
127

Simulating Generalized Linear Models

6.1 INTRODUCTION

In the previous chapter, we dug much deeper into simulations, choosing to focus
on the standard linear model for all the reasons we discussed. However, most
social scientists study processes that do not conform to the assumptions of OLS.
Thus, most social scientists must use a wide array of other models in their
research. Still, they could benefit greatly from conducting simulations with them.
In this chapter, we discuss several models that are extensions of the linear model
called generalized linear models (GLMs). We focus on how to simulate their
DGPs and evaluate the performance of estimators designed to recover those
DGPs. Specifically, we examine binary, ordered, unordered, count, and duration
GLMs. These models are not quite as straightforward as OLS because the depen-
dent variables are not continuous and unbounded. As we show below, this means
we need to use a slightly different strategy to combine our systematic and sto-
chastic components when simulating the data. None of these examples are meant
to be complete accounts of the models; readers should have some familiarity
beforehand.1

After showing several GLM examples, we close this chapter with a brief discus-
sion of general computational issues that arise when conducting simulations. You
will find that several of the simulations we illustrate in this chapter take much
longer to run than did those from the previous chapter. As the DGPs get more
demanding to simulate, the statistical estimators become more computationally
demanding, and the simulation studies we want to conduct increase in complexity,
we can quickly find ourselves doing projects that require additional resources. We
consider when it is advantageous to use research computing clusters and/or paral-
lel processing. We also show a basic example of parallel processing. We look at
how to distribute the workload of a simulation across multiple cores of a computer
(this can be done on most modern desktops or laptops). As we will see, this can
considerably reduce the time it takes to complete a simulation.

1For lengthier treatments of these models see Faraway (2006), Gelman and Hill (2007),
Greene (2011), King (1998), or Long (1997).

6

128 MONTE CARLO SIMULATION AND RESAMPLING METHODS

6.2 SIMULATING OLS AS A PROBABILITY MODEL

Although OLS is typically taught through its analytic solution using matrix alge-
bra, it can also be estimated by ML, which makes more clear the connections
between OLS, GLMs, and probability theory. ML is a general method of estimat-
ing the unknown parameters of a statistical model using a sample of data.2 We
assume that the outcome we are interested in studying follows some probability
distribution that has one or more unknown parameters that we want to estimate.
In the OLS case, we assume a normal distribution with parameters μ and σ.
Instead of thinking of the error term as taking on a normal distribution, we now
think of the dependent variable as being normally distributed, and we think of the
independent variables informing estimates of μ and/or σ.

To see this more clearly, consider the OLS model as we have seen it to this
point. The dependent variable (Y) is a function of an intercept (β0), coefficients
operating on independent variables (β and X , respectively), and an error term that
follows a normal distribution by assumption (ε).

Y X X= + + + +β β β ε

ε σ

0 1 2 2

0

~ (,)
 (6.1)

Another way to define this same model is to write Y as following a normal
distribution.

Y

X X

~ (,) μ σ

μ β β β= + +0 1 1 2 2
(6.2)

In this representation, we see that Y is normally distributed with the mean (μ) and
a constant standard deviation (σ). The second line of the model expresses μ as
equal to the sum of the coefficients multiplied by the independent variables (often
called the “linear predictor”). In other words, the dependent variable is explicitly
written as following a probability distribution with its mean set to a linear com-
bination of coefficients and independent variables rather than having such a dis-
tribution “attached” to the end of the equation via an error term.

This is important to point out because the dependent variables in other types of
models are assumed to follow other distributions. Thus, creating a DGP for these
kinds of dependent variables is not as straightforward as adding random noise to
the end of an equation. For example, to simulate a binary dependent variable
model (e.g., logistic regression), we need to produce a dependent variable that
takes on only the values of 0 or 1. We cannot do this by simply adding rnorm()
to the end of the equation. Instead, we will use a function to link the systematic
portion of the model to the probability parameter of the Bernoulli distribution,
which we then use to generate a series of Bernoulli trials (e.g., “coin flips”), pro-
ducing the 0s and 1s for our observed dependent variable. In the case of OLS, this

2In fact, ML can be thought of as a general theory of inference (see King, 1998).

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 129

function is called the “identity,” which means we leave the model’s linear predic-
tor unchanged to produce the normal distribution’s μ parameter.

The main consequence of making this change for simulation studies is that we
will generate the DGP in R in a slightly different way. Recall that our simulations
to this point have included some variant of the following lines, used to produce
the dependent variable, Y.3

We can produce this exact same result by writing the code for the last line as
follows. This produces Y using only the rnorm()command with the systematic
component of the model substituted for μ.

Y <- rnorm(n, b0 + b1*X, 1) # The true DGP, Y ~ N(mu, sigma)

You can substitute this second line in the first version in the basic OLS simulation
from Chapter 1 to check their equivalence. We did so. Below is the first six rows
of the results matrix produced using the original code to generate Y (the first
block of code above). Recall that the first and second columns are the estimates
of β0 and β1, respectively, and the third and fourth columns are the standard
errors of β0 and β1, respectively. Recall also that we defined b0 = 0.2, b1 =
0.5, and X is drawn from a uniform distribution bounded by − 1 and 1.

head(par.est)
 [,1] [,2] [,3] [,4]
[1,] 0.2025988 0.4388826 0.03167166 0.05497156
[2,] 0.2109310 0.4665079 0.03173455 0.05508072
[3,] 0.2218581 0.5508824 0.03124873 0.05423750
[4,] 0.2417893 0.5583468 0.03227737 0.05602289
[5,] 0.1927056 0.5097159 0.03146897 0.05461976
[6,] 0.2133593 0.5549790 0.03166222 0.05495519

The results using the new approach from the code above are identical. We encour-
age you to try this to see it for yourself.

head(par.est)
 [,1] [,2] [,3] [,4]
[1,] 0.2025988 0.4388826 0.03167166 0.05497156
[2,] 0.2109310 0.4665079 0.03173455 0.05508072

3Note that this is NOT the complete code needed for the simulation.

b0 <- .2 # True value for the intercept

b1 <- .5 # True value for the slope

n <- 1000 # Sample size

X <- runif(n, -1, 1) # Create a sample of n observations on the

 # independent variable X

Y <- b0 + b1*X + rnorm(n, 0, 1) # The true DGP, with N(0, 1) error

130 MONTE CARLO SIMULATION AND RESAMPLING METHODS

[3,] 0.2218581 0.5508824 0.03124873 0.05423750
[4,] 0.2417893 0.5583468 0.03227737 0.05602289
[5,] 0.1927056 0.5097159 0.03146897 0.05461976
[6,] 0.2133593 0.5549790 0.03166222 0.05495519

In the rest of the simulations in this book, we will use this new approach to gen-
erate the dependent variable explicitly from a given probability distribution.

6.3 SIMULATING GLMS

Having seen the DGP assumed by OLS constructed explicitly from its assumed
probability distribution, we now turn to simulating other types of DGPs and
evaluating different statistical models designed to recover them. In each one, we
use the same basic strategy. We link the systematic component of the model—
which we keep the same as in Chapter 5—to the mean of a probability distribu-
tion, then draw our dependent variable from that distribution. We can then
evaluate the results as we have done in previous chapters.

6.3.1 Binary Models

We start with binary models, where the dependent variable can take on two out-
comes, usually coded 1 or 0. For example, a large literature in political science
examines the determinants of voter turnout. Individual-level turnout involves one
of two options: a person voted (1) or did not vote (0), which researchers then model
as a function of several independent variables. Two of the most common models
are the logistic regression (logit) and probit models. We simulate both below.

To create the DGP for a binary model, we need the systematic component of
the DGP to influence whether an observation is a 1 or 0 on the dependent vari-
able, but we still want to incorporate an element of randomness (e.g., the stochas-
tic component). To do this, we use the rbinom()function to produce each
observation’s value for the dependent variable as a single Bernoulli trial (e.g., a
coin flip). The systematic component of the model affects the probability of
observing a 1. Importantly, this probability is different for each observation,
based on its values of the independent variables. The stochastic component of the
model comes from the fact that the systematic component only effects the prob-
ability of observing a 1, but does not determine it entirely. Even if the probability
of an observation getting a 1 is 0.99, there is still a chance that a single realization
will come up 0. The difference between the logit and probit models lies in exactly
how the probabilities are computed.

Logit

The logit model we simulate is written as follows:

 Pr logit() ()Y X= = +−1 1
0 1β β (6.3)

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 131

To compute the probability of observing a 1 (p) with logit, we use the inverse
logit function (logit−1), which is

exp()

exp()

p

p1+
 (6.4)

Putting this all together, we can rewrite Equation 6.3 as

Pr()

exp()

exp()
Y

X

X
= =

+
+ +

1
1

0 1

0 1

β β

β β
 (6.5)

Several packages in R have functions to do this computation, or we can create our
own.

inv.logit <- function(p){
return(exp(p)/(1 + exp(p)))
}

This function takes the systematic component of the model and translates it into
probabilities varying between 0 and 1. Each observation gets its own probability
because each observation has different values on the independent variable(s).
Here is an example for six observations. First, we define the true parameters b0
and b1, and the independent variable, X.

The first line below reports the first six observed values of X. The second line
reports the expected probability that Y = 1 for those six values, given b0 = 0.2
and b1 = 0.5 in the population DGP.

The next step is putting these probabilities into the rbinom() function to pro-
duce the dependent variable. The first argument is the number of random draws,
which we set to the sample size because we want a draw of either 1 or 0 for each
observation. The second argument is the number of trials. We set this number to
1 because each of the n observations in our data set is one single Bernoulli trial
(one coin flip). Finally, the third argument is the probability of observing a 1 for
each observation; we place our systematic component here. Again, this influences

b0 <- .2 # True value for the intercept
b1 <- .5 # True value for the slope
n <- 1000 # Sample size
X <- runif(n, -1, 1) # Create a sample of n observations on the
 # independent variable X

head(X)

[1] 0.39876948 -0.17150942 -0.49228411 0.19624512 -0.03102461 -0.30160264

head(inv.logit(b0 + b1*X))

[1] 0.5985398 0.5285303 0.4884665 0.5739835 0.5459916 0.5122972

132 MONTE CARLO SIMULATION AND RESAMPLING METHODS

the chances of each observation coming up 1, but does not determine its value
entirely.

As a check to see that Y only takes on values of 0 or 1, you can use the table()
function in R to produce a frequency table, like this:

table(Y)
Y
 0 1
477 523

In this particular example, where n was set equal to 1,000, we ended up with 477
values of 0 and 523 values of 1. If you repeat the code (without setting the seed),
you would expect to get a slightly different number of 0s and 1s just due to ran-
dom chance.

How we generate the dependent variable is the only major difference so far
between this simulation and the OLS simulations we have done in the earlier
chapters. To evaluate the logit model as an estimator of our parameters, we tell R
to estimate a logit model instead of OLS using the glm()function rather than the
lm()function. The full simulation code is below, including the inverse logit
function and coverage probability function (see Chapter 5).

