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CHAPTER 1. INTRODUCTION AND REVIEW OF 
UNIVARIATE GENERAL LINEAR MODELS

Few data analytic techniques command a position of greater importance in 
the social, behavioral, and physical sciences than multiple regression 
analysis. Exemplary applications can be found in the full range of disci-
plines, including anthropology (Cardoso & Garcia, 2009), economics 
(Card, Dobkin, & Maestas, 2009), political science (Baek, 2009), sociology 
(Arthur, Van Buren, & Del Campo, 2009), and all branches of psychology 
(Ellis, MacDonald, Lincoln, & Cabral, 2008; Pekrun, Elliot, & Maier, 
2009).

In each of these disciplines, the purpose of the investigator is to study the 
relationship between the variables. Fitting regression models to data allows 
the analyst the ability to account for or explain variation in a criterion vari-
able as a function of one or more predictor variables. The general linear 
model is an extension of regression models to accommodate both qualitative 
and quantitative predictor variables. It is widely recognized that multiple 
regression analysis is a data analytic system that subsumes all linear models 
(Cohen, 1968), including those that are based on continuously distributed 
predictor variables (classic regression analysis), those that are based on 
schemes to accommodate categorical predictors (classic analysis of vari-
ance), and those models that are based on any combination of continuous 
and categorical predictors.1 Together these models define the general linear 
model. The regression model is flexible enough to handle many different 
realizations of predictor variables, including interactions between continu-
ous predictor variables, between categorical predictor variables, and 
between combinations of continuous and categorical predictor variables. 
The breadth of coverage of possible analyses afforded by these combina-
tions explains why the technique is so widely used in all scientific disci-
plines from anthropology to zoology.

In this volume, our goal is to introduce the multivariate version of the 
general linear model and to illustrate several of its applications. Multivariate 
models are distinguished by the presence of more than one dependent  

1Some authors prefer the terms quantitative and qualitative to describe predictor 
variables that are continuous or categorical. In this volume, we use the term con-
tinuous to denote variables whose underlying metric is continuous or discrete, and 
we use the term categorical to denote nominal group structure that has no meaning-
ful underlying metric except to identify categories.
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variable that are to be analyzed simultaneously by fitting a single model 
to the data. Much of the conceptual and statistical basis of multivariate 
linear model analysis is a direct generalization of univariate regression 
analysis, which we briefly review in this chapter. This review of univari-
ate strategies for analyzing linear models is intended to set the stage for 
the remaining chapters. In Chapter 2, we introduce the example data sets 
to be used throughout along with a discussion of the first step in the gen-
eral linear model (GLM) analysis of specifying the model. In Chapters 3, 
4, and 5, we cover the estimation of parameters of the model, the assess-
ment of goodness of fit of the model along with the related multivariate 
test statistics, and testing hypotheses on the model. Chapter 6 introduces 
the linear model solution to the multivariate analysis of variance, and 
Chapter 7 concludes the volume with an introduction to canonical corre-
lation analysis, which is a linear model that subsumes all of the material 
of preceding chapters. The overriding goal of the text is to present an 
integrated view of all these various techniques under a single modeling 
framework.

Review of Univariate Linear Model Analysis

The main goal of the linear model is to evaluate relationships in order to 
explain variability in a response variable as a function of some specified 
model and an error of prediction:

Response = Model + Error.

In the univariate case, regression models are those models that are lim-
ited to a single criterion, response, dependent, or outcome variable.2 
Univariate regression models can be expressed mathematically as a regres-
sion function,

Y X= + + ,β β ε0 1 1 [1.1]

2We use the terms dependent, criterion, response, and outcome interchangeably in 
this volume to describe the Y variable in models. The X variables in the model will 
be interchangeably referred to as predictor, explanatory, or independent variables. 
These terms appear throughout the literature on regression analysis. Some authors 
prefer to reserve the term dependent variable to experimental designs with manipu-
lated conditions.
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for a simple model with a single predictor variable. For a more complex 
model with multiple predictors, we may write3

 
Y X X Xq q= + + + + +β β β β ε0 1 1 2 2  . [1.2]

In Equations 1.1 and 1.2, Y represents a single column vector response 
variable that is intended to be explained by the weighted linear combination 
of regression coefficients, β β β0 1, , , , q  and explanatory variables, 
X X Xq1 2, , , , and includes a disturbance or error term ε, which captures 
all other sources of variability, both systematic and random, that are respon-
sible for variation in Y. The Xj  explanatory variables, j = 1, 2,…, q, can be 
either continuous or categorical.4 Many contemporary textbooks emphasize 
this integrative linear model approach to both regression analysis and the 
analysis of variance in the univariate case (see, e.g., Cohen, Cohen, West, 
& Aiken, 2003; Myers & Well, 2003).

Although we briefly review the basic ideas of univariate regression/ 
linear model analysis in this chapter, our purpose is to set the stage for the 
analysis of multivariate multiple regression/general linear model analysis 
with continuous and categorical predictor variables—multivariate models 
can be conceptualized as generalizations of their univariate counterparts. 
Whereas univariate regression models are defined by their single column 
vector of Y scores, multivariate models are defined largely by the fact that 
more than one dependent variable is simultaneously included in the model 
specification. The collection of the explanatory variables, X X X q1 2, , , ,  
can be identical for univariate and multivariate models; only the number of 
Y variables, the number of columns of regression coefficients, and the num-
ber of associated disturbance terms, ε, will differ.

