series of publications, Heckman and his colleagues (e.g., Heckman, 1979; Heckman & 
Smith, 1995) discussed the importance of directly modeling the process of assigning study 
participants to treatment conditions by using factors that influence participants’ decisions 
regarding program participation. Heckman and his associates challenged the assumption that 
we can depend on randomization to create groups in which the treated and nontreated 
participants share the same characteristics under the condition of nontreatment. They 
questioned the fundamental assumption embedded in the classical experiment: that  
randomization removes selection bias.

Heckman and Smith (1995) in particular held that social behavioral evaluations need to 
explicitly address four questions, none of which can be handled suitably by the random-
ized experiment: (1) What are the effects of factors such as subsidies, advertising, local 
labor markets, family income, race, and gender on program application decisions? (2) What 
are the effects of bureaucratic performance standards, local labor markets, and individual 
characteristics on administrative decisions to accept applicants and place them in specific 
programs? (3) What are the effects of family background, subsidies, and local market con-
ditions on decisions to drop out of a program and, alternatively, on the length of time 
required to complete a program? (4) What are the costs of various alternative treatments?

1.4 WHY AND WHEN A PROPENSITY SCORE ANALYSIS IS NEEDED

Drawing causal inferences in observational studies or studies without randomization is 
challenging, and it is this task that has motivated statisticians and econometricians to 
explore new analytic methods. The seven analytic models that we discuss in this book 
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PROPENSITY SCORE ANALYSIS12

derive from this work. Although the models differ on the specific means employed, all 
seven models aim to accomplish data balancing when treatment assignment is nonignor-
able, to evaluate treatment effects using nonrandomized or nonexperimental approaches, 
and/or to reduce multidimensional covariates to a one-dimensional score called a propen-
sity score. To provide a sense of why and when propensity score methods are needed, we 
use examples drawn from the literature across various disciplines. Propensity score analy-
sis is suitable to data analysis and to causal inferences for a variety of studies. Most of these 
examples will be revisited throughout this book.

Example 1: Assessing the Impact of Catholic Versus Public Schools on Learning. A long-
standing debate in education is whether Catholic schools (or private schools in general) are 
more effective than public schools in promoting learning. Obviously, a variety of selections 
are involved in the formation of “treatment” (i.e., entrance into Catholic schools). To name 
a few, self-selection is a process that lets those who choose to study in Catholic schools 
receive the treatment; school selection is a process that permits schools to select only those 
students who meet certain requirements, particularly minimum academic standards, to 
enter into the treatment; financial selection is a process that excludes from the treatment 
those students whose families cannot afford tuition; and geographic selection is a process 
that selects out (i.e., excludes) students who live in areas where no Catholic school exists. 
Ultimately, the debate on Catholic schools centers on whether differences observed in 
outcome data (i.e., academic achievement or graduation rates) between Catholic and public 
schools are attributable to the intervention or to the fact that the Catholic schools serve a 
different population. In other words, if the differences are attributable to the intervention, 
findings suggest that Catholic schools promote learning more effectively than do public 
schools, whereas if the differences are attributable to the population served by Catholic 
schools, findings would show that students currently enrolled in Catholic schools would 
always demonstrate better academic outcomes regardless of whether they attended private 
or public schools. It is infeasible to conduct a randomized experiment to answer these 
questions; however, observational data such as the National Educational Longitudinal 
Survey (NELS) data are available to researchers interested in this question.

Because observational data lack randomized assignment of participants into treatment 
conditions, researchers must employ statistical procedures to balance the data before 
assessing treatment effects. Indeed, numerous published studies have used the NELS data to 
address the question of Catholic school effectiveness; however, the findings have been con-
tradictory. For instance, using propensity score matching and the NELS data, Morgan (2001) 
found that the Catholic school effect is the strongest only among those Catholic school 
students who, according to their observed characteristics, are least likely to attend Catholic 
schools. However, in a study that used the same NELS data but employed a new method that 
directly assessed selectivity bias, Altonji, Elder, and Taber (2005) found that attending a 
Catholic high school substantially increased a student’s probability of graduating from high 
school and, more tentatively, attending college.