Y <- rbinom(n, 1, inv.logit(b0 + b1*X)) # The true DGP Bernoulli trials

Logit

Inverse Logit Function

inv.logit <- function(p){

return(exp(p)/(1 + exp(p)))

}

CP Function

coverage <- function(b, se, true, level = .95, df = Inf){ # Estimate,

 # standard error,

 # true parameter,

 # confidence level,

 # and df

qtile <- level + (1 - level)/2 # Compute the proper quantile

lower.bound <- b - qt(qtile, df = df)*se # Lower bound

upper.bound <- b + qt(qtile, df = df)*se # Upper bound

Is the true parameter in the confidence interval? (yes = 1)

true.in.ci <- ifelse(true >= lower.bound & true <= upper.bound, 1, 0)

cp <- mean(true.in.ci) # The coverage probability

mc.lower.bound <- cp - 1.96*sqrt((cp*(1 - cp))/length(b)) # Monte Carlo error

mc.upper.bound <- cp + 1.96*sqrt((cp*(1 - cp))/length(b))

return(list(coverage.probability = cp, # Return results

 true.in.ci = true.in.ci,

 ci = cbind(lower.bound, upper.bound),

 mc.eb = c(mc.lower.bound, mc.upper.bound)))

}

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 133

We can then assess results of this logit simulation in the same way that we did
for the OLS simulation we conducted in Chapter 5 (e.g., plot histograms or density
curves of the estimates, compute AB, MSE, or coverage probabilities). Figure 6.1
plots the distributions of the coefficient estimates. We can verify that our simula-
tion worked because both sets of estimates are centered at the true parameter
values. Additionally, the coverage probabilities show no problems: 0.956 (β0)
and 0.958 (β1). Of course, now you could return to the DGP for this simulation
and explore how any alterations to it affect the logit estimator’s ability to accu-
rately and efficiently recover the parameters of the underlying DGP.

Probit

In the probit model, the probability of observing a 1 is assumed to come from the
normal CDF instead of the inverse logit. To simulate a probit model, we simply
replace the inv.logit()function with pnorm()function (recall that this com-
putes the normal CDF) in our DGP. Then, we must set the link function to probit in
the glm()function to estimate the probit model rather than the logit model.

set.seed(32945) # Set the seed for reproducible results

reps <- 1000 # Set the number of repetitions at the top of the script

par.est.logit <- matrix(NA, nrow = reps, ncol = 4) # Empty matrix to store

 # the estimates

b0 <- .2 # True value for the intercept

b1 <- .5 # True value for the slope

n <- 1000 # Sample size

X <- runif(n, -1, 1) # Create a sample of n observations on the

 # independent variable X

for(i in 1:reps){ # Start the loop

Y <- rbinom(n, 1, inv.logit(b0 + b1*X)) # The true DGP, Bernoulli trials

model <- glm(Y ~ X, family = binomial (link = logit)) # Estimate logit model

vcv <- vcov(model) # Variance-covariance matrix

par.est.logit[i, 1] <- model$coef[1] # Put the estimate for the

 # intercept in the first column

par.est.logit[i, 2] <- model$coef[2] # Put the estimate for the coefficient

 # on X in the second column

par.est.logit[i, 3] <- sqrt(diag(vcv)[1]) # SE of the intercept

par.est.logit[i, 4] <- sqrt(diag(vcv)[2]) # SE of the coefficient on X

} # End the loop

Probit

set.seed(3295255) # Set the seed for reproducible results

reps <- 1000 # Set the number of repetitions at the top of the script

par.est.probit <- matrix(NA, nrow = reps, ncol = 4) # Empty matrix to store

 # the estimates

134 MONTE CARLO SIMULATION AND RESAMPLING METHODS

Figure 6.1 Histograms of 1,000 Simulated Logit β0 and β1 Estimates

b0 <- .2 # True value for the intercept

b1 <- .5 # True value for the slope

n <- 1000 # Sample size

X <- runif(n, -1, 1) # Create a sample of n observations on the

 # independent variable X

for(i in 1:reps){ # Start the loop

Y <- rbinom(n, 1, pnorm(b0 + b1*X)) # The true DGP, Bernoulli trials

model <- glm(Y ~ X, family = binomial (link = probit)) # Estimate probit model

vcv <- vcov(model) # Variance-covariance matrix

par.est.probit[i, 1] <- model$coef[1] # Put the estimate for the

 # intercept in the first column

par.est.probit[i, 2] <- model$coef[2] # Put the estimate for the coefficient

 # on X in the second column

par.est.probit[i, 3] <- sqrt(diag(vcv)[1]) # SE of the intercept

par.est.probit[i, 4] <- sqrt(diag(vcv)[2]) # SE of the coefficient on X

} # End the loop

We can then assess results as usual. Again, we see that the means of the estimates
are very close to the true values, and the coverage probabilities are near 0.95. Now
that you know how to simulate a proper DGP for the probit model, you can explore
how changes to that DGP affect the results produced by your simulation.

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 135

6.3.2 Ordered Models

The ordered models we consider here represent extensions of the binary models
we presented in the last section. Ordered models allow for more than two categories
on the dependent variable to be observed, but with a rank ordering to those catego-
ries. An example could be a survey question that asks respondents how often they
feel angry about their job, with answer choices “never,” “seldom,” “often,” or
“every day.” This variable has four categories with a clear ordering. We can use an
ordered logit or ordered probit model to estimate the effect of an independent vari-
able on the probability of a respondent falling into the available categories.

To simulate an ordered model, we use a latent variable interpretation of the
dependent variable.4 The idea behind this interpretation is that we would prefer
to measure the dependent variable of interest on a continuous scale and then
model it as a linear function of one or more independent variables. However, the
measure we have of the dependent variable only records whether respondents fall
into one of several categories. We call the unobserved continuous measure Y *.
The observed dependent variable, Y, represents categories that each cover a range
of this unobserved latent variable. Formally, labeling the cutpoints between the k
categories τk, Y is defined as follows.5

Y =

≤
≤
≤

1 if * <
2 if * <
3 if * <
4 if * <

1

3

Y
Y
Y
Y

τ
τ τ
τ τ
τ τ

1 2
2
3 4

.

.

..
*k Y if ≥

τK

 (6.6)

4This same interpretation could also apply to the logit and probit models that we described in the
previous section. See Long (1997) for an excellent presentation of the latent variable approach.

5Different texts use different Greek letters or other symbols to refer to these cutpoints,
including μ, ς, and c. We follow Long’s (1997) use of τ below. The R command polr()
that we use in estimation refers to the cutpoints as zeta.

mean(par.est.probit[, 1]) # Mean of intercept estimates
[1] 0.2007092
mean(par.est.probit[, 2]) # Mean of coefficient on X estimates
[1] 0.4996981
Coverage probability for the intercept
coverage(par.est.probit[, 1], par.est.probit[, 3], b0,
 df = n - model$rank)$coverage.probability
[1] 0.957
Coverage probability for the coefficient on X
coverage(par.est.probit[, 2], par.est.probit[, 4], b1,
 df = n - model$rank)$coverage.probability
 [1] 0.942

136 MONTE CARLO SIMULATION AND RESAMPLING METHODS

Figure 6.2 provides an example with simulated data. We plot Y * on the x-axis
and the four categories of Y on the y-axis. The three vertical dashed lines mark
the three cutpoints that divide the values of Y * into the four categories of Y.
Notice that as Y * increases, Y also increases, but there is some loss in precision—
observations within the same category of Y have different values for Y *.

In this example, we will simulate an ordered probit model, which assumes that
the unobserved Y * is normally distributed.6 In this example, we will simulate one
common systematic component of the model across all categories, which means
that the effect of a change in X on the probability of a respondent moving from
one category on Y to the next remains the same across all categories.7 Just like
the simulations for binary logit and probit, our task is to construct a DGP that

6We could use this same procedure to simulate ordered logit using the logistic distribution.

7By “same,” we do not mean that the probability of being in any of the categories must be
equal to each other—they do not. Rather, the best way to think about this assumption is
that Y* is assumed to be a linear function of X. This fulfills the proportional odds assump-
tion (also called the “parallel regressions” assumption) of standard ordered models (see
Long, 1997).

Figure 6.2 Illustration of the Dependent Variable in an Ordered Model

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 137

captures the probability of Y * falling in a particular category given the location
defined by the systematic component of a model plus its stochastic component.
For the latent variable framework we present, what we need to do is generate
random samples of Y * and then assign those simulated values of Y * to different
categories of Y based on where those Y * values are relative to the cutpoints. That
means we need a method of defining those cutpoints.

Because Y * is a latent variable—a variable we do not directly observe or mea-
sure—it has no defined scale. Thus, before we can estimate the model, we need
to establish a scale for it. Specifically, we need to define a location and a variance
for Y.* To define the variance, we first need to define the probability distribution
we assume for it, which for ordered models is typically either the normal or logis-
tic distribution. We know by definition that the variance for the standard normal
is equal to 1, while the variance for the standard logistic is equal to π

2

3
. Thus,

the variance of the stochastic portion Y * will be either 1 (for a normal) or π
2

3

(for a logistic), which could be multiplied by some constant if you wanted to
introduce more or less variance in the stochastic portion of Y *. In fact, we were
making these assumptions about the variance of the stochastic term when we
estimated binary logit and probit models in the previous sections.

The location of Y * can be set in a number of ways, two of which are most common.
First, we could set one of the cutpoints equal to zero and then estimate the model’s
intercept term (β0) and the rest of the cutpoints relative to the cutpoint fixed at zero.
In fact, this is the default built into most binary logit and probit estimation routines in
statistical software, including those we used above. In binary logit and probit, there is
only one cutpoint anyway, so setting it to zero and estimating the intercept is common
because that looks familiar to users of OLS and many other GLMs.

The second common alternative that many software programs use, including the
R function we will use below, is to fix the intercept term at zero and then produce
estimates of all of the cutpoints relative to that intercept. There is no right or wrong
answer regarding which strategy to use—not even a better or worse. The intercept
and the cutpoints cannot be estimated in absolute terms—they can only be estimated
relative to each other. In other words, the model is not identified in a statistical sense
without restricting one of these to zero. Importantly, the choice of which one to set
at zero will not affect the relative estimates of the others. Most important, the choice
of whether we set β0 to zero or one of the τ parameters to zero has absolutely no
effect on the estimate of our slope parameters, and it has absolutely no effect on our
estimates of the probability of an observation falling into a given category of Y . In
this simulation, we will set the intercept to zero and estimate the different cutpoints.

Because our statistical estimator is going to fix β0 to zero and produce estimates
of the cutpoints, we need a way to define those cutpoints in our DGP so that we
can check to see if our estimator accurately recovers them. To determine the values
of the cutpoints in the DGP, we need to define them relative to the probability
distribution that Y * follows. In other words, we need to know the expected popu-
lation mean and variance of Y * before we simulate the DGP for Y . We take advan-
tage of a couple of shortcuts here to make the problem more tractable.