As models become more complex, it will be convenient to express the 
models and their applications in matrix algebraic terms. Although we intro-
duce the basic matrix notation to identify the linear models discussed in this 
volume, we do not present a full coverage of the topic. A chapter-length 
coverage of many of the details is given in Draper and Smith (1998, 

3We do not identify the response and explanatory variables Y or X with a subscript 
to indicate the serial order of the 1st through the nth observations. In this volume, 
all models are based on the full set of n observations, and the index of summation 
or multiplication is assumed to be across all n participants.
4Coding schemes for categorical variables will be introduced at greater length in 
later sections.
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Chap. 4); textbook-length coverage can be found in Namboodiri (1984) 
or Schott (1997).

The univariate multiple regression model of Equations 1.1 and 1.2 can 
be conveniently summarized in matrix notation as5

y Xn n q q n×( ) × +( ) + ×( ) ×( )= +1 1 1 1 1� � [1.3]

in which y(n × 1) is a single-column vector whose dimensions are noted in the 
row-by-column subscript. The Xj  predictor variables, j = 1, 2,…, q, col-
lected in a design matrix, X(n × q+1), are the counterpart of the same predictor 
variables in the univariate model of Equation 1.2, now expressed as a 
matrix of order (n × q + 1) with n rows identifying each of the i n= 1 2, , ,  
cases and q + 1 columns that capture the predictor variables. The “+1” in 
the q + 1 dimension allows for a unit vector of X 0 ≡ 1 (≡ means “by defini-
tion equal to”) to estimate the intercept of the model. The vector  of 
Equation 1.3 is a (q + 1 × 1) column vector of regression coefficients con-
taining one row for each of the q + 1 explanatory variables. Expanding 
Equation 1.3 shows the elements contained in the matrices for a univariate 
multiple regression model with q + 1 predictor variables:
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The multivariate multiple regression model is a generalization of 
Equation 1.3 and would be written as

Y X B En p n q q p n p×( ) × +( ) + ×( ) ×( )= +1 1 . [1.4]

The matrix Y n p×( )  is a two-dimensional array of numbers in which the 
rows of the matrix represent all the n observations (subjects, cases) and  
the columns of the matrix contain the p > 1 response variables, Yk , for 
k p, , , .= 1 2   Hence, the order of the matrix Y is (n × p). The structure 

5We use italics to represent scalars (e.g., X, Y, Z, β, ε), boldface lowercase letters to 
denote row or column vectors (e.g., a, b, y, x, , ), and boldface uppercase letters 
to denote matrices (e.g., X, Y, B, E, ). If a column or row vector is deliberately 
represented by a matrix symbol, its vector status will be made explicit by the order 
of the matrix, e.g., (n × 1) or (1 × p).
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of the design matrix, X n q× +( )1 , does not differ from univariate to multi- does not differ from univariate to multi-
variate models and is identical to that of Equation 1.3. The matrix B q p+ ×( )1  
of Equation 1.4 is an augmented collection of regression coefficients, one 
row for each of the q + 1 explanatory variables and p columns to accom-
modate the multiple response variables. Finally, the matrix E n p×( ) is a 
collection of vectors of disturbance terms, one row for each of the n cases 
on each of the p response variables in the model. Expanding Equation 1.4 
reveals the matrix elements that would be contained in the multivariate 
model,
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In the succeeding chapters, we will pursue more of the details of structur-
ing the design matrix to accommodate both continuous and categorical 
predictor variables. For the remainder of this chapter, we set the stage by 
focusing on a review of univariate linear models.

We assume that the reader has a reasonably good understanding of uni-
variate multiple regression analysis at the level of Cohen et al. (2003) and 
a similarly good understanding of analysis of variance models at the level 
of Myers and Well (2003). We also assume an elementary grasp of matrix 
addition, subtraction, multiplication, and inverse (division). We hope to 
show that much of multivariate analysis can be seen as a generalization of 
univariate analysis. Toward that end, we turn now to a review of the uni-
variate regression model in which we introduce four steps of general linear 
model analysis:

 1. Specify the model.

 2. Estimate the parameters of the model.

 3. Define measures of goodness of fit of the model.

 4. Develop methods for testing hypotheses about the model.
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Because of space constraints, we do not undertake a discussion of diag-
nosis of the adequacy of the models that is covered in detail elsewhere 
(Cohen et al., 2003, Chap. 4).

Specifying the Univariate Regression Model

The dimensions of Y n p×( )  define the initial distinction between univariate 
and multivariate models. If the designation of the model includes a single-
column vector of scores, then y n ×( )1  represents the dependent variable as 
noted in Equation 1.3. Consider a regression model in which y n ×( )1  is 
hypothesized to be a function of three predictors—continuously distributed 
variables X X1 2and  and a dichotomous categorical variable X 3. Ultimately 
data must be collected that conform to the model specifications. To make 
matters more concrete, let Y represent the construct of executive functioning 
as measured by scores on the Trail Making Test–Part B (TMT-B, Tombaugh, 
2004). Neuropsychologists consider the TMT-B to be a measure of higher-
order brain function governing the activities of planning, organization, and 
anticipation. Since executive functioning is a critical cognitive skill, under-
standing how status on this dimension might vary with advancing age, 
increasing education, and differences in gender is important. A fictitious 
data set based on n = 40 observations with correlation structure nearly 
identical to that reported by Tombaugh (2004) specifies a three-predictor 
model defined in Equation 1.3. The prototypical matrices required to 
specify this linear model would include the following:

y X40 1 40 4

72

115

117

111

1 41 13 0

1

×( ) ×( )=























=


,

551 18 1

1 80 14 0

1 59 10 0

4 1

0

1

2

3

   























=



×( ), �

β

β

β

β















=























, �

ε

ε

ε

ε

1

2

3

40



.

In this univariate model, the vector y is time to completion of the TMT-B 
task, X1 is the participant’s age and X 2 is the participant’s education, both 
continuous predictor variables. The vector X 3 is a dummy-coded regressor, 
representing a categorical variable of gender coded as 1 = female and 0 = 
male. The vector X 0 ≡ 1 is included as the first column of the design matrix 
to accommodate the model intercept. The means, standard deviations, and 
correlations for these data are shown in Table 1.1.