Example 2: Assessing the Impact of Poverty on Academic Achievement. Prior research has 
shown that exposure to poverty and participation in welfare programs have strong impacts 
on child development. In general, growing up in poverty adversely affects a child’s life 

Copyright ©2015 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



CHAPTER 1    Introduction 13

prospects, and the consequences become more severe with greater exposure to poverty 
(Duncan, Brooks-Gunn, Yeung, & Smith, 1998; Foster & Furstenberg, 1998, 1999; P. K. Smith 
& Yeung, 1998). Most prior inquiries in this field have applied a multivariate analysis (e.g., 
multiple regression or regression-type models) to samples of nationally representative data 
such as the Panel Study of Income Dynamics (PSID) or administrative data, although a few 
studies employed a correction method such as propensity score analysis (e.g., Yoshikawa, 
Maguson, Bos, & Hsueh, 2003). Using a multivariate approach with this type of data poses 
two fundamental problems. First, the bulk of the literature regarding the impact of poverty 
on children’s academic achievement assumes a causal perspective (i.e., poverty is the cause 
of poor academic achievement), whereas the analysis using a regression model is, at best, 
correlational. In addition, a regression model or covariance control approach is less robust 
in handling endogeneity bias. Second, PSID is an observational survey without randomization 
and, therefore, researchers must take selection bias into consideration when employing 
PSID data to assess causal effects.

Guo and Lee (2008) have made several efforts to examine the impacts of poverty. First, 
using PSID data, propensity score models—including optimal propensity score matching, 
the treatment effects model, and the matching estimator—were used to estimate the 
impact of poverty. Second, Guo and Lee conducted a more thorough investigation of 
poverty. That is, in addition to conventional measures of poverty such as the ratio of 
income to poverty threshold, they examined 30 years of PSID data to create two new 
variables: (1) the number of years during a caregiver’s childhood (i.e., ages 6–12 years) 
that a caregiver used Aid to Families With Dependent Children (AFDC) and (2) the per-
centage of time a child used AFDC between birth and 1997 (i.e., the time point when 
academic achievement data were compared). Last, Guo and Lee conducted both efficacy 
subset analysis and intent-to-treat analysis and compared findings. Results using these 
approaches were more revealing than previous studies.

Example 3: Assessing the Impact of a Waiver Demonstration Program. In 1996, the U.S. 
Congress approved the Personal Responsibility and Work Opportunity Reconciliation Act 
(PRWORA). Known as welfare reform, PRWORA ended entitlements to cash assistance that 
were available under the prior welfare policy, AFDC. As part of this initiative, the federal 
government launched the Waiver Demonstration program, which allowed participating 
states and counties to use discretionary funding for county-specific demonstration projects 
of welfare reform—as long as these demonstrations facilitated “cost neutrality.” A key 
feature of the Waiver Demonstration program, as well as several other programs implemented 
under welfare reform, is that the county has the option of whether to participate in the 
Waiver Demonstration. Therefore, by definition, the intervention counties and comparison 
counties at the state level cannot be formed randomly. Counties that chose to participate 
differed from counties choosing not to participate. Evaluating such a nonrandomized 
program is daunting. Using a Monte Carlo study, Guo and Wildfire (2005) demonstrated that 
propensity score matching is a useful analytic approach for such data and an approach that 
provides less biased findings than does an analysis using the state-level population data.

Example 4: Assessing the Well-Being of Children Whose Parents Abuse Substances. A 
strong, positive association between parental substance abuse and involvement with 
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PROPENSITY SCORE ANALYSIS14

the child welfare system has been established (e.g., English, Marshall, Brummel, & 
Coghan, 1998; U.S. Department of Health and Human Services, 1999). Substance abuse 
may lead to child maltreatment through several mechanisms, such as child neglect that 
occurs when substance-abusing parents give greater priority to their drug use than to 
caring for their children, or substance abuse can lead to extreme poverty and inability 
to provide for a child’s basic needs (Magura & Laudet, 1996). Policy makers have long 
been concerned about the safety of children of substance-abusing parents. Drawing on 
a nationally representative sample from the National Survey of Child and Adolescent 
Well-Being (NSCAW), Guo et al. (2006) used a propensity score matching approach to 
address whether children whose caregivers received substance abuse services were 
more likely to have re-reports of maltreatment than were children whose caregivers did 
not use substance abuse services. Using the same NSCAW data, Guo et al. employed 
propensity score analysis with nonparametric regression to examine the relationship 
between the participation of a caregiver in substance abuse services and subsequent 
child outcomes; that is, they investigated whether children of caregivers who used 
substance abuse services exhibited more behavioral problems than did children of 
caregivers who did not use such services.