138 MONTE CARLO SIMULATION AND RESAMPLING METHODS

Remember that Y * is the sum of a systematic and a stochastic component. As
such, both the mean and the variance of Y * will come from the means and vari-
ances of these two components. For this simulation, we will consider the ordered
probit model, which means we know the stochastic component of the model will
follow a normal distribution with a mean of zero and a constant variance. For this
simulation, we are going to draw our values for X from a normal distribution as
well (rather than the uniform distribution we have been using). Because the val-
ues of the β coefficients in the DGP are fixed, the systematic component of our
DGP will also be normally distributed with a mean of β0 + β1X and a constant
variance. If two random variables are each normally distributed, their sum will
also be normally distributed, with the mean and variance defined as follows:

A N

B N

AB A B

AB N

A A

B B

A B A B

~ (,)

~ (,)

~ (,)

µ

µ µ

σ

μ σ

σ σ

2

2

2 2

= +

+ +

Thus, in this simulation, Y * will be normally distributed with an expected mean
equal to the mean of the systematic portion of the model, β0 + β1X plus zero
(because the expected mean of the error is zero) and a variance equal to the vari-
ance of β0 + β1X plus whatever we set for the variance of the stochastic compo-
nent of the model.

This allows us to use the quantiles associated with a normally distributed vari-
able with a defined mean and variance to generate cutpoints for our DGP.
Specifically, the qnorm()function in R will produce a quantile from a normal
distribution for a defined probability, mean, and variance. For example, if you
want to know the cutpoint on a normal distribution that separates the lower 25%
of the distribution from the upper 75% of the distribution, and that normal distri-
bution has a mean of 5 and a standard deviation of 7, you would type

qnorm(.25, mean = 5, sd = 7)
[1] 0.2785717

This returns a value of just over 0.278. Now, we can finally do a simulation of an
ordered probit model. In this example, we generate a dependent variable that will
have four categories. Our DGP will assume that 10% of the observations fall in
the first category, 40% fall in the second category, another 40% fall in the third
category, and the last 10% fall in the fourth category.8 We will use a single inde-
pendent variable again, and we will set the intercept equal to zero in the DGP
because the statistical estimator we use below will fix the intercept to zero and
estimate the cutpoints. We will evaluate our simulation based on its ability to

8This distribution is defined for the DGP. Of course, the observed distribution of observa-
tions across the four categories will vary from sample to sample due to randomness.

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 139

recover the slope coefficient and the cutpoints. This first block of code defines
several values and variables, including β0, β1, X, and our three cutpoints.

Next, inside the for loop we generate the object Y.star, the unobserved
dependent variable. We create this using the rnorm()function in the same way
as if we were simulating an OLS model.9 Then, we generate the observed depen-
dent variable, Y, such that observations of Y * falling below the first cutpoint, τ1,
get coded as 1, those between τ1 and τ2 get coded as 2, those between τ2 and τ3
get coded as 3, and those above τ3 get coded as 4. We do this in R by using the
square brackets and the logical operators from Table 4.2. For example, the code
Y[Y.star < tau1] <- 1 means “for observations in which Y.star is less
than the object tau1, code Y as a 1.”

Then, we need to tell R to estimate an ordered probit model, which we can do
with the polr()function from the MASS package.

9If we wanted to simulate ordered logit, we would use the rlogis()function.

Ordered Models

library(MASS)

set.seed(8732) # Set the seed for reproducible results

reps <- 1000 # Set the number of repetitions at the top of the script

par.est.oprobit <- matrix(NA, nrow = reps, ncol = 2) # Empty matrices to store

taus.oprobit <- matrix(NA, nrow = reps, ncol = 3) # the estimates

b0 <- 0 # True value for the intercept

b1 <- .5 # True value for the slope

n <- 1000 # Sample size

X <- rnorm(n, 0, 1) # Create a sample of n observations on the

 # independent variable X

XB <- b0 + b1*X # Systematic component

sd.error <- 1 # SD of the error of the unobserved Y*

Define the true cutpoints

tau1 <- qnorm(.1, mean = mean(XB), sd = sqrt(var(XB) + sd.error^2))

tau2 <- qnorm(.5, mean = mean(XB), sd = sqrt(var(XB) + sd.error^2))

tau3 <- qnorm(.9, mean = mean(XB), sd = sqrt(var(XB) + sd.error^2))

for(i in 1:reps){ # Start the loop
Y.star <- rnorm(n, XB, sd.error) # The unobserved Y*
Y <- rep(NA, n) # Define Y as a vector of NAs with length n
Y[Y.star < tau1] <- 1 # Set Y equal to a value according to Y.star
Y[Y.star >= tau1 & Y.star < tau2] <- 2
Y[Y.star >= tau2 & Y.star < tau3] <- 3
Y[Y.star >= tau3] <- 4

model <- polr(as.ordered(Y) ~ X, method = “probit”, Hess = TRUE)

140 MONTE CARLO SIMULATION AND RESAMPLING METHODS

We add a few options to this code. First, we wrap the as.ordered()function
around the dependent variable to tell R that it should treat it as an ordered vari-
able. Additionally, notice that the polr()function takes the argument method,
which we set to “probit” for an ordered probit model (type ?polr for other
options). Finally, Hess = TRUE tells R that we want to produce the standard
errors. The complete simulation code is below. Note that we also create an empty
matrix called par.est.oprobit to store the estimates of β1 and its standard
error, and a second empty matrix called taus.oprobit to store the estimates
of the cutpoints from the simulation.

Ordered Models

library(MASS)

set.seed(8732) # Set the seed for reproducible results

reps <- 1000 # Set the number of repetitions at the top of the script

par.est.oprobit <- matrix(NA, nrow = reps, ncol = 2) # Empty matrices to store

taus.oprobit <- matrix(NA, nrow = reps, ncol = 3) # the estimates

b0 <- 0 # True value for the intercept

b1 <- .5 # True value for the slope

n <- 1000 # Sample size

X <- rnorm(n, 0, 1) # Create a sample of n observations on the

 # independent variable X

XB <- b0 + b1*X # Systematic component

sd.error <- 1 # SD of the error of the unobserved Y*

Define the true cutpoints

tau1 <- qnorm(.1, mean = mean(XB), sd = sqrt(var(XB) + sd.error^2))

tau2 <- qnorm(.5, mean = mean(XB), sd = sqrt(var(XB) + sd.error^2))

tau3 <- qnorm(.9, mean = mean(XB), sd = sqrt(var(XB) + sd.error^2))

for(i in 1:reps){ # Start the loop

Y.star <- rnorm(n, XB, sd.error) # The unobserved Y*

Y <- rep(NA, n) # Define Y as a vector of NAs with length n

Y[Y.star < tau1] <- 1 # Set Y equal to a value according to Y.star

Y[Y.star >= tau1 & Y.star < tau2] <- 2

Y[Y.star >= tau2 & Y.star < tau3] <- 3

Y[Y.star >= tau3] <- 4

Estimate ordered model

model <- polr(as.ordered(Y) ~ X, method = “probit”, Hess = TRUE)

vcv <- vcov(model) # Variance-covariance matrix

par.est.oprobit[i, 1] <- model$coef[1] # Put the estimate for the coefficient

 # on X in the second column

par.est.oprobit[i, 2] <- sqrt(diag(vcv)[1]) # SE of the coefficient on X

taus.oprobit[i,] <- model$zeta

cat(“Just completed iteration”, i, “\n”)

} # End the loop

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 141

We can check the results by computing the mean of the vector of simulated
estimates of β1, the means of the estimated cutpoints (τ1, τ2, and τ3), and the
coverage probability for the standard error of β1. All of these quantities are very
close to their true values.

6.3.3 Multinomial Models

Multinomial models also have dependent variables that consist of more than
two categories, but there is no inherent rank–order relationship between the cat-
egories. For example, a prospective homeowner may receive financial assistance
for a down payment on the home from a family member, a community grant
program, or an employer. There is no ordering from “less” to “more” among these
outcomes as there are with ordered variables. A model such as multinomial logit
(MNL) or multinomial probit (MNP) can be used to estimate the probability of
observing one of the outcomes given the independent variables.10 In this section,
we will focus on MNL.

A distinguishing feature of MNL is that for K possible outcomes, it estimates
K − 1 sets of coefficients on the independent variable(s)—treating one category
as a baseline and estimating sets of coefficients comparing each of the other cat-
egories with that baseline category. One way to conceptualize MNL is as a series
of logit models connected together, one for each outcome (hence the multiple
sets of coefficients).11 Recall that our inverse logit function produced expected

probabilities of observing a 1 with the logit model by computing
exp()

exp()
.

β β

β β

0 1

0 11

+
+ +

X

X

10See Kropko (2008) for a simulation study that compares MNL to MNP.

11A distinguishing feature of this model is the IIA assumption, which stands for “independence
of irrelevant alternatives.” Briefly, this means that the relative probabilities between two out-
come categories do not change if another outcome category is introduced. Consider a group of
people deciding on which restaurant to choose for lunch. If the chance of selecting Restaurant
A over Restaurant B changes when Restaurant C becomes a possibility, IIA is violated.

mean(par.est.oprobit[, 1]) # Mean of coefficient on X estimates
[1] 0.5020573

Compare the actual taus to the means of the tau estimates
data.frame(True = c(tau1, tau2, tau3),
 Estimated = apply(taus.oprobit, 2, mean))
 True Estimated
1 -1.429516141 -1.430006071
2 0.006193689 0.009096949
3 1.441903520 1.445353416

Coverage probability for the coefficient on X
coverage(par.est.oprobit[, 1], par.est.oprobit[, 2], b1,
 df = n - length(c(coef(model), model$zeta)))$coverage.probability
[1] 0.944

142 MONTE CARLO SIMULATION AND RESAMPLING METHODS

We can compute expected probabilities for multiple logit models by adding
multiple systematic components to that formula. For example, consider a depen-
dent variable, Y, with three outcomes (A, B , or C) and Category C as the baseline
category. The probability of Outcome A can be written as follows.12

Pr()

exp()

exp() exp()
Y A

X

X X
A A

A A B B
= =

+
+ + + +

β β

β β β β

0 1

0 1 0 11
 (6.7)

Notice that there are different coefficients for Outcome A (β0A, β1A) and Outcome
B (β0B, β1B). The probability of Outcome B is defined similarly.

Pr()

exp()

exp() exp()
Y B

X

X X
B B

A A B B
= =

+
+ + + +

β β

β β β β

0 1

0 1 0 11
 (6.8)

Finally, we take advantage of the fact that the probabilities of the three outcomes
must sum to 1 (i.e., the three outcomes are mutually exclusive and exhaustive).
That means the probability of Outcome C is relatively straightforward.