Articulating this descriptive information along with writing out the 
regression model specified in Equation 1.2 or 1.3 are the statistical details 
required to specify the model.
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A second important aspect of linear model specification depends heavily 
on the theory that dictates the mathematical model and provides the sub-
stantive explanation of the hypothesized relationship between response 
and explanatory variables. The theoretical basis of the research often 
includes the logic used to explain the mechanism through which the Y 
and X variables are presumed to be associated. These very important 
details of model specification are context specific and will vary from 
study to study. While we will endeavor to provide the flavor of such 
arguments in the examples used to illustrate the procedures here, a full 
discussion of this aspect of model specification is beyond the scope of 
this volume. Extensive coverage of this topic is given in Jaccard and 
Jacoby (2010).

Estimating the Parameters of the Model

The models of Equations 1.1 to 1.4 are population regression functions 
with parameters of the model defined in the elements of  q q+ ×( ) =1 1 0 1( , , , )β β β 

 q q+ ×( ) =1 1 0 1( , , , )β β β for univariate models and of B q p+ ×( )1  for the multivariate case. 
For the q-predictor univariate regression model of Equation 1.3, it is known 
that the long-run expected value of the function for a single criterion vari-
able is given by

E Y X X Xq q|X( ) = = + + + +X β β β β0 1 1 2 2  . [1.5]

Note: n = 40. TMT-B = Trail Making Test–Part B.

Table 1.1   Means, Standard Deviations, and Correlations for the TMT-B 
Data

TMT-B Age Education Gender

TMT-B   1.000

Age    .632   1.000

Education     -.244     -.171   1.000

Gender     -.046    .014     -.114 1.000

Mean  93.77 58.48 12.60 .45

Standard deviation  32.77 21.68  2.60 .50
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These expected values are the means of the conditional probability dis-
tributions of Y, say µ

Y X j|( ), for each of the values of Xj . The linear model 
specifying the relationship between Y and X requires that the conditional 
means of Y X|  fall precisely on a straight line defined by the model as illus-
trated in Figure 1.1 for a single predictor variable. Linear models with two 
predictors require that the regression surface defined by X be a two-
dimensional plane with partial slopes defining the X axes of the graph as 
shown in Figure 1.2. For the simple regression model of Equation 1.1, the 
parameter β0 defines the expected value of Y X| =0  and β1 defines the 
expected rate of change in Y per unit change in X. From the example data 
of Table 1.1, the regression function of Y = TMT-B on X = Age would 
appear as in Figure 1.1, in which the conditional means of Y (time to com-
pletion of TMT-B) given three values of X = 40, 50, and 75, for example 
(i.e., E{Y1}, E{Y2}, E{Y3}), lie precisely on the regression line to satisfy the 
assumption of linearity. Note that the values of the observations Y1, Y2, and 
Y3 appear in the plane of their respective probability distribution but deviate 
from their conditional mean. The vector of deviations, � �= −y X , are the 
error terms of the regression model in Equation 1.3.

TM
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30 40 50 60

Age
70

E{Y2} = 86

E{Y3} = 109

Y3Y2

Y1 E{Y1} = 75
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Y

105

90

75

Figure 1.1   The Linear Regression Function With Expected Values 
(Means) of the Conditional Distributions of Y on X 
for the Data of Table 1.1

Note: , ,Y Y Y1 2 3and  are illustrative cases.
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A similar example of a two-predictor model is illustrated in Figure 1.2 
by the graph of the relationship between Y = TMT-B, X1 = age, and X 2  = 
education for the n = 40 sample data descriptively summarized in Table 1.1. 
The scatterplot reveals a positive relationship between Y Xand 1  and a 
negative relationship between Y Xand 2

. The population regression func-
tion E Y X|( ) = X is defined by the planar surface with partial slopes of 
β βX X1 2and . The discrepancies between the observations and the model 
(i.e., the distance between the circles and the plane) are indices of lack of 
model fit and are captured in the errors of the model, � �= −Y X .

Thus, all univariate linear models in which the observations are decom-
posed into model and error components can be written as

 y X= +� �.  [1.6]

The differences between Y and the expected values of Y are the errors of 
prediction of the model,

= − ( )y y XE |
6 , [1.7]
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Figure 1.2   Regression of Trail Making Test–Part B on Age and  
Education

6The symbols Y , y,  Y , and µ� �y|X X Xq1 2( )  will denote sample estimates of the popula-
tion E Y X( | ).
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which are illustrated by the distance from each point to the two-dimensional 
plane in Figure 1.2. The closer all the observed values are to the fitted regres-
sion plane, the better the fit of the model to the data.

The criterion of least squares is used to estimate optimal values of   
such that the discrepancies between the observations and the value pre-
dicted by the model are as small as possible. Using the differential calculus, 
the values of  are chosen to minimize the sum of the squared errors of 
prediction:

Σ ′ ′� � � � �2 = = − −( ) ( )y X y X . [1.8]

Substituting the sample estimates of the population parameters ( )q+ × =1 1

(β β β� � � �0 1, , , )q  into Equation 1.8, it can be shown that taking the partial 
derivatives of  ′ , setting them to zero, and solving the resulting set  
of simultaneous equations lead to the optimal solution of the regression 
coefficients,7

 = ( )−X X X Y′ ′1
( ). [1.9]

Applying Equation 1.8 to the example data of Table 1.1 gives the 
unstandardized parameter estimates of the regression of TMT-B on age, 
education, and gender,8
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7We will use the diacritic ^ over the symbol to denote a sample estimate of its 
population parameter.
8 X X′( )−1  is the inverse of the uncorrected raw score sum of squares and cross 
products matrix (SSCP) of X and ( )X Y′  is the uncorrected raw score sum of cross 
products (SCP) between X and Y. The unstandardized regression coefficients of 
Equation 1.8 are identical to those obtained by mean corrected SSCP and SCP 
matrices. Details of the relationship between raw score and mean corrected SSCP 
and SCP matrices are given in Rencher (1998, pp. 269–271).
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Interpretations follow the usual rules: Each one year increase in age is 
accompanied by an increase of approximately 9

10
 of a second to complete

the TMT-B task; each additional year of education reduces the time-to-
completion of about 2 seconds; and males and females differ by an average 
of about 4.7 seconds on the timed TMT-B where females show faster per-
formance. The expected time to completion of the TMT-B for a 50-year-old 
woman with 12 years of education would be estimated at 85 seconds.