Example 5: Estimating the Impact of Multisystemic Therapy (MST). MST is a multifaceted, 
short-term (4–6 months), home- and community-based intervention for families with 
youths who have severe psychosocial and behavioral problems. Funding for MST in the 
United States rose from US$5 million in 1995, to approximately US$18 million in 2000, and 
to US$35 million in 2003. Most evaluations of the program used a randomized experiment 
approach, and most studies generally supported the efficacy of MST. However, a recent 
study using a systematic review approach (J. H. Littell, 2005) found different results. Among 
the problems observed in previous studies, two major concerns arose: (1) the variation in 
the implementation of MST and (2) the integrity of conducting randomized experiments. 
From a program evaluation perspective, this latter concern is a common problem in social 
behavioral evaluations: Randomization is often broken or compromised. Statistical 
approaches, such as propensity score matching, may be helpful when randomization fails 
or is impossible (Barth et al., 2007).

Example 6: Assessing Program Outcomes in Group-Randomized Trials. The Social and 
Character Development (SACD) program was jointly sponsored by the U.S. Department of 
Education (DOE) and the Centers for Disease Control and Prevention. The SACD intervention 
project was designed to assess the impact of schoolwide social and character development 
education in elementary schools. Using a scientific peer review process, seven proposals to 
implement SACD were chosen by the Institute of Education Sciences in the U.S. DOE, and 
the research groups associated with each of the seven proposals implemented different 
SACD programs in primary schools across the country. At each of the seven sites, schools 
were randomly assigned to receive either the intervention program or control curricula, 
and one cohort of students was followed from third grade (beginning in fall 2004) through 
fifth grade (ending in spring 2007). A total of 84 elementary schools were randomized to 
intervention and control at seven sites: Illinois (Chicago), New Jersey, New York (Buffalo, 
New York City, and Rochester), North Carolina, and Tennessee.
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CHAPTER 1    Introduction 15

Evaluating programs generated by a group randomization design is often challenging, 
because the unit of analysis is a cluster—such as a school—and sample sizes are so small 
as to compromise randomization. At one of the seven sites, the investigators of SACD 
designed the Competency Support Program to use a group randomization design. The total 
number of schools participating in the study within a school district was determined in 
advance, and then schools were randomly assigned to treatment conditions within school 
districts; for each treated school, a school that best matched the treated school on aca-
demic yearly progress, percentage of minority students, and percentage of students receiv-
ing free or reduced-price lunch was selected as a control school (i.e., data collection only 
without receiving intervention). In North Carolina, over a 2-year period, this group random-
ization procedure resulted in a total of 14 schools (Cohort 1, 10 schools; Cohort 2,  
4 schools) for the study: 7 received the Competency Support Program intervention, and 7 
received routine curriculum. As it turned out—as is often the case when implementing 
randomized experiments in social behavioral sciences—the group randomization did not 
work out as planned. In some school districts, as few as four schools met the study criteria 
and were eligible for participation. Just by the luck of the draw (i.e., by random assignment), 
the two intervention schools differed systematically on covariates from the two control 
schools. Thus, when comparing data from the 10 schools, the investigators found the inter-
vention schools differed from the control schools in significant ways: The intervention 
schools had lower academic achievement scores on statewide tests (Adequate Yearly Prog-
ress [AYP]), a higher percentage of students of color, a higher percentage of students receiv-
ing free or reduced-price lunches, and lower mean scores on behavioral composite scales 
at baseline. These differences were statistically significant at the .05 level using bivariate 
tests and logistic regression models. The researchers were confronted with the failure of 
randomization. Were these selection effects ignored, the evaluation findings would be 
biased. It is just at this intersection of design (i.e., failure of randomization) and data analy-
sis that propensity score approaches become very helpful.

The preceding examples illustrate conditions under which researchers might consider 
propensity score modeling. The need for conducting propensity score analysis can also be 
determined by an imbalance check. This bivariate analysis of the equivalence of covariates 
by treatment condition may be viewed as an initial check of group or condition comparabil-
ity. Balance checks help researchers discern whether data correction approaches more 
sophisticated than covariance control or regression modeling may be warranted. Because 
of its centrality in making analytic decisions, we present details of the imbalance check here. 