 Pr Pr Pr() () ()Y C Y A Y B= = − = − =1 (6.9)

To simulate this type of dependent variable, we need to make a few changes to
our code. First, we need to set true values of the coefficients for two of the outcomes
(remember, one outcome is used as a baseline category). Instead of just b0 and b1,
we create b0A and b1A for Outcome A and b0B and b1B for Outcome B.

Next, outside the for loop we compute the probabilities from these coefficients
using Equations 6.7 to 6.9. This can be done outside the for loop because these

12The “1” appears in the denominator because the linear predictor of the baseline category
(C) is set to zero, and exp(0) = 1.

Unordered Models

library(Zelig)

set.seed(45262) # Set the seed for reproducible results

reps <- 1000 # Set the number of repetitions at the top of the script

par.est.mnl <- matrix(NA, nrow = reps, ncol = 4) # Empty matrix to store

 # the estimates

b0A <- .2 # True values for the intercepts

b0B <- -.2

b1A <- .5 # True values for the slopes

b1B <- .75

n <- 1000 # Sample size

X <- runif(n, -1, 1) # Create a sample of n observations on the

 # independent variable X

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 143

probabilities only represent the systematic component of the model (which is the
same in every repetition of the simulation), not the stochastic component.

The next step is to combine the systematic and stochastic components inside
the for loop to create the dependent variable. To do this, we use the sample()
function inside a separate for loop that iterates through every observation in the
sample. For each observation, we draw a “sample” of length 1 from the letters A,
B, and C with replacement (i.e., each observation gets an A , B , or C for the
dependent variable). Importantly, we make use of the prob argument within the
sample()function to define the probabilities of getting an A , B , or C for each
observation. We use the for loop to iterate through each observation because
these probabilities are unique to each observation based on the independent
variable(s) from the systematic portion of the model.

For example, the code below shows the result of sample()for the first obser-
vation and the 983rd observation in the last data set in the simulation below. The
probabilities of each outcome are about 0.41 (Outcome A), 0.30 (Outcome B),
and 0.29 (Outcome C) for Observation #1. In this case, Outcome A was drawn.
The probabilities of each outcome for Observation #983 are 0.39, 0.25, and 0.36,
respectively. In that case, Outcome B was chosen even though it had the lowest
probability of the three options.

Observation 1
c(pA[1], pB[1], pC[1])
[1] 0.4127436 0.3001694 0.2870870
Y[1]
[1] “A”

Observation 983
c(pA[983], pB[983], pC[983])
[1] 0.3931114 0.2503725 0.3565161
Y[983]
[1] “B”

The next step is to estimate the model and store the results as usual. The com-
plete simulation code is below. Several packages will estimate MNL, including

Compute the probabilities of each outcome based on the DGP
pA <- exp(b0A + b1A*X)/(1 + exp(b0A + b1A*X) + exp(b0B + b1B*X))
pB <- exp(b0B + b1B*X)/(1 + exp(b0A + b1A*X) + exp(b0B + b1B*X))
pC <- 1 - pA - pB

for(i in 1:reps){ # Start the loop
Y <- rep(NA, n) # Define Y as a vector of NAs with length n
for(j in 1:n){ # Create the dependent variable in another loop
Y[j] <- sample(c(“A”, “B”, “C”), 1, replace = TRUE,
prob = c(pA[j], pB[j], pC[j]))
}

144 MONTE CARLO SIMULATION AND RESAMPLING METHODS

Zelig. Similar to ordered models, it is helpful to wrap as.factor()around
the dependent variable name to tell R that it is a factor variable (not ordered).
Additionally, notice the use of the coefficients()function to store the coef-
ficient estimates from the model.

As before, we can then examine the results to check that our estimates come
close to the true DGP. Generally, the results look good, though the mean of the
estimate on β1B is a bit off the true value of 0.75 (mean of 0.757). Of course, this
is due to random chance. We ran the simulation again with the number of repeti-
tions set to 10,000 and came up with a mean of 0.75.

Unordered Models

library(Zelig)

set.seed(45262) # Set the seed for reproducible results

reps <- 1000 # Set the number of repetitions at the top of the script

par.est.mnl <- matrix(NA, nrow = reps, ncol = 4) # Empty matrix to store the

 # estimates

b0A <- .2 # True values for the intercepts

b0B <- -.2

b1A <- .5 # True values for the slopes

b1B <- .75

n <- 1000 # Sample size

X <- runif(n, -1, 1) # Create a sample of n observations on the

 # independent variable X

Compute the probabilities of each outcome based on the DGP

pA <- exp(b0A + b1A*X)/(1 + exp(b0A + b1A*X) + exp(b0B + b1B*X))

pB <- exp(b0B + b1B*X)/(1 + exp(b0A + b1A*X) + exp(b0B + b1B*X))

pC <- 1 - pA - pB

for(i in 1:reps){ # Start the loop

Y <- rep(NA, n) # Define Y as a vector of NAs with length n

for(j in 1:n){ # Create the dependent variable in another loop

Y[j] <- sample(c(“A”, “B”, “C”), 1, replace = TRUE,

prob = c(pA[j], pB[j], pC[j]))

 }

Estimate a MNL model

model <- zelig(as.factor(Y) ~ X, model = “mlogit”,

 data = data.frame(Y, X), cite = FALSE)

vcv <- vcov(model) # Variance-covariance matrix

par.est.mnl[i, 1] <- coefficients(model)[3] # Coefficient on X, outcome 1

par.est.mnl[i, 2] <- coefficients(model)[4] # Coefficient on X, outcome 2

par.est.mnl[i, 3] <- sqrt(diag(vcv)[3]) # SE of coefficient on X, outcome 1

par.est.mnl[i, 4] <- sqrt(diag(vcv)[4]) # SE of coefficient on X, outcome 2

cat(“Just completed iteration”, i, “\n”)

} # End the loop

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 145

Mean of coefficients on X estimates
mean(par.est.mnl[, 1]) # Outcome 1
[1] 0.5011012
mean(par.est.mnl[, 2]) # Outcome 2
[1] 0.7565751

Coverage probabilities for the coefficients on X
Outcome 1
coverage(par.est.mnl[, 1], par.est.mnl[, 3], b1A,
 df =n - length(coef(model)))$coverage.probability
[1] 0.949
Outcome 2
coverage(par.est.mnl[, 2], par.est.mnl[, 4], b1B,
 df = n - length(coef(model)))$coverage.probability
[1] 0.958

6.4 EXTENDED EXAMPLES

The examples we have shown so far in this chapter have been relatively similar
to each other and to the OLS examples from the previous chapters. We create the
DGP of a particular estimator, generate data from that DGP many times, estimate
the model on each simulated data set, then check to see if we accurately recovered
the true DGP through the estimator. We kept things relatively simple in each
simulation by not violating any of the assumptions of the models we explored.
We encourage interested readers to expand and refine these simulations for other
analyses, possibly exploring changes to the DGPs and observing how the various
models perform. However, simulation is also a valuable tool for better under-
standing problems that arise in real data and comparing the ability of competing
estimators to handle them. We show examples of this below.

6.4.1 Ordered or Multinomial?

Ordered and multinomial models are similar in the sense that the dependent
variables are each composed of a finite number of categories. The difference is that
ordered models assume there truly is an ordered structure to those categories, while
the DGP of the multinomial model is assumed to have no inherent ordering. This
leads to the question of consequences for violating these assumptions. What would
happen if we estimated a multinomial model on a dependent variable that is truly
ordered or an ordered model on a dependent variable that is truly unordered?

In his book Regression Models for Categorical and Limited Dependent
Variables, Long (1997) provides the following answer to these questions:

If a dependent variable is ordinal and a model for nominal variables [e.g., multinomial
logit] is used, there is a loss of efficiency since information is being ignored. On the other
hand, when a method for ordinal variables [e.g., ordered logit] is applied to a nominal
dependent variable, the resulting estimates are biased or even nonsensical (p. 149).

146 MONTE CARLO SIMULATION AND RESAMPLING METHODS

We can validate Long’s assertions with a simulation. We will create two different
DGPs with one independent variable—one DGP in which the dependent variable
is ordered and one in which it is unordered—then estimate an ordered logit and a
multinomial logit on each of these dependent variables (four models in total). For
each of the four models, we will compute the change in expected probability for
each category associated with moving from the minimum to the maximum value
of the independent variable (e.g., the marginal effect of X).13

The first part of the code is given below. It is adapted from the last two exam-
ples, but in this case, both the ordered and unordered dependent variables are
created with three numeric categories (1, 2, and 3). We create both with numeric
categories so that we can estimate an ordered model on each. If we generated the
unordered dependent variable as “A,” “B,” and “C,” the ordered model would
produce an error. Also, we create the object d.pp, which is a group of matrices
(called an array), to store changes in expected probabilities estimated from the
models (see below).

13We cannot directly compare coefficients between ordered and unordered models because
the former produces one set of coefficients and the other produces multiple sets of coef-
ficients (one for each category minus the baseline category).

Ordered vs. MNL

library(Zelig)

set.seed(99999)

reps <- 1000 # Set the number of repetitions at the top of the script

d.pp <- array(NA, c(4, 3, reps)) # Empty array to store

 # simulated change in probabilities

Ordered logit model DGP

b0 <- 0 # True value for the intercept

b1 <- .5 # True value for the slope

n <- 1000 # Sample size

X <- runif(n, -1, 1) # Create a sample of n observations on the

 # independent variable X

MNL model DGP

b0A <- .2 # True values for the intercepts

b0B <- -.2

b1A <- .5 # True values for the slopes

b1B <- .75

n <- 1000 # Sample size

Compute the probabilities of each outcome based on the DGP

pA <- exp(b0A + b1A*X)/(1 + exp(b0A + b1A*X) + exp(b0B + b1B*X))

pB <- exp(b0B + b1B*X)/(1 + exp(b0A + b1A*X) + exp(b0B + b1B*X))

pC <- 1 - pA - pB

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 147

Next, we need to estimate an ordered logit and an MNL on both dependent
variables. We use the zelig()command for both types of models.14 The object
names reflect the type of model and whether that model makes the “correct”
assumption about the DGP. For example, o.correct is an ordered logit model
of the dependent variable that is truly ordered. In contrast, m.incorrect is an
MNL model of the dependent variable that is truly ordered.

Estimate the models with the ordered dependent variable
o.correct <- zelig(as.ordered(Y.o) ~ X, model = “ologit”,
 data = o.data, cite = FALSE)
m.incorrect <- zelig(as.factor(Y.o) ~ X, model = “mlogit”,
 data = o.data, cite = FALSE)

Estimate the models with the multinomial dependent variable
m.correct <- zelig(as.factor(Y.m) ~ X, model = “mlogit”,
 data = m.data, cite = FALSE)
o.incorrect <- zelig(as.ordered(Y.m) ~ X, model = “ologit”,
 data = m.data, cite = FALSE)

Recall that ordered models assume that one set of coefficients characterizes the
effect of the independent variables on the dependent variable, regardless of the
category (the proportional odds or parallel regressions assumption). In contrast,
multinomial models estimate a different set of coefficients for all but one of the
categories. As a result, the coefficients from the two types of models are not
directly comparable to each other.