It is occasionally useful to reparameterize the regression model to mean 
zero and unit variance (e.g., Z Z Z ZY X X X, , ,

1 2 3) in which the particulars of the 
regression model in standard score form9 can be expressed in terms of cor-
relation coefficients. The standard score regression model can be written in 
scalar and matrix form as

Z Z Z XY X X q q= + + + +β β β ε1 21 2

* * *


Z Zy X= +� �* , [1.10]

with errors of prediction defined as

� �= −Z Zy X
*. [1.11]

The least squares estimates, *, of the standardized regression parame-
ters chosen to minimize the sum of squared errors of Equation 1.11 are 
found by

*
,= −R RXX XY

1 [1.12]

where R XX XYand R  are, respectively, the correlation matrices between pre-
dictors and between predictors and criterion.10 Estimating *  for the example 
data of Table 1.1 yields the fitted model,
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9The symbol β
*  will be used to denote parameters in standard score form with the 

standardized estimates of the parameters denoted by β*.

10 R RXX XYand  are the sample size–adjusted SSCP and SCP matrices in standard 
score form.
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The usual rules for interpreting standardized coefficients apply; each 
coefficient represents a β j

*  standard deviation change in Y per standard 
deviation change in Xj . There may be little to be gained by interpreting any 
single standardized regression coefficient in lieu of its unstandardized 
counterpart, but it is often recommended that standardized coefficients be 
used if comparative evaluation of the relative influence of predictors is a 
goal of the analysis (Bring, 1994; Darlington, 1990, pp. 217–218). These 
recommendations are based on the fact that the absolute value of the 
unstandardized regression coefficients (β j) are partly dependent on the 
scale of measurement, which can differ across predictors while the stand-
ardized coefficients (β j

*) are scale adjusted.11 For the predictor variables of 
age and education, the raw regression coefficients suggest that age is a less 
important predictor than education (ignoring the differences in scale—
SD SDage education= =. , .21 68 2 60), whereas the standardized coefficients 
suggest the opposite relative importance with age being greater than educa-
tion after adjusting for underlying scale differences. The issue of testing the 
significance of these differences (i.e., β β 

1 2.vs , and β β 

1 2
* *.vs ) will be shown 

in a later section to be tests of quite different conceptual hypotheses even if 
the raw scores are on equal scales, where SD SDX X1 2

= .

Assumptions Needed to Justify the Validity  
of the Least Squares Estimates

There are no assumptions required to justify the least squares estimation of 
the parameters—that process is purely descriptive. But several important 
assumptions about the linear model can be introduced at this point. If met, 
the assumptions provide a degree of confidence in the interpretation of the 
coefficients as well as justify the validity of the test statistics to be  
discussed in a later section of this chapter. The assumptions include the 
following:

 • The model is linear; the E Y X|( )  lies precisely on a straight line.
 • The model is correctly specified; no important variables are omitted 

from the analysis.

11Standardized regression coefficients have little meaning for categorical predictor 
variables. The standard deviation of the numbers used to designate categories of a 
nominal grouping variable has no meaningful interpretation beyond the ability of 
the numerals to distinguish categories. In a later section, we note that the standard-
ized version of a dichotomous predictor may have a useful interpretation when 
involved in a test of relative importance when compared with other predictors in the 
model. 
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• The predictor variables Xj  are measured without error.
• E ε( ) = 0 . The errors of the regression model are a random variable 

with mean zero.
• Cov( )ε εi j, =0 , for i ≠ j. The errors are assumed to be independent 

with covariance of zero.
• V I n nε σ( ) = ×

2
( ) . The variance of the errors is assumed to be a constant. 

The quantity σ 2  is a population parameter and is estimated in the 
sample by the mean square error,

σ�
�

2

2

1
=

−∑
− −

( B)Y X

n qf

,

where n qf− −1
 
denotes the degrees of freedom for error based on qf  

predictor variables in the full model.

 • ε β σi N X I~ ,( )2 . The errors of the model are assumed to be normally 
distributed with mean Xβ  and variance σ 2I , which provides the con-
nection to the probability distribution that underlies the test statistics 
applied to the regression coefficients.

More extensive accounts of the assumptions and the diagnosis of their 
violations can be found in Cohen et al. (2003, Sect. 4.3–4.5).