As noted earlier, researchers are often concerned with the validity of inferences from 
observational studies, because, in such a setting, the data are generated by a nonrandom 
process; thus, to determine whether a study requires a correction other than simple cova-
riance control, an initial test using a normalized difference score ΔX may be undertaken 
(Imbens & Wooldridge, 2009). The test is basically a bivariate analysis using the treatment 
indicator variable and each covariate X, and X can be either a continuous or dichotomous 
variable. ΔX is defined as follows:

	
∆X

X X

S S
=

−

+
1 0

0
2

1
2

,
	 (1.1)
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PROPENSITY SCORE ANALYSIS16

where X1 and X0  are the sample mean values of X, and S1
2  and S0

2  are the sample 
variances of X, for the treatment group and comparison group, respectively. Examples of 
applying Equation 1.1 to check normalized differences are shown in Section 6.5.2. 
Following Imbens and Wooldridge, a ΔX exceeding .25 is an indication that selection bias 
exists and linear regression methods tend to be sensitive to the model specification. In 
other words, if an initial check of study data shows ΔX exceeding .25 for numerous 
covariates, researchers should consider employing corrective approaches other than 
regression, or at least perform corrective analysis in conjunction with regression analysis. 
As a family of corrective approaches, propensity score models have promising properties 
and offer several advantages under the condition of imbalance.

1.5 COMPUTING SOFTWARE PACKAGES

At the time of the first edition of this book, few software packages offered comprehensive 
procedures to handle the statistical analyses described in subsequent chapters. Recently, 
however, more software programs have been developed for propensity score analysis. Our 
review of software packages indicates that Stata (StataCorp, 2007) and R (R Foundation for 
Statistical Computing, 2008) offer the most comprehensive computational facilities. Other 
packages, such as SAS, offer user-developed macros or procedures targeting specific prob-
lems (e.g., SAS Proc Assign may be used to implement optimal matching), but they do not 
offer the variety of analysis options that is available in Stata and R. 

Table 1.1 lists the Stata and R procedures available for implementing the analyses described 
in this book. Just like the rapid growth of propensity score methods per se, computing pro-
grams have also developed at a fast pace. Table 1.1 shows some of the programs currently 
available. See also Stuart (2014), who provides a comprehensive list of software programs for 
implementing matching methods and propensity scores in R, Stata, SAS, and SPSS. We have 
chosen to use Stata to illustrate most approaches. We chose Stata based on our experience 
with the software and our conclusion that it is a convenient software package. Specifically, 
Stata’s program test_condate can be used to test treatment effect heterogeneity described in 
Chapter 2; heckman and treatreg can be used to solve problems described in Chapter 4; 
psmatch2, pscore, boost, imbalance, hodgesl, logistic, xtlogit, xtmelogit, and xtmixed can 
be used to solve problems described in Chapter 5; pscore, hte, and Stata programming com-
mands can be used to solve problems described in Chapter 6; pweight function specified in 
a multivariate model can be used to solve problems described in Chapter 7; nnmatch can be 
used to solve problems described in Chapter 8; psmatch2 can be used to solve problems 
described in Chapter 9; pweight function specified in a multivariate model and gpscore can 
be used to solve problems described in Chapter 10; and rbounds and mhbounds can be used 
to perform Rosenbaum’s (2002b) sensitivity analysis described in Chapter 11. In each of these 
chapters, we will provide examples and an overview of Stata syntax. We provide illustrative 
examples for one R procedure (i.e., optmatch), because this is the only procedure available 
for conducting optimal matching within R and Stata. All syntax files and illustrative data can 
be downloaded from this book’s companion website (http://ssw.unc.edu/psa).

Many of the Stata programs described above were macros or ado files developed by users. 
At the time this second edition was completed, Stata released its version 13 (StataCorp, 2013). 
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CHAPTER 1    Introduction 17

This version of Stata for the first time includes a series of programs facilitating statistical 
analyses using propensity scores and other methods. Under the title of “Treatment effects,” 
this group of programs includes regression adjustment, inverse-probability weights 
(IPW), doubly robust estimators, matching estimators, overlap plots, and endogenous 
treatment estimators. Many of these newly released programs offer functions similar to 
those described in this book, although the user-developed programs will continue to be 
needed for many analyses. 