14The zelig()command uses polr()to conduct the estimation, but makes computing
changes in expected probabilities easier.

for(i in 1:reps){

Ordered dependent variable

Y.star <- rlogis(n, b0 + b1*X, 1) # The unobserved Y*

Define the true cutpoints

tau1 <- quantile(Y.star, .25)

tau2 <- quantile(Y.star, .75)

Y.o <- rep(NA, n) # Define Y as a vector of NAs with length n

Y.o[Y.star < tau1] <- 1 # Set Y equal to a value according to Y.star

Y.o[Y.star >= tau1 & Y.star < tau2] <- 2

Y.o[Y.star >= tau2] <- 3

Ordered data

o.data <- data.frame(Y.o, X) # Put the data in a data frame

Unordered dependent variable

Y.m <- rep(NA, n) # Define Y as a vector of NAs with length n

for(j in 1:n){ # Create the dependent variable in another loop

Y.m[j] <- sample(1:3, 1, replace = TRUE, prob = c(pA[j], pB[j], pC[j]))

}

Unordered data

m.data <- data.frame(Y.m, X) # Put the data in a data frame

148 MONTE CARLO SIMULATION AND RESAMPLING METHODS

However, we can compare changes in the expected probability of each cate-
gory computed from each model. The Zelig package allows this to be done
with the setx()and sim()commands. We discuss these commands in more
detail in Chapter 9, but for now the basic idea is that we can set the independent
variable to some values (in this case, the minimum and maximum), and simu-
late the change in expected probability for each category moving between those
two values. We store these values in the array d.pp. Recall from above that an
array is a group of matrices. In this case, the object contains 1,000 matrices
(one for each repetition in the simulation) with four rows and three columns
each. In each iteration of the for loop, a matrix in d.pp is filled with the
change in expected probability of each of the three categories (columns) for
each of the four models (rows).15

The final step is to compare the changes in expected probabilities. We know
that those computed from the models o.correct and m.correct are, in
fact, correct, because in each one the estimator’s assumptions about the DGP
match the truth. To assess Long’s (1997) claim, we need to compare the results
from o.incorrect and m.incorrect to o.correct and m.correct,

15Specifically, the objects sim.oc, sim.mi, sim.mc, and sim.oi hold 100 simulated
changes in the expected probability for each category. We use the apply()command to
compute the mean change in each of the three categories. See Chapter 9 for more details on
this method, which we call “QI (quantities of interest) simulation.”

Set X to its minimum and maximum for each model

x.oc <- setx(o.correct, X = min(X)) # For o.correct

x.oc1 <- setx(o.correct, X = max(X))

x.mi <- setx(m.incorrect, X = min(X)) # For m.incorrect

x.mi1 <- setx(m.incorrect, X = max(X))

x.mc <- setx(m.correct, X = min(X)) # For m.correct

x.mc1 <- setx(m.correct, X = max(X))

x.oi <- setx(o.incorrect, X = min(X)) # For o.incorrect

x.oi1 <- setx(o.incorrect, X = max(X))

Compute the change in expected probabilities of falling in each category

when moving from the minimum to the maximum of X

sim.oc <- sim(o.correct, x = x.oc, x1 = x.oc1)qifd

sim.mi <- sim(m.incorrect, x = x.mi, x1 = x.mi1)qifd

sim.mc <- sim(m.correct, x = x.mc, x1 = x.mc1)qifd

sim.oi <- sim(o.incorrect, x = x.oi, x1 = x.oi1)qifd

d.pp[1, , i] <- apply(sim.oc, 2, mean)

d.pp[2, , i] <- apply(sim.mi, 2, mean)

d.pp[3, , i] <- apply(sim.mc, 2, mean)

d.pp[4, , i] <- apply(sim.oi, 2, mean)

cat(“Just completed iteration”, i, “of”, reps, “\n”)

}

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 149

respectively. In the last section of the code, we compute the means and standard
deviations of the 1,000 sets of changes in the expected probability of each cate-
gory (remember the for loop ran for 1,000 iterations). These quantities allow us
to assess bias and efficiency, respectively.

Compute the average change in probability
for each of the four models
dpp.means <- rbind(apply(d.pp[1, ,], 1, mean),
 apply(d.pp[2, ,], 1, mean), apply(d.pp[3, ,], 1, mean),
 apply(d.pp[4, ,], 1, mean))

Compute the SD of the change in probability
for each of the four models
dpp.sds <- rbind(apply(d.pp[1, ,], 1, sd),
 apply(d.pp[2, ,], 1, sd), apply(d.pp[3, ,], 1, sd),
 apply(d.pp[4, ,], 1, sd))

We present these results in Table 6.1. The top half of the table gives the means
of the 1,000 simulated changes in expected probability for each category
computed by each model/dependent variable combination. The bottom half of the
table reports the standard deviations of those simulated changes.

Table 6.1 Means and Standard Deviations of the Simulated Changes in
Expected Probability for Each Category With Ordered Logit and
MNL Models

Category: 1 2 3

Means

Ordered DV, Ordered Model –0.1820 –0.0015 0.1835

Ordered DV, MNL Model –0.1800 –0.0040 0.1840

Unordered DV, MNL Model 0.0718 0.1852 –0.2570

Unordered DV, Ordered Model 0.1668 –0.0107 –0.1561

Standard Deviations

Ordered DV, Ordered Model 0.0364 0.0013 0.0370

Ordered DV, MNL Model 0.0442 0.0522 0.0453

Unordered DV, MNL Model 0.0508 0.0472 0.0459

Unordered DV, Ordered Model 0.0443 0.0056 0.0421

Note: The top half of the table gives the means of the 1,000 simulated changes in expected
probability for each category computed by each model/dependent variable combination.
The bottom half of the table reports the standard deviations of those simulated changes.

150 MONTE CARLO SIMULATION AND RESAMPLING METHODS

Beginning with the means, notice that when the dependent variable is truly
ordered, the ordered model and MNL model produce changes in the expected
probability of each category that are nearly identical. In contrast, when the depen-
dent variable is truly unordered, the two models diverge considerably; the incor-
rect ordered model does not return the same changes in expected probabilities
that the correct MNL model does. Moving to the standard deviations, notice that
they are larger with the MNL model under both dependent variable scenarios.
This is not surprising given that the MNL model estimates more parameters than
does the ordered model, and thus uses more degrees of freedom.

In short, the results validate Long’s (1997) claim. When the dependent variable
is truly ordered, but a multinomial model is incorrectly used, no bias results (sim-
ilar means), but there is a loss of efficiency (larger standard deviations for MNL).
This is because the multinomial model is simply not using all of the available
information (i.e., the ordered structure of Y), and so it estimates parameters that
it does not need (coefficients for each category). In contrast, when an ordered
model is applied to a truly unordered dependent variable, the corresponding
changes in expected probabilities are biased because the estimator tries to impose
an ordered structure that is not really there.

6.4.2 Count Models

We next move to a few examples of simulations with count models. Count
models are used for dependent variables that take on positive integer values.
Examples include the number of births at a hospital in a day or the number of
patents awarded during some period. Count models allow the analyst to model
such variables as a function of independent variables. A typical starting point for
estimating the parameters of a count model is Poisson regression.

The Poisson Model

Recall from Chapter 2 that the Poisson distribution has one parameter, λ, which
is both the mean and variance of the distribution. Poisson regression links the
systematic portion of the model to a Poisson distribution through λ. It assumes
the natural log of the dependent variable’s expected value can be modeled by the
sum of the independent variables multiplied by their coefficients.

 log[(|)]E Y X X X= + +β β β0 1 1 2 2 (6.10)

Exponentiating both sides yields an expected mean of the dependent variable of

 E Y X X X(|) exp()= + +β β β0 1 1 2 2 (6.11)

As with other examples from this chapter, the coefficients can be estimated by
ML (see King, 1998). We can simulate such a model using the rpois()func-
tion. To produce the dependent variable, we set λ to the exponentiated systematic
component of the model (because the dependent variable cannot be negative), as

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 151

in rpois(n, lambda = exp(b0 + b1*X)). Everything else is exactly
as we have seen before.

The equivalence of the mean and variance in the Poisson distribution is an
important limitation of the Poisson regression model because count processes in
the social world often unfold such that the variance is larger than the mean, a
phenomenon called overdispersion.16 Several options exist to handle this prob-
lem, including the negative binomial model.

16Technically, what is most important is the comparison of the conditional mean and conditional
variance. If the independent variables can account for the difference between the mean and vari-
ance of Y, the Poisson model is appropriate.

Poisson

set.seed(3759) # Set the seed for reproducible results

reps <- 1000 # Set the number of repetitions at the top of the script

par.est.pois <- matrix(NA, nrow = reps, ncol = 4) # Empty matrix to store the

 # estimates

b0 <- .2 # True value for the intercept

b1 <- .5 # True value for the slope

n <- 1000 # Sample size

X <- runif(n, -1, 1) # Create a sample of n observations on the

 # independent variable X

for(i in 1:reps){ # Start the loop

Y <- rpois(n, exp(b0 + b1*X)) # The true DGP

model <- glm(Y ~ X, family = “poisson”) # Estimate Poisson model

vcv <- vcov(model) # Variance-covariance matrix

par.est.pois[i, 1] <- model$coef[1] # Put the estimate for the intercept

 # in the first column

par.est.pois[i, 2] <- model$coef[2] # Put the estimate for the coefficient on

 # X in the second column

par.est.pois[i, 3] <- sqrt(diag(vcv)[1]) # SE of the intercept

par.est.pois[i, 4] <- sqrt(diag(vcv)[2]) # SE of the coefficient on X

} # End the loop

Means of the coefficient estimates

mean(par.est.pois[, 1]) # Intercept

[1] 0.2002308

mean(par.est.pois[, 2]) # Coefficient on X

[1] 0.4988037

Coverage probabilities

Intercept

coverage(par.est.pois[, 1], par.est.pois[, 3], b0,

 df = model$rank)$coverage.probability

[1] 0.952

Coefficient on X

coverage(par.est.pois[, 2], par.est.pois[, 4], b1,

 df = model$rank)$coverage.probability

[1] 0.948

152 MONTE CARLO SIMULATION AND RESAMPLING METHODS

Comparing Poisson and Negative Binomial Models

The negative binomial (NB) is a more flexible approach to modeling count
data because it can accommodate overdispersion through the estimation of a sec-
ond parameter that allows the variance to be different from the mean. The NB
model can be thought of as a “mixture” model because it combines the Poisson
density with another density—the Gamma (see Cameron & Trivedi, 1998).
Notice from the last simulation that we perfectly determined λ by setting it equal
to the systematic component of the model. With NB, we set λ equal to the sys-
tematic portion plus a random component. This gives it a mean, μ, which is equal
to the systematic component and a separate variance, υ.