Partitioning the Sums of Squares and  
Defining Measures of Goodness of Fit

The strength of the relationship between the criterion and the predictor 
variables in a linear model is documented by two indices: the sum of 
squared errors SS Y XERROR = −( ) = =( )∑ ∑β ε   

2

2 � �′  and the squared mul-

tiple correlation coefficient (R2 ). To achieve each of these measures 
requires that the variability in the response variable be partitioned into its 
constituent parts related to Equation 1.3. The partitioned SS is

SS SS SSTOTAL MODEL ERROR= + . [1.13]

The estimated vector of errors of the model is given by � � = −y X  
and the sum of squared errors of Equation 1.13 is defined by � � ′ . As a measure 
of goodness of fit, � � ′  has known lower and upper bounds, 0 ≤ ≤� � ′ SSTOTAL, 
defining a range from no relationship to perfect relationship. The  
mea sure � � ′  is ambiguous as a measure of strength of association unless SSTOTAL 
is known. The mean corrected total sum of squares is SS Y Y nTOTAL = −( ) = −∑ 2

y y yy′
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SS Y Y nTOTAL = −( ) = −∑ 2
y y yy′ , where y y y y yy′ ′= −( )n is an (n × 1) vector of the mean of Y repeated n times. 
Redefining y y y y yy′ ′= −( )n  to be the mean corrected SSTOTAL, and rede-
fining   ′ ′ ′ ′X y X y yy= −( )n  to represent the mean corrected SSMODEL, the 
partition of the sums of squares of Equation 1.13 is12

y y X y′ ′ ′ ′= +� � � . [1.14]

It is common practice to rely on the value of R2 , which is scaled to take 
on values in the interval [0, 1], as an index of goodness of fit. SSTOTAL is the 
maximum variability available in Y, SSERROR  is the variability in Y that can-
not be accounted for by the model, and SSMODEL is that part of the variability 
in Y  that is accounted for by the model. The proportion of the variability in 
Y that is accounted for by the model, R2, is the scaled measure of goodness 
fit and is computed as

RY X X Xq•
= −

1 2

2 1


 ′
′y y

[1.15]

or more commonly,

RY X X Xq•
=

1 2

2
…

�′ ′
′
X y
y y

. [1.16]

If the partitioning is done in terms of standard scores, it can be shown 
that a convenient definition of R2 is given by

 
R r r rY X X X Y X Y X q Y Xqq

• • • •= + + +
1 2

2
1 1 2 2�
� � � �β β β* * * . [1.17]

For the TMT-B example data of Table 1.1, the mean corrected Total and 
Model SS are y y′  = 41875.33,  ′ ′X y = 17758 00. . The fit of the model is 
found to be 

RY X X X• = =
1 2 3

2 17758 00

41875 33
424

.

.
. .

12The uncorrected sum of squares of Y, ∑ =Y 2 y y′ , contains both the SS associ-
ated with the predictor variables (β β β1 2, , q) and the SS associated with the inter-
cept. The mean corrected SS, y y yy′ − n disaggregates these two quantities. Rencher 
(1998, Sect. 4.3–4.5) gives details of the relationships between uncorrected and 
mean-corrected SS.
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About 42% of the variation in TMT-B performance is accounted for by 
age, education, and gender. About 58% of the variation in Y remains unex-
plained and is a function of other unknown sources, both systematic and 
random.

Full and Restricted Models and Squared Semipartial Correlations

In addition to the full model R2  based on qf  predictors, it is often of interest 
to ascertain the proportion of variation in Y that is uniquely attributable to 
Xj  adjusted for all remaining X-variables. These squared semipartial cor-
relation coefficients (r r rY X X X X Y X X X X Y X X X Xqf qf qf qf

( | ) ( | ) ( | ), , ,
1 2 3 2 1 3 1 2 1

2 2 2
� � �…

− ) can be 
computed from the extra sums of squares approach (Draper & Smith, 1998, 
pp. 149–160), which requires evaluating the difference between full and 
restricted model R2 s. Define the full model Rfull

2  as the proportion of varia-
tion in Y accounted for by all the qf  predictors in the model, X X X qf1 2, , , .  
Define a restricted model Rrestricted

2  as the proportion of variability in Y 
accounted for by a subset of q qr f<  predictors, say X X X qr1 2, , , .  Since the 
full model Rfull

2  documents the proportion of variability in Y accounted for 
by all the predictors and the restricted model Rrestricted

2  represents 
the proportion of the variability in Y accounted for by the qr predictors, 
the difference between the full and restricted model R2s must represent the 
unique incremental variation in Y accounted for by those predictors that 
are not contained in the restricted model. The difference R Rfull restricted

2 2−  is 
the squared semipartial correlation coefficient. Examples of squared semi-Examples of squared semi-
partial correlations for the TMT-B example data are

r R R
Y X X X Y X X X Y X X1 2 3 1 2 3 2 3

2 2 2 424 065 359
|( ) = − = − =• • . . . ,

r R R
Y X X X Y X X X Y X X2 1 3 1 2 3 1 3

2 2 2 424 403 021
|( ) = − = − =• • . . . ,

r R R
Y X X X Y X X X Y X X3 1 2 1 2 3 1 2

2 2 2 424 419 005
|( ) = − = − =• • . . . ,

R R R
Y X X X Y X X X Y X1 2 3 1 2 3 3

2 2 2 424 002 422
|( ) = − = − =• • . . . .

About 36% of the variation in TMT-B performance is attributable to 
age after adjusting for the variance accounted for by education and gen-
der; the variance in TMT-B that is uniquely attributable to education or 
gender is negligible. The multiple squared semipartial of age and educa-
tion adjusted for gender appears to be the best prediction model, but it is 
unclear if this value is a significant improvement over age alone 
( . . )rYX1

2 26324 400= =  because we know little about the sampling variabil-
ity that accompanies these models. Methods for assessing statistical  
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significance and testing hypotheses on contrasts between predictors are 
reviewed in the next section.