1.6 PLAN OF THE BOOK

Chapter 2 offers a conceptual framework for the development of scientific approaches to 
causal analysis, namely, the Neyman-Rubin counterfactual framework. In addition, the 
chapter reviews a closely related, and recently developed, framework that aims to guide 
scientific inquiry of causal inferences: the econometric model of causality (Heckman, 
2005). The chapter includes a discussion of two fundamental assumptions embedded in 
nearly all outcome-oriented program evaluations: the ignorable treatment assignment 
assumption and the stable unit treatment value assumption (SUTVA). Violations of these 
assumptions pose challenges to the estimation of counterfactuals. The chapter provides a 
review of corrective methods other than propensity score analysis, particularly two meth-
ods that are widely employed in economic research, namely, the instrumental variables 
estimator and regression discontinuity design. The chapter offers a discussion on the 
importance of modeling treatment effect heterogeneity, two tests of effect heterogeneity, 
and an example to show the application of these tests.

Chapter 3 focuses on the issue of ignorable treatment assignment from the other side 
of the coin: strategies for data balancing when treatment effects can only be assessed in a 
nonexperimental design. This chapter aims to answer the key question of what kind of 
statistical methods should be considered to remedy the estimation of counterfactuals, 
when treatment assignment is not ignorable. Moreover, the chapter describes three closely 
related but methodologically distinctive approaches: ordinary least squares (OLS) regres-
sion, matching, and stratification. The discussion includes a comparison of estimated treat-
ment effects of the three methods under five scenarios. These methods involve making 
simple corrections when assignment is not ignorable, and they serve as a starting point for 
discussing the data issues and features of more sophisticated approaches, such as the seven 
advanced models described later in the book. The chapter serves as a review of preliminary 
concepts that are a necessary foundation for learning more advanced approaches.

Chapters 4 through 10 present statistical theories using examples to illustrate each of the 
seven advanced models covered in this book. Chapter 4 describes and illustrates Heckman’s 
sample selection model in its original version (i.e., the model aims to correct for sample selec-
tion) and the revised Heckman model developed to evaluate treatment effects. Chapter 5 
describes propensity score matching, specifically the creation of matched samples using 
caliper (or Mahalanobis metric) matching and recently developed methods of optimal match-
ing, propensity score matching with multilevel modeling, estimation of propensity scores 
with a generalized boosted regression, and various approaches for postmatching analysis of 
outcomes. Although Chapter 5 focuses on matching, sections on estimating propensity 
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PROPENSITY SCORE ANALYSIS18

Table 1.1 Stata and R Procedures by Analytic Methods

Chapter and Methods

Procedure Name and Useful References

Stata R

Chapter 2

Tests of treatment effect 
heterogeneity

test_condate (Crump, Hotz, 
Imbens, & Mitnik, 2008)

Chapter 4

Heckman (1978, 1979) sample 
selection model 

heckman (StataCorp, 2003) sampleSelection (Toomet & 
Henningsen, 2008)

Maddala (1983) treatment effect 
model

treatreg (StataCorp, 2003)

Chapter 5

Rosenbaum and Rubin’s (1983) 
propensity score matching

psmatch2 (Leuven & Sianesi, 
2003)

cem (Dehejia & Wahba, 1999; 
Iacus, King, & Porro, 2008)

pscore (Becker & Ichino, 2002) Matching (Sekhon, 2007)

MatchIt (Ho, Imai, King, & 
Stuart, 2004)

PSAgraphics (Helmreich & 
Pruzek, 2008)

WhatIf (King & Zeng, 2006, 
2007)

USPS (Obenchain, 2007)

Generalized boosted regression boost (Schonlau, 2007) gbm (McCaffrey, Ridgeway, & 
Morral, 2004)

twang (Ridgeway, McCaffrey, 
Morral, Griffin, & Burgette, 
2013)

Optimal matching (Rosenbaum, 
2002b)

optmatch (Hansen, 2007)

Postmatching covariance imbalance 
check (Haviland, Nagin, & 
Rosenbaum, 2007)

imbalance (Guo, 2008b)

Hodges-Lehmann aligned-rank test 
after optimal matching (Haviland  
et al., 2007; Lehmann, 2006)

hodgesl (Guo, 2008a)
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CHAPTER 1    Introduction 19

Chapter and Methods

Procedure Name and Useful References

Stata R

Propensity score matching with 
multilevel data

logistic, xtlogit, xtmelogit, 
xtmixed (StataCorp, 2007)

glm, glmer, multilevel, nlme  
(R Foundation for Statistical 
Computing, 2013)

Chapter 6

Propensity score subclassification pscore (Becker & Ichino, 2002) MatchIt (Ho, Imai, King, & 
Stuart, 2004)

Zelig (Owen, Imai, King, & Lau, 
2013).