 μ β β β= + +exp()0 1 1 2 2X X (6.12)

υ μ

μ

θ
= +

2

 (6.13)

where θ is a dispersion parameter. The main point to keep in mind is that because
there is a separate parameter for the variance, the NB is not adversely affected by
overdispersion.

To illustrate the impact of overdispersion, we simulate overdispersed data,
estimate Poisson and NB models, then compare the results. To simulate overdis-
persed count data we use the rnbinom()function, which takes the arguments
size, which is the dispersion parameter in Equation 6.13, and mu, which is the
mean. We set the dispersion parameter to 0.50 and the mean to the systematic
component of the model. To see the difference in the data generated with and
without overdispersion, compare the two panels of Figure 6.3. Panel (a) plots one
simulated data set from the simulation above, which uses rpois()to produce Y.
Panel (b) comes from data simulated with rnbinom(). In each graph, a solid
line is placed at the mean of Y and a dashed line is placed at its variance. Notice
that in Panel (a) the mean and variance are virtually identical, but in Panel (b) the
variance is nearly six times the mean. Our next step is to assess the consequences
of this difference for the Poisson and NB estimators.

The simulation code is below. We simulate Y with rnbinom(), then estimate
the Poisson and NB models with glm()and glm.nb(), respectively. The
glm.nb()function comes from the MASS package. We store the coefficients
and standard errors for β1.

Poisson vs. Negative Binomial

library(MASS)

set.seed(763759) # Set the seed for reproducible results

reps <- 1000 # Set the number of repetitions at the top of the script

par.est.pnb <- matrix(NA, nrow = reps, ncol = 4) # Empty matrix to store the

 # estimates

b0 <- .2 # True value for the intercept

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 153

Figure 6.3 Dependent Variables From Poisson and Negative Binomial DGPs

b1 <- .5 # True value for the slope

n <- 1000 # Sample size

X <- runif(n, -1, 1) # Create a sample of n observations on the

 # independent variable X

for(i in 1:reps){

Y <- rnbinom(n, size = .5, mu = exp(b0 + b1*X)) # Generate data with

 # overdispersion

model.p <- glm(Y ~ X, family = “poisson”) # Estimate Poisson model

model.nb <- glm.nb(Y ~ X) # Estimate NB model

vcv.p <- vcov(model.p) # Variance-covariance matrices

vcv.nb <- vcov(model.nb)

par.est.pnb[i, 1] <- model.p$coef[2] # Store the results

par.est.pnb[i, 2] <- model.nb$coef[2]

par.est.pnb[i, 3] <- sqrt(diag(vcv.p)[2])

par.est.pnb[i, 4] <- sqrt(diag(vcv.nb)[2])

cat(“Completed”, i, “of”, reps, “\n”)

}

Textbook discussions of count models tell us that the Poisson model’s coeffi-
cient estimates are consistent if overdispersion is the only problem, but that the
standard errors are too small (Faraway, 2006). We can check this by computing
the means of the simulated estimates, MSE, and coverage probabilities.

154 MONTE CARLO SIMULATION AND RESAMPLING METHODS

Means of the coefficient on X estimates
mean(par.est.pnb[, 1]) # Poisson estimates
[1] 0.4971698
mean(par.est.pnb[, 2]) # NB estimates
[1] 0.4984487

MSE
mean((par.est.pnb[, 1])^2) # Poisson MSE
[1] 0.2560358
mean((par.est.pnb[, 2])^2) # NB MSE
[1] 0.2572339

Coverage probabilities
Poisson SEs
coverage(par.est.pnb[, 1], par.est.pnb[, 3], b1,
df = n - model.p$rank)$coverage.probability
[1] 0.724
NB SEs
coverage(par.est.pnb[, 2], par.est.pnb[, 4], b1,
df = n - model.nb$rank)$coverage.probability
[1] 0.946

The results show that both estimators produced coefficient estimates with means
near the true value of 0.50. Additionally, MSE is very similar for both. However,
the coverage probabilities show a big difference. The Poisson standard errors
produce a coverage probability of 0.723 while the NB coverage probability is
0.946. Thus, when the data are overdispersed the Poisson model’s assumptions
produce estimates of coefficient variability (standard errors) that are too small.

Zero-Inflation Processes

Another possible issue with count models is having a large number of cases
with the value of zero for Y. Many zeros may simply be a part of the true DGP
governing all of the other counts (e.g., 1s, 2s, 3s, etc.), or the amount of zeros may
be “inflated” by an additional process other than that which influences the counts
that are greater than zero. In other words, the DGP may have two separate sys-
tematic processes: (1) a process influencing whether an observation produces a
zero on the dependent variable or not, and (2) the actual count. One way of
accounting for these two processes is with a zero-inflated count model. This type
of model is actually two models in one—an equation predicting whether the
observation is zero or nonzero (often with a binary model such as logit) and
another equation predicting the expected count (done with a count model). Zero-
inflation models work with both Poisson and NB; we will focus on the zero-
inflated NB (ZINB) throughout this example.17

17There are also other means of handling zero inflation, such as dichotomizing the data or
hurdle models (Cameron & Trivedi, 1998).

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 155

Underlying the choice between conventional count regression and zero-in-
flated modeling is the common tension between overfitting and successfully
explaining empirical features of the data. This produces an important theoreti-
cal and empirical question: Is there a unique process that inflates the probability
of a zero case? Much is at stake in the answer to this question. A “yes” amounts
to more than just the addition of an explanatory variable. As mentioned above,
an entire process in the form of another equation and several more parameters
to be estimated is added to the model. Most important, what happens if a
researcher makes the incorrect choice (i.e., choosing the standard model when
the zero-inflated model should be used or incorrectly choosing the zero-inflated
model)? We can answer that question with simulation.

In the following code, we simulate one dependent variable in which there is a
zero-inflation component in the true DGP and a second dependent variable in
which the true DGP has no zero-inflation component. We estimate both a stan-
dard NB model and ZINB model on both of these dependent variables and com-
pare the results. To simulate the dependent variable, we create a new function
called rzinbinom().

This function uses ifelse()to separate the zero inflation and count pro-
cesses. It takes an argument zprob that is the probability that an observa-
tion is a 0. It uses rbinom()to take one draw from a Bernoulli distribution
(i.e., a single coin flip) with the probability of success set to zprob. If this
draw comes up a success, the function should return a 0. If not, the function
should proceed as rnbinom(). With this setup, observations that have a
high probability of becoming a 0 will be a 0 more often than those with low
probability.

We use this function to generate the dependent variables as follows.

For the dependent variable that has a zero-inflation component, we set zprob to
the formula for the inverse logit of a linear combination of an intercept (b0z) and
a variable Z multiplied by a coefficient, b1z. This means that we are creating a
logit model just like in Section 6.3.1 in the true DGP to determine whether an
observation gets a 0 or not. We also set the mean parameter of the NB to the
exponentiated linear combination of an intercept, b0c, and a coefficient, b1c
multiplied by an independent variable, X. This is the systematic portion of the
count model.

rzinbinom <- function(n, mu, size, zprob){

ifelse(rbinom(n, 1, zprob) == 1, 0, rnbinom(n, size = size, mu = mu))

}

Generate data with a zero-inflation component
Y.zi <- rzinbinom(n, mu = exp(b0 + b1*X), size = .5,
zprob = exp(b0z + b1z*Z)/(1 + exp(b0z + b1z*Z)))
Generate data with no zero-inflation component
Y.nozi <- rzinbinom(n, mu = exp(b0 + b1*X), size = .5, zprob = 0)

156 MONTE CARLO SIMULATION AND RESAMPLING METHODS

For the dependent variable with no zero inflation, we set zprob to 0, which
means the condition in the ifelse()statement will never be true and all of the
dependent variable values will be generated with the standard rnbinom()
function. In other words, the true DGP only has a count equation. Finally, we
estimate both a standard NB and a ZINB with both dependent variables (four
models in total). We use the zeroinfl()function from the pscl package to
estimate ZINB. The complete code is listed below.

Negative Binomial vs. Zero-Inflated Negative Binomial

library(pscl)

Zero-inflated negative binomial random number generator

rzinbinom <- function(n, mu, size, zprob){

ifelse(rbinom(n, 1, zprob) == 1, 0, rnbinom(n, size = size, mu = mu))

}

set.seed(2837) # Set the seed for reproducible results

reps <- 1000 # Set the number of repetitions at the top of the script

par.est.zinb <- matrix(NA, nrow = reps, ncol = 4) # Empty matrix to store the

 # estimates

b0z <- -.8 # True value for the inflation intercept

b1z <- .3 # True value for the inflation slope

b0c <- .2 # True value for the count intercept

b1c <- .5 # True value for the count slope

n <- 1000 # Sample size

X <- runif(n, -1, 1) # Create a sample of n observations on the

 # independent variable X

Z <- rnorm(n, X, 1) # Inflation independent variable

for(i in 1:reps){

Generate data with a zero-inflation component

Y.zi <- rzinbinom(n, mu = exp(b0c + b1c*X), size = .5,

zprob = exp(b0z + b1z*Z)/(1 + exp(b0z + b1z*Z)))

Generate data with no zero-inflation component

Y.nozi <- rzinbinom(n, mu = exp(b0c + b1c*X), size = .5, zprob = 0)

model.nb1 <- glm.nb(Y.zi ~ X) # Standard negative binomial

model.nb2 <- glm.nb(Y.nozi ~ X)

model.zinb1 <- zeroinfl(Y.zi ~ X | Z, dist = “negbin”) # Zero-inflated model

model.zinb2 <- zeroinfl(Y.nozi ~ X | Z, dist = “negbin”)

Store the estimates of the coefficient on X (count equation)

par.est.zinb[i, 1] <- model.nb1$coef[2] # Standard NB, with ZI

par.est.zinb[i, 2] <- model.nb2$coef[2] # Standard NB, no ZI

par.est.zinb[i, 3] <- as.numeric(model.zinb1$coef$count[2]) # ZI NB, with ZI

par.est.zinb[i, 4] <- as.numeric(model.zinb2$coef$count[2]) # ZI NB, no ZI

cat(“Completed”, i, “of”, reps, “\n”)

}

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 157

We plot the densities of the simulated estimates from the standard NB (solid
lines) and ZINB (dashed lines) in Figure 6.4. Panel (a) shows the results when the
true DGP includes a zero-inflation component and Panel (b) shows results with-
out zero inflation in the true DGP. Notice that when there is a zero-inflation
component (Panel a), the standard NB shows a downward bias; its estimates are
being “pulled down” by the excess 0s. In contrast, the ZINB estimates are cen-
tered directly on the true parameter value of 0.50. The picture changes when we
look at the DGP with no zero-inflation component (Panel b). In that case, both
estimators show unbiasedness—both are centered on the true coefficient value.
But notice that the standard NB is slightly more efficient. It has higher density at
the peak and smaller spread (standard deviations of 0.09 [NB] and 0.093 [ZINB]).