Testing Hypotheses on the Regression Coefficients and R2s

The trustworthiness of β  or R2  depends on knowledge of the sampling 
variability of that statistic and test statistics for evaluating hypotheses on 
the parameters of the model. The two most common methods include the 
F-test on values of R2  and the single degree of freedom t-test on the model 
regression coefficient where t F= .  A generic F-test on dfh  and dfe  
degrees of freedom based on appropriately specified full and restricted 
models can be defined as

F
R R

R

df

dfdf df

full restricted

full

e

h
h e,( ) =

−
−

•

2 2

21
. [1.18]

Let qf  
be the number of predictors in the full model (exclusive of the unit 

vector X 0), let qr  be the number of predictors in the restricted model, and 
let df q qh f r= −  and df n qe f= − −1. If it is assumed that ε σi N~ ( , )0 2 , then 
the test statistic in Equation 1.18 follows the F distribution with q qf r−  and 
n qf− −1 degrees of freedom. The numerator of the left-most ratio of the 
F-test is the definition of the squared semipartial correlation. The nature of 
Rrestricted

2  will be dictated by the hypothesis to be tested since the hypothesis 
dictates the constraints to be placed on the full model. If the hypothesis on 
the whole model H q f0 1 2 0:β β β= = = =  is desired,13 the restricted model 
will contain only β0 with Rrestricted

2 0= , leading to the numerator 
R R Rfull restricted full

2 2 2− = . A test of a hypothesis on a single regression coeffi-
cient, such as H0 1 0:β = , would involve R Rrestricted Y X X Xqf

2 2

2 3
= •



. Hypotheses 
on any single coefficient, or set of coefficients, can be tested in this manner. 
Further examples of hypothesis tests involving restrictions placed on the 
linear model are given in Rindskopf (1984).

For single dfh tests, the t-test on the hypothesis H kj0 :β =  is, in common 
usage,14

t
MSE

SS R

df
j j

X X other

e

j j

( )
,=

−

−











•

β β

1

1 2

[1.19]

13This is equivalent to the hypothesis H Y X X Xq f
0

2

1 2
0:ρ

•
=



.
14The value of k need not be hypothesized to be 0; any theoretically defensible value 
of k is permissible.
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where

MSE
SS

n q
ERROR

f

=
− −1

, 

SSxj
 is the sum of squares of the predictor variable involved in the test, and

1

1 2−
•

RX otherj

is the variance inflation factor (VIF) that adjusts for the multicollinearity 
among the predictor variables. For the TMT-B example, the F-test  
on the whole model R2 424= .  is F p( , ) . , .3 36 8 84 001= < . The test of  
the significance of each of the individual partial regression coefficients  
for age, education, and gender yielded, respectively, values of 
t p t p t p36 36 364 74 001 1 15 258 57( ) ( ) ( )= < = − = =. , . ; . , . ; . ,and == . .575  Only 
the age variable is uniquely related to TMT-B performance. The t-test sta-
tistics on the individual coefficients are the F  that would have been 
obtained by the full- versus restricted-model approach of Equation 1.18. 
The results of the test of hypotheses on the values of βj  and on the values 
of their respective partial and semipartial correlations are identical.

The General Linear Hypothesis Test

Although the two methods for testing hypotheses described above are in 
wide usage, they are special cases of a much more general approach to test-
ing hypotheses in linear models—the general linear hypothesis test. The 
general linear test is a compact procedure that covers an astonishing array 
of common and specialized tests of hypotheses in both the univariate and 
the multivariate linear models.

Assume for the univariate model of Equation 1.3 that we wish to test the 
hypothesis that all the sample regression coefficients in a full model have 
been drawn from a population in which all the coefficients, with the excep-
tion of the intercept, are simultaneously equal to zero. We can formalize 
this hypothesis by a linear combination of the parameters specified by the 
matrix product L = 0. That is,

 
H

q f

0

0

1

2

0 1 0 0

0 0 1 0

0 0 0 1

: L=































�
�

� � � � �
�

�

β

β

β

β 








=





















=



















β

β

β

1

2

0

0

0

� �
q f

. [1.20]
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The L matrix is of order ( c q f× +1 ) whose role is to identify the coef-
ficients of interest in any hypothesis. Other hypotheses might involve only 
a single-parameter estimate (e.g., H0 1 0:β = ), or some subset of the param-

eters e.g., H0
1

3

0

0
:

β

β









 =

















. In general, any desired hypothesis can be 

defined as a product of a vector (or matrix) of contrast coefficients, L c q× +( )1 , 
and the vector of parameters,  q+ ×( )1 1 , from the full model analysis. A more 
general form of the contrast is possible where the vector k can contain zeros 
(the traditional null hypothesis) or any other vector of theoretically justified 
nonzero values:

L kc q q c× +( ) + ×( ) ×( )=1 1 1 1 . [1.21]

The subscript c denotes the number of rows in L that will be equivalent 
to dfh in the associated test statistic. Once the desired hypothesis is speci-
fied, we can substitute the estimates of the parameters   into Equation 1.22 
to obtain the sums of squares for the hypothesis:

 
SSHYPOTHESIS = ( )( )− −

( ) ( )L L X X L L  ′ ′ ′1 1
[1.22]

and the SSHYPOTHESIS can be used as the numerator of a familiar version of 
the F-test,

F
SS

SS

df

dfdf df
HYPOTHESIS

ERROR

e

h
h e,

.( ) = •

[1.23]

Under the assumption that the errors of the model are normally distrib-
uted, F will follow the F distribution on df ch =  and df n qe f= − −1 degrees 
of freedom.

The Test of the Whole Model Hypothesis 
β1 β2 β3 0  and ρY X X X• =

1 2 3

2 0

For the TMT-B example data, we found the estimated regression coeffi-
cients to be











=





















=
−
−















β

β

β

β

0

1

2

3

65 69

0 92

1 87

4 68

.

.

.