Use Stata programming 
commands to stratify the 
sample and then conduct 
aggregated analysis.

Stratification-multilevel method hte (Jann, Brand, & Xie, 2010)

Chapter 7

Propensity score weighting pweight function specified in a 
multivariate model (StataCorp, 
2003)

probs or weight function used 
in svydesign (R Foundation for 
Statistical Computing, 2013)

twang (Ridgeway et al., 2013)

Chapter 8

Matching estimators (Abadie & 
Imbens, 2002, 2006) 

nnmatch (Abadie, Drukker, Herr, 
& Imbens, 2004)

Matching (Sekhon, 2007)

Chapter 9

Kernel-based matching (Heckman, 
Ichimura, & Todd, 1997, 1998)

psmatch2 (Leuven & Sianesi, 
2003)

Chapter 10

Propensity score analysis of 
categorical or continuous 
treatments

pweight function specified in a 
multivariate model (StataCorp, 
2003), gpscore (Bia & Mattei, 
2008)

Chapter 11

Rosenbaum’s (2002b) sensitivity 
analysis

rbounds (Gangl, 2007), 
mhbounds (Becker & Caliendo, 
2007)

rbounds (Keele, 2008)
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PROPENSITY SCORE ANALYSIS20

scores and strategies for developing optimal models serve also as a guide for the methods 
described in Chapters 6, 7, 9, and 10. In these chapters, virtually the same approaches are 
used to estimate propensity scores. Chapter 6 focuses on propensity score subclassification, 
a method that can be applied to outcome variables that are not normally distributed and 
special types of models such as structural equation modeling. Chapter 7 describes propensity 
score weighting, a robust approach that can also be applied to various types of outcome 
variables, such as time-to-event data, and complex outcome analyses using structural equa-
tion modeling. Chapter 8 describes a collection of matching estimators developed by Abadie 
and Imbens (2002), who provide an extension of Mahalanobis metric matching. Among the 
attractive features of this procedure is its provision of standard errors for various treatment 
effects. Chapter 9 describes propensity score analysis with nonparametric regression. Spe-
cifically, it describes the two-time-period difference-in-differences approach developed by 
Heckman and his colleagues (Heckman, Ichimura, & Todd, 1997, 1998). Chapter 10 describes 
methods to model doses of treatment. This chapter extends the basic methods for binary 
treatment conditions (treated and control) to more complex situations in which a treatment 
variable has more than two conditions and can be either categorical or continuous.

Chapter 11 reviews selection bias, which is the core problem all statistical methods 
described in this book aim to resolve. This chapter gives the selection bias problem a more 
rigorous treatment: We simulate two settings of data generation (i.e., selection on observ-
ables and selection on unobservables) and compare the performance of six models under 
these settings using Monte Carlo studies. Hidden selection bias is a problem that funda-
mentally distinguishes observational studies from randomized experiments. When key 
variables are missing, researchers inevitably stand on thin ice when drawing inferences 
about causal effects in observational studies. However, Rosenbaum’s (2002b) sensitivity 
analysis, which is illustrated in Chapter 11, is a useful tool for testing the sensitivity of study 
findings to hidden selection. This chapter reviews assumptions for all seven models and 
demonstrates practical strategies for model comparison.

Finally, Chapter 12 focuses on continuing issues and challenges in the field. It reviews 
debates on whether propensity score analysis can be employed as a replacement for ran-
domized experiments. It comments on recent advances. And it suggests directions for the 
development of new approaches to observational studies.

NOTES

	 1.	 Excel can be used to calculate the number of combinations of 8 things taken 4 at a time by 
typing the following in a cell: =COMBIN(8,4), and Excel returns the number 70.

	 2.	 If the tea taster gives an outcome other than 11110000, then the number of assignments 
having six exact agreements remains 17. However, there will be a different set of 17 
assignments than those presented here.

	 3.	 Uniform here refers to equal probability for elements in the study population to receive 
treatment.
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