Overall, we see from these count model simulations that different estimators
perform better or worse under different DGP conditions. It is not wise to simply
choose one estimator for all count data. Instead, these results show us the impor-
tance of carefully thinking about the theoretical and empirical features of the data
and using that information to inform estimator selection. We will see this illus-
trated again in our next extended example on duration models.

6.4.3 Duration Models

Duration models, or event history models, are commonly used in social science
to study the time it takes for some process to occur. Examples include how long

Figure 6.4 Distribution of Zero-Inflated and Standard Negative Binomial β1 Estimates With and
Without a Zero-Inflation Component in the DGP

158 MONTE CARLO SIMULATION AND RESAMPLING METHODS

a war lasts, the length of a workers’ strike, or the length of time for members of
social groups to transition to adulthood. The dependent variable in these exam-
ples denotes the number of periods until the transition from one state to the other
occurs (e.g., “strike” to “not strike”). There are several estimators available for
duration models and many more intricacies associated with them than we can
cover here, but we will give a basic introduction in this extended example.18

We need to define some key terms before we proceed with this section. The
first is the survival function, which is defined as the probability that the transition
occurs (e.g., a strike ends) later than some specified time, t .

 S t T t() ()= >Pr (6.14)

Here T is a random variable that signifies the time in which the transition occurs.
The complement of the survival function is the CDF, F(t), or the cumulative prob-
ability of transition.

 F t T t S t() () ()= ≤ = −Pr 1 (6.15)

The derivative of F(t), denoted f(t), can be used to produce the hazard rate, h(t) :

h t

f t

S t
()

()

()
= (6.16)

The hazard rate is the risk of an observation experiencing the transition given that
it has not experienced it up to the current period. The hazard rate gets the most
attention in applications of duration models because it most naturally comports
with research questions, such as “What is the chance a strike will end, given that
it has lasted 3 months?” We can include a systematic component (i.e., indepen-
dent variables) in answering this question, producing estimates of how each one
influences the chances of the strike ending.

A key feature of these models is how they handle the baseline hazard rate,
which is the risk of the transition occurring when the systematic component of
the model is equal to zero. Thus, statements made based on the estimated coef-
ficients of a duration model are in the language of relative risk. At any point in
time, there is some chance of a strike ending. The estimators we explore here
produce parameter estimates that describe the relative increase in that chance
based on a change to an independent variable. Those estimates can depend on the
assumed shape of the baseline hazard function. There are several parametric
models available, such as the exponential and the Weibull. The former assumes a
constant baseline hazard, while the latter can accommodate a baseline hazard that
increases or decreases (monotonically) over time. Another possibility is the Cox
(1972) Proportional Hazards Model, which has become quite popular because it

18We recommend Box-Steffensmeier and Jones (2004) as a good starting point for readers
interested in learning more.

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 159

leaves the baseline hazard unspecified. We examine the Cox model in detail
below.19

The Cox Model

The simulation we present here is based on Desmarais and Harden (2012). We
seek to demonstrate how simulation can be used to address a methodological
problem. Specifically, we examine two different methods for estimating the Cox
model: (1) the conventional partial likelihood maximization (PLM) estimator
proposed by Cox (1972) and (2) an iteratively reweighted robust (IRR) estimator
that is robust to outliers (IRR, see Bednarski, 1989; Bednarski, 1993).

The Cox model is unique in that it only requires assumptions about the inde-
pendent variables to identify the model. Information on the baseline hazard rate
is not needed. This means, for instance, that the effect of some independent vari-
able on the hazard rate can be estimated without considering the complicated
dynamics that are common among the observations. The ubiquitous approach to
estimating the parameters of the Cox model is to select the parameters that
maximize the partial likelihood, a method similar to ML that we will call PLM.20

However, measurement error, omitted variables, and functional form mis-
specification all represent distinct problems for the Cox model. Bednarski (1989)
shows that all of these problems result in disproportionately influential right-tail
outliers or observations that last significantly longer than they are predicted to last.
This produces bias in model results leading to incorrect inferences. Generally,
these specification issues represent a failure of the model to reflect the real DGP.
Moreover, since there is no error term or auxiliary parameter (e.g., variance term)
in the Cox model, it cannot “account” for observations that, due to real-world
complexity in the DGP, depart from the estimated failure ratios. This can be seen
most clearly in predictions from the model that diverge markedly from the actual
outcomes, such as a war that, in reality, lasted twice as long as the median war in
the sample, but was predicted to be only half as long as the median.21

The IRR method attempts to minimize the impact of outliers (though not neces-
sarily eliminate them completely). The method first creates a measure of “outlying-
ness” for each observation. Given a certain value of the hazard of event occurrence,
a greater outlyingness penalty accrues with each time unit that goes by without the
event occurring. For example, if the systematic component of the model predicts
that a particular observation should be one of the first in the data to experience the
event, but instead it was one of the last, that observation would receive a large

19We do not examine any parametric models to avoid complexity. The R package survival
parameterizes those models with a slightly different DGP than we use for the Cox model.

20As Cox (1975) shows, the PLM converges, in the sample size, to the ML estimator.

21The emphasis on differences between reality and prediction is important. Simply observing
a large value on the dependent variable is not enough to label that case as an outlier. Indeed,
if that case’s covariate values produce a prediction of a long duration, then it is not an outlier.

160 MONTE CARLO SIMULATION AND RESAMPLING METHODS

outlyingness value. IRR then adjusts each observation’s influence on the model
estimates based on outlyingness, with some percentage of observations having no
influence on the estimation (see Bednarski, 1989; Desmarais & Harden, 2012).

The analyst must choose the level at which outliers are downweighted, which
we show below amounts to a tradeoff between bias and efficiency. Downweighting
outliers is appropriate if the downweighted observations depart from the DGP of
the rest of the data due to measurement or specification errors. However, if all of
the observations are consistent with the true DGP, this downweighting reduces
the sample size with no apparent benefit. We can illustrate this with simulation
using the R packages survival (for PLM) and coxrobust (for IRR).

Our strategy is to generate a model with two independent variables, X and Z,
then estimate PLM and IRR only including X in the specification (i.e., an omitted
variable problem). Additionally, we estimate two versions of IRR: (1) one in
which we set the downweighting such that the top 5% of observations in terms of
outlyingness get completely downweighted and (2) one in which the top 20% get
completely downweighted. We produce the dependent variable using an exponen-
tial distribution with the systematic component of the model as the parameter λ.
Again, notice that the variable Z is included in the true DGP, but not in the estima-
tion of PLM or either IRR specification. Finally, we store the estimate of the
coefficient on X (β1) from each of the three models.

Duration Models (Cox PH)

library(survival)

library(coxrobust)

set.seed(4679) # Set the seed for reproducible results

reps <- 1000 # Set the number of repetitions at the top of the script

par.est.cox <- matrix(NA, nrow = reps, ncol = 3) # Empty matrix to store the

 # estimates

b1 <- .5 # True value for the slope

n <- 1000 # Sample size

X <- runif(n, -1, 1) # Create a sample of n observations on the

 # independent variable X

Z <- runif(n, -1, 1) # Create an omitted variable

for(i in 1:reps){ # Start the loop

Y <- rexp(n, exp(b1*X + Z)) # Generate survival times

Ys <- Surv(Y, event = rep(1, n))

model.plm <- coxph(Ys ~ X, method = “breslow”) # Standard PLM estimator

model.irr <- coxr(Ys ~ X, trunc = .95) # IRR, downweighting outliers (5%)

model.irr2 <- coxr(Ys ~ X, trunc = .8) # IRR, even more downweighting (20%)

par.est.cox[i, 1] <-model.plm$coef[1] # Store the estimates

par.est.cox[i, 2] <- model.irr$coef[1]

par.est.cox[i, 3] <- model.irr2$coef[1]

cat(“Completed”, i, “of”, reps, “\n”)

}

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 161

Figure 6.5 plots the distribution of the estimates for PLM (solid line), IRR with
5% truncation (dashed line), and IRR with 20% truncation (dotted line). Notice
that all three estimators show bias, as none are centered on the true coefficient
value of 0.50. However, with means of 0.397 (PLM estimates), 0.425 (IRR 5%),
and 0.446 (IRR 20%), the bias gets smaller as the downweighting becomes more
aggressive. Figure 6.5 also shows that the variance in the parameter estimates
also differs across models; the standard deviations of the estimates are 0.050
(PLM), 0.058 (IRR 5%), and 0.071 (IRR 20%). This shows the tradeoff between
bias and efficiency between the two estimators. IRR reduces bias, but is less
efficient. PLM is the most biased, but also the most efficient. In this example, the
IRR 20% estimator performs best according to MSE (which accounts for both
bias and efficiency).22

This simulation suggests that it is not wise to simply always use PLM or
always use IRR. This leads to the question of how a researcher could decide
between PLM and IRR in a sample of data. The relative performance of IRR to

22The MSE values are 0.013 (PLM), 0.009 (IRR 5%), and 0.008 (IRR 20%).

Figure 6.5 The Effect of Omitted Variable Bias on PLM and IRR Estimates

162 MONTE CARLO SIMULATION AND RESAMPLING METHODS

PLM depends on properties of the sample that are likely unknown. This presents
a clear problem in applied research. Given a sample of data and a specification of
the model, it is important to determine which estimator more closely character-
izes the DGP of theoretical interest.

Desmarais and Harden (2012) introduce the cross-validated median fit
(CVMF) test to allow researchers to determine which method provides a better fit
to the majority of their data. When the PLM method provides a better fit to the
majority of the observations in the sample, it is clear that a handful of outliers are
not driving the results, and IRR is inferior. However, when PLM only fits a
minority of the observations better than IRR, this is evidence that the benefits
from the downweighting in IRR will be realized. Desmarais and Harden (2012)
show in simulations similar to this one that the CVMF test, on average, selects
the estimator that produces coefficient estimates closest to the true values.

6.5 COMPUTATIONAL ISSUES FOR SIMULATIONS

In running the code for these examples yourself, you may have noticed that some
of them take a few minutes to run. These simulations could easily be expanded in
a number of ways (e.g., more parameters or different sample sizes) that would
complicate the simulation and extend (potentially dramatically) how much time
it takes them to run. In Chapter 4, we briefly discussed ways of making code
more efficient, but there are other ways to manage the workload of a simulation
project. We close this chapter with some useful strategies for doing this.
Specifically, we discuss the use of research computing and parallel processing.

6.5.1 Research Computing

The term research computing could refer to many different things, but what we
mean is any infrastructure designed for large-scale execution of computing prob-
lems. Many universities, for example, maintain clusters of computers to which
users can submit R script files as “jobs” to be executed. That means you create a
script file that performs the simulation and saves the output in some form. You
then submit the script file to the computing cluster. Submission procedures will
vary depending on the actual computing cluster you are using, but many use Unix
systems that use commands such as bsub R CMD BATCH filename.R. Once
submitted, the cluster performs the simulation and returns the output that you can
save to your own computer for analysis. This frees up your computer from doing
work that may take a long time.