.
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and we desire a test the hypothesis that parameters for X X X1 2 3, , and  are 
simultaneously equal to 0, H0 1 2 3 0:β β β= = = . This statement is also a test 
of H Y X X X0

2

1 2 3
0: .ρ ⋅ =

 
The general linear test of the full model hypothesis is 

given in L

L =


































=








0 1 0 0

0 0 1 0

0 0 0 1

0

1

2

3

1

2

3

β

β

β

β

β

β

β 





=
















0

0

0

,

which ignores the intercept. For the contrast matrix L, the inverse of the 
sum of squares and cross-products matrix among the three predictor vari-
ables, X X′ −1, and the estimates of the parameters   the hypothesis SS of 
Equation 1.22 is

SSHYPOTHESIS =
















−
−





0 1 0 0

0 0 1 0

0 0 0 1

65 69

0 92

1 87

4 68

.

.

.

.
















































′

0 1 0 0

0 0 1 0

0 0 0 1

40 2 339 504 18

2

,

,, , , ,

, ,

339 155 103 29 097 1 059

504 29 097 6 614 221

18 1059 221 18























































− −1 1

0 0 0

1 0 0

0 1 0

0 0 1

0 1 0 0

0 0 1 0

0 0 00 1

65 69

0 92

1 87

4 68

















−
−





































.

.

.

.

which yields SSHYPOTHESIS = 17758 00. . The SSHYPOTHESIS
 is identical to the 

SSMODEL obtained from  ′ ′ ′X y y y− n. With df ch = = 3, df n qe f= − −1 = 36, 
and   ′ = 24117.33, the F-test on the whole model association is found 
to be

F( , )3 16 =  17758

24117 33

36

3.
• = 8.84, p = .0002.

With RY X X X⋅ =
1 2 3

2 424. , there is sufficient evidence to reject H0.
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Testing the Individual Contributions of X1, X2, and X3  
by the General Linear Test

Hypothesis tests on the individual partial regression coefficients β β1 2, ,
and β3 can be readily tested within the L 0=  framework. For testing a 
hypothesis on β1, we specify

L= [ ]



















= =0 1 0 0 0

0

1

2

3

1

β

β

β

β

β [1.24]

and to specify the null hypothesis on β2 and on β3, we employ the vector   
and the appropriate vectors L = [ ]0 0 1 0  and L = [ ]0 0 0 1 , respec-
tively. All these hypotheses are tested by substituting   into Equations 1.22 and 
1.23; the results are summarized in Table 1.2.

Table 1.2   General Linear Hypothesis Tests on Individual Partial  
Regression Coefficients

Hypothesis β β* rsemipartial F( , )1 16
p

Age: β1 = 0  0.919  0.608  .599 22.44 <.001

Education: β2 = 0 -1.870 -0.148 -.145  1.32  .258

Gender: β3 = 0 -4.683 -0.072 -.072  0.32  .575

In this model, age is the only significant contributor to the prediction of TMT-B.
The test statistic on the any unstandardized β j  is also the test of the sig-
nificance of the standardized β* and the semipartial correlation r

Y X X Xj | 1 2( ). 
The test of hypotheses on sets of predictors is also identical for unstandard-
ized and standardized partial regression coefficients and the multiple semi-
partial correlations associated with each set. These equivalences no longer 
hold when more complex hypotheses are tested by the general linear test.

Testing More Complex Hypotheses With the General Linear Test 

The general linear hypothesis test is suitable for formulating and test-
ing many complex hypotheses (Draper & Smith, 1998, pp. 217–221; 
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Rindskopf, 1984). Consider the question of whether age is a better predictor 
of TMT-B performance than is education, both adjusted for gender. This 
question asks if the coefficients β1  and β 2  are significantly different from 
one another as expressed in the null hypothesis H0 1 2:β β= . This hypothesis 
can be specified by the contrast matrix L = −[ ]0 1 1 0  that deletes β0  
and β3 from  and defines the difference between β1and β2. The symbolic 
contrast of the null hypothesis, L 0 =  is

L = −[ ]



















= −[ ] =0 1 1 0 0

0

1

2

3

1 2

β

β

β

β

β β , [1.25]

which gives the basis for evaluating the SSHYPOTHESIS  and the numerator of 
the F-test. Substituting the estimates β j  into Equation 1.22 we find,

L = −[ ]
−



















= −[ ]0 1 1 0

65 69

92

1 87

4 68

95

.

.

.

.

.

and L X X L′ ′( )( ) =− −1 1

 
259.53 with   ′ =  24117.33. The F-test of Equation 

1.23 is

F( , )1 16 =  234 71

24117 33

36

1

.

.
• = 0.32, p = .573.

The unstandardized partial slopes of age and education (reverse 
scored),15 shown in Figure 1.3, do not differ significantly from one 

15Age has a positive relationship to TMT-B; performance deteriorates with increas-
ing age. Conversely, TMT-B has a negative relationship with increasing years of 
education. Contrasts between regression coefficients are sensitive to both magni-
tude and direction and a choice must be made between testing differences in mag-
nitude only, or testing differences in both magnitude and direction. Theoretical 
considerations based on substance knowledge should be brought to bear to make 
this choice. For the age versus education comparison illustrated here, only the mag-
nitude of the effect is of interest. Reversing the scoring of the education variable 
equates the sign of both age and education coefficients; hence the contrast is one of 
magnitude and not direction. If there is theoretical justification to leave the signs of 
the regression coefficients in the original scoring of age and education, then a test 
of both magnitude and direction would result. The F-test on this contrast is F( , )1 16 = 
3.01, p = .091, still a nonsignificant result.
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another. Interpreting this lack of a significant difference should be done 
cautiously. Many authors point out that such a contrast makes sense 
only if the two variables are measured on the same scale, which is not 
the case with age (range = 33–105, SD = 21.7) and education (range = 
8–18, SD = 2.6).

The unstandardized partial slopes of Figure 1.3 do not differ signifi-
cantly from one another, but the squared semipartial correlations suggest 
that the variance in TMT-B accounted for by age is substantially greater 
than the variance accounted for by education. The relative rank order of the 
two predictor variables is opposite when unstandardized slopes and semi-
partial correlations are used for the ranking, largely due to the differences 
of scale of the predictor variables.

An alternative test that avoids the issue of inequalities of scale is the 
general linear test applied to standardized coefficients by testing the 
hypothesis H0 1 2: * *

β β−  = 0.16 Estimating the parameters by β1
*  and β 2

*  and 

b = .919
beta = .608

semipartial r = .599
semipartial r-square = .359

0
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150

T
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T
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−2 −1 0 1 2

Age adjusted for Education and Gender

b = −1.870
beta =   −.148

semipartial r = −.145
semipartial r-square = .021

0
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100

150

T
M

T
-B

−4−20246

Education (reverse)  adjusted for Age and Gender

Figure 1.3   Comparison of Unstandardized Partial Slopes, Standardized 
Partial Slopes, and Semipartial Correlations

Note: Education is reverse scored to guarantee a positive slope.

16The scoring of the education variable was also reversed in this analysis to con-
strain the sign of each standardized slope to a positive value. The contrast is there-
fore a test of the difference in magnitude of semipartial correlations.



23

performing the same sequence of computations on the standardized vari-
ables Z Z Z ZY X X X, , ,

1 2 3
and  leads to

L� * = −[ ]
−

















1 1 0

0 61

0 15

0 07

.

.

.

 = .460,

SSHYPOTHESIS = 3 397. , SSERROR = 22 461. ,17 and F p1 36 5 44 025, . , .( ) = = . The 
standardized parameter estimates differ significantly by the hypothesis test 
applied to standardized coefficients. The reason for the differing results is 
a consequence of the differences in the scales of measurement of the pre-
dictor variables; it can be shown that the jth standardized coefficient is a 
ratio of its semipartial correlation to the square root of the proportion of 
variation in Xj not accounted for by the remaining predictors X j , (e.g., 
tolerance) in the full model, that is,

β j

Y X X

j other

r

R

j j*

.

=
−
( )| ′

1 2
.

Unstandardized regression coefficients and their standard errors have 
absolute magnitude for two reasons: (1) scale of measurement and (2) the 
underlying relationship between the predictor and response variables. 
Conversely, the magnitude of the standardized coefficients is most heavily 
determined by the semipartial correlations and the tolerances of the predic-
tors. Consequently, a difference between standardized coefficients constitutes 
a test of the differences between semipartial correlation coefficients18—it is a 
test of differences between correlations of Y and each predictor after adjust-
ment for other predictors in the model. The test statistic of differences 
between raw regression coefficients and between semipartial correlations 
need not be equal. The two tests are numerically independent because they 
test conceptually different hypotheses—differences in rates of change versus 
differences in strength of association. The tests between coefficients for 

17The error sum of squares in standard score form is Z Z B Z Z′ ′ ′Y Y X Y X X Xn R− = −( ) − •



* ( )Y 1 1
1 2 3

2

Z Z B Z Z′ ′ ′Y Y X Y X X Xn R− = −( ) − •



* ( )Y 1 1
1 2 3

2 .
18The test of the differences between two standardized regression coefficients from 
a regression analysis is defined as

t
MSE XX

= −

( )−

β β 

1 2

1

* *

LR L′
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unstandardized and standardized models will be identical only when S SX X1 2
= . 

Similar tests of differences between correlation coefficients are discussed in 
Olkin and Finn (1995). Draper and Smith (1998, pp. 218–219) and Rencher 
(1998, pp. 295–300) give examples of more complicated linear hypothesis tests 
in which the same principles apply. 

Generalizing From Univariate to Multivariate  
General Linear Models

We have begun this volume with a review of the common strategies for 
modeling a single response variable as a function of one or more continu-
ous and/or categorical explanatory variables. Such models have great flex-
ibility and can accommodate any combination of predictor variable types, 
including their interactions and powers.

(Cohen et al., 2003, pp. 640–642), where R XX
−1  is the inverse of the correlation 

matrix among the predictors and

MSE
R

n q
Y X X X

f

=
−

− −
•1

1
1 2 3

2

.

Substituting the definitions

β1

1 2
2

1 2

1
*

.

=
−
( )r

R

Y X X|

and

β 2

1 2
2

2 1

1
*

.

=
−
( )r

R

Y X X|

into t sets the numerator to

r r

R

Y X X Y X X1 2 2 1

1 1 2
2

| |( ) ( )−

− .

.

Setting the contrast matrix to L = −[ ]1 1 0  and performing the symbolic multi-

plication of the quantity MSE XX(LR L−1 ′), the denominator of t reduces to

MSE r

R
.

.

2 1

1

12

1 2
2

+( )
−
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Recounting these details here sets the stage for the generalization of 
these same analytic concepts to those instances where more than one dependent 
variable is to be analyzed simultaneously. Models with p > 1 response variables 
are classified as multivariate models that can be treated with the same four-step 
process—the specification of the multivariate model, estimation of its parame-
ters, identifying measures of strength association, and defining appropriate tests 
of significance. We pursue these topics in the chapters that follow.

The quantities 1 1 2
2− R .  in the numerator and denominator cancel, leaving

t
r r

MSE r

Y X X Y X X=
−

+( )
( ) ( )1 2 2 1

2 1 12

| |

( )

.

Hence, the test of the hypothesis β β1 2 0* *− =  is a test of the differences between 
semipartial correlation coefficients. In this interpretation, approximately 36% of the 
variance in TMT-B is accounted for by age while about 2% of the variance in 
TMT-B is accounted for by education. The absolute values of the two correlations 
are significantly different from one another, while the absolute values of the two 
unstandardized slopes do not differ significantly. The difference between unstand-
ardized rates of change is being masked by differences in variance of the predictors.