Using research computing means your script file must be organized to save
anything you might want to use later. You will likely not be able to go back to
the R session on the computing cluster to grab an object, so you should plan
accordingly. One possibility is to use the save.image()command that we
discussed in Chapter 3, which saves every object in the current R workspace.
If you use this approach, this should be the last line of your code in your script file.

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 163

For instance, to save the current R workspace to the file “example.RData” you
could type the following code.

save.image(“example.RData”)

Recall that once you have “example.RData” on your own computer, you can then
access it with the load()command.

load(“example.RData”)

The computing cluster may operate faster than your computer, but it also may
work at about the same speed. Regardless, using research computing is a good
way to execute long jobs in a more convenient place, freeing your own computer
for other tasks.

6.5.2 Parallel Processing

Another way to manage simulation projects so that they run faster is to use
parallel processing. Parallel processing refers to the completion of multiple com-
puting operations simultaneously—almost like making your computer “walk and
chew gum at the same time.” Think back to any of the simulations we have done
so far. The typical approach is to iterate a for loop for 1,000 repetitions, generate
a sample of data, and estimate one or more models each time. As it turns out,
there is no real need for the for loop to work sequentially. It is not imperative
that the sample generated in Iteration 2 exist before the sample in Iteration 543.
Only the logical structure of the for loop makes that the case. Parallel process-
ing speeds up the process by taking parts of the code that can be done at any time
and distributes them to different computing nodes to work on. The results are then
combined at the end.

This could occur in many different ways. For example, we could use a research
computing cluster and divide parts of the simulation among several different
computers. On a smaller scale, it is possible to divide code among the cores on a
standard multicore desktop or laptop computer. These computers have the capac-
ity to execute different “jobs” at the same time by dividing jobs among their
cores. Here we will do a brief example of a simulation in which we divide the
1,000 iterations of the for loop among several cores. To do so, we need the
following packages: snow, doSNOW, and foreach.

The example we will use is the simulation on standard NB and ZINB (see
Section 6.4.2 of this chapter). That simulation creates two dependent variables
and estimates two fairly complex models on each of them 1,000 times, which
leads to a lengthy computation time. We will “parallelize” the code to see if we
can shorten the completion time by dividing the work among the cores of a quad-
core laptop computer.23

23Specifically, we did this on a Lenovo quadcore ThinkPad T520 with an Intel i5 processor
and 8GB of RAM.

164 MONTE CARLO SIMULATION AND RESAMPLING METHODS

First, we need to alter the code slightly by making it a function. This makes it
easier for R to store the results from the different cores together.24 We copy the
code from that simulation into a function called zinb.sim().

Notice that this function is set up to return the matrix par.est.zinb, which
has one row and four columns. Each cell in the matrix contains an estimate of β1
from one of the four estimators.25 Next, we load the packages snow, doSNOW,
and foreach. We use the makeCluster() and registerDoSNOW()

24There are actually many advantages to simulation with functions rather than the more
“procedural” approach (i.e., creating objects then running a for loop) we have focused on
up to this point. In particular, functions make “debugging” (finding and fixing errors) easier,
can be tested more quickly, and carry more information about the environments in which
they were created with them. This last benefit comes up with parallel computing because in-
formation about the environment often needs to be placed on different computing nodes. We
elected to focus on the procedural approach for the majority of this book because functions
and their associated capabilities can be somewhat difficult to understand for inexperienced
users. We thank a manuscript reviewer for bringing this point to our attention.

25As in the first version of the simulation, these four are (1) the standard NB on the data that
include a zero-inflation component, (2) the standard NB on the data with no zero inflation,
(3) the ZINB with zero inflation, and (4) the ZINB with no zero inflation.

Simulation Function

zinb.sim <- function(n = 1000){

require(pscl)

par.est.zinb <- matrix(NA, nrow = 1, ncol = 4) # Empty matrix to store the

 # estimates

b0 <- .2 # True value for the intercept

b1 <- .5 # True value for the slope

X <- runif(n, -1, 1) # Create a sample of n observations on the

 # independent variable X

Generate data with a zero-inflation component

Y.zi <- rzinbinom(n, mu = exp(b0 + b1*X), size = .5,

zprob = exp(b0 + b1*X)/(1 + exp(b0 + b1*X)))

Generate data with no zero-inflation component

Y.nozi <- rzinbinom(n, mu = exp(b0 + b1*X), size = .5, zprob = 0)

model.nb1 <- glm.nb(Y.zi ~ X) # Standard negative binomial

model.nb2 <- glm.nb(Y.nozi ~ X)

model.zinb1 <- zeroinfl(Y.zi ~ X | X, dist = “negbin”) # Zero-inflated model

model.zinb2 <- zeroinfl(Y.nozi ~ X | X, dist = “negbin”)

Store the estimates of the coefficient on X (count equation)

par.est.zinb[, 1] <- model.nb1$coef[2] # Standard NB, with ZI

par.est.zinb[, 2] <- model.nb2$coef[2] # Standard NB, no ZI

par.est.zinb[, 3] <- as.numeric(model.zinb1$coef$count[2]) # ZI NB, with ZI

par.est.zinb[, 4] <- as.numeric(model.zinb2$coef$count[2]) # ZI NB, no ZI

return(par.est.zinb)

}

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 165

functions to set up the parallel processing. In this case, we use the number 4 to
tell R to use four cores.

library(pscl)
library(snow)
library(doSNOW)
library(foreach)

cl.tmp <- makeCluster(4)
registerDoSNOW(cl.tmp)

Now, we are ready to run the simulation. Instead of the for()function, we will
use the foreach()function. This takes slightly different syntax than we have seen
before. We set the counter as i = 1:reps. Then, we set the argument .combine
= rbind. This tells R to take the results from zinb.sim(), which is a vector of
four coefficient estimates, and bind them together such that each iteration gets one
row in a matrix of output. Finally, the code inside the % signs tells R how to execute
the code. If we write %do%, R will execute the code serially, or one iteration at a
time. We will do this first to get a baseline execution time. Notice that the only code
we need inside the actual loop is the zinb.sim()function.

Serial Processing
set.seed(2837) # Set the seed for reproducible results
reps <- 1000 # Set the number of repetitions

start.time <- Sys.time()
results <- foreach(i = 1:reps, .combine = rbind) %do% {
zinb.sim(n = 1000)
 }

end.time <- Sys.time()
end.time - start.time

This serial run produces the results in just under 12 minutes. The output is cor-
rect, which can be verified by checking it against the results from the original ver-
sion of the simulation.26

Time difference of 11.71957 mins

head(results)
 [,1] [,2] [,3] [,4]
[1,] 0.05882971 0.5623784 0.48865878 0.4683902
[2,] -0.06915600 0.3567442 0.08945868 0.3218285
[3,] -0.01693489 0.6521395 0.20225698 0.5924448
[4,] 0.27497556 0.5041720 0.46120764 0.5041924
[5,] 0.13497402 0.4206432 0.54417701 0.4912774
[6,] 0.13088511 0.4539706 0.33806668 0.4135637

26Using the apply()function on the results of the original simulation produces: [1]
0.2147594 0.4963802 0.4941624 0.4864211.

166 MONTE CARLO SIMULATION AND RESAMPLING METHODS

apply(results, 2, mean)
[1] 0.2150614 0.4975114 0.4810489 0.4860895

The next step is to run the exact same code in parallel and check the improvement
in time. We already set up the “back end” of our code with the makeCluster()
and registerDoSNOW()functions, so all we need to do is tell R to actually exe-
cute this code in parallel. We do that by changing %do% to %dopar%.

Parallel Processing
set.seed(2837) # Set the seed for reproducible results
reps <- 1000 # Set the number of repetitions

start.time <- Sys.time()
results <- foreach(i = 1:reps, .combine = rbind) %dopar% {
zinb.sim(n = 1000)
 }

end.time <- Sys.time()
end.time - start.time

This produces the following results:

Time difference of 4.8734 mins

head(results)
 [,1] [,2] [,3] [,4]
[1,] 0.15051572 0.4517511 0.5860100 0.4691888
[2,] 0.19717087 0.6604850 0.5470129 0.7190622
[3,] 0.43322114 0.4927281 0.8087086 0.4126702
[4,] 0.16557821 0.4871358 0.3542323 0.5073770
[5,] 0.46028678 0.6873374 0.7443504 0.5591115
[6,] -0.03127193 0.4493201 0.3148359 0.4799454

apply(results, 2, mean)
[1] 0.2206657 0.4998477 0.4880605 0.4924071

By dividing the code across four cores, the computer took less than 5 minutes to
complete the exact same code—a nearly 60% reduction in time. Notice that the
results also look correct (though they are not identical). This example shows that
parallel processing is quite feasible in R and can greatly reduce the time it takes
to do simulations. We recommend using this procedure or a similar one for simu-
lations that take several minutes to run in a standard for loop.

Finally, we should note again a point we made in Chapter 4: replicating
results from simulations executed through parallel processing may not be
accomplished in some instances simply by setting the seed. This is a compli-
cated issue that extends beyond the scope of this book, but readers should be

CHAPTER 6. SIMULATING GENERALIZED LINEAR MODELS 167

aware of this potential problem. Again, test your code with a limited number
of iterations first to make sure it performs as expected before you launch a
time-consuming simulation.

6.6 CONCLUSIONS

This chapter provided an overview of simulation with GLMs. We began with the
process of simulating the DGP of a GLM, then recovering that DGP through
estimation. Doing so illustrated that the basic idea of a GLM is to link the sys-
tematic component of the model to a probability distribution that produces the
type of values the dependent variable can take on. We also illustrated how simu-
lation can be used to compare competing estimators in extended examples with
categorical, count, and duration models. We saw how knowing the true DGP in a
simulation gives us considerable analytic leverage in assessing how estimators
perform under different data conditions.

We closed this chapter with a discussion of computational issues. Many of the
examples from this chapter are computationally intensive and take a relatively
long time to complete. Simulations beyond those shown here could easily take
hours or days to estimate on a standard computer. We addressed how research
computing can make managing such computations less of a burden. We also
showed a basic example of parallel processing in which we reduced run time by
more than half through dividing the simulation among four cores of a computer.
It is worth noting that many research computing systems available at universities
consist of hundreds or even thousands of cores, making the potential time savings
of parallel processing in that environment very appealing.

After two chapters of nothing but statistical simulation, it is time for a change.
Social scientists use statistical methods to better understand social processes.
Using simulation to illustrate and evaluate these methods is certainly a beneficial
exercise. However, it is also possible to use simulation to directly evaluate sub-
stantive problems, theories, and questions. We show several examples of this in
the next chapter.

