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Editors’ Introduction: 
Social Statistics

Roger Penn and Damon Berridge

This collection of articles on social statistics provides a broadly chronological 
account of the creation and development of statistical methods relevant 
to the social sciences and in particular, to sociology. Sociological research 

has posed serious challenges for statistical analysis historically because socio-
logical data are not generally continuous in nature1. Statistical methods such as 
linear regression models and analysis of variance (ANOVA) developed rapidly 
after Galton’s breakthroughs in the 1870s and 1880s which culminated in his 
book, Natural Inheritance (Galton, 1889). However, these methods were based 
upon assumptions of continuous data, with an underlying normal distribution 
and were therefore inappropriate for the analysis of much sociological data. 
New methods had to be created and developed. These four volumes chart 
these innovations over the last 100 years or so.

Sociological data are often categorical in nature. They may be binary, nominal 
or ordinal. Binary data (such as ‘employed’/‘unemployed’) have an underlying 
binomial distribution which can be analysed using logistic and probit models. 
Nominal data (such as occupational status categories) have an underlying 
multi-nomial distribution which can be examined by either log-linear modelling 
or multi-nomial logit modelling. Ordinal responses such as those found in the 
many Likert2 items (Likert, 1932) used in survey research can be assessed using 
proportional odds or cumulative logit models. The generation of these styles 
of modelling has been a dominant theme during the last 50 years. 

The early literature on the analysis of categorical data witnessed a succes-
sion of attempts aimed at quantifying the nature of association between two 
binary variables. The debate between Pearson and Yule became particularly 
heated. At the heart of their exchanges was a debate about whether categor-
ical variables could be regarded as discrete representations of continuous 
distributions (Pearson’s point of view), or whether binary variables such as 
(‘vaccinated’/‘not vaccinated’) were inherently discrete (Yule’s perspective). 
Both points of view had some merit. For variables such as religion and ethnicity, 
the classification is fixed and no underlying continuous distribution is ap-
parent. For other variables, for example social class, the assumption of an 
underlying continuum is more plausible. Indeed, such an assumption would 
prove to be integral to the development of later models such as the cumulative 
logit (see Volume 4). 

Pearson (1900) introduced a goodness-of-fit test which constituted the 
starting point for a subsequent revolution in social statistics. This would 
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become known as Pearson’s chi-squared statistic. Pearson was motivated to 
develop this test in order to determine whether possible outcomes on a Monte 
Carlo roulette wheel were equally likely. The chi-squared test statistic had neat 
mathematical properties3 which permitted the evaluation of whether prob-
abilities in a multinomial distribution equated to certain prior values. It allowed 
for the attachment of probabilities to the likelihood of responses occurring 
by chance (at random). The probability of results occurring less than 1 in 
20 times became the standard criterion for measuring statistical significance 
within the social sciences. This continues today. Indeed, a great deal of routine 
sociological practice remains locked at this level of descriptive statistical 
analysis established in the early part of the twentieth century. 

These developments closely paralleled the emergence of the notion of 
hypothesis testing which involved the generation of a ‘research hypothesis’ and 
an isomorphic ‘null hypothesis’ of no association. The research hypothesis itself 
was often derived from emerging sociological theory. Traditionally, this was 
seen as an a priori starting point for data analysis but later it was also linked 
to a posteriori inductive approaches such as ‘grounded theory’ (see Glaser and 
Strauss, 1967). The latter has now become incorporated into contemporary 
social statistics in the form of ‘data mining’ (see, for example, Hand, 2001).

Other attempts at measuring association originated in the study of public 
health (see Macdonell, 1902; 1903) and genetics (see Blanchard, 1902). Their 
analyses of the nature of statistical association began with the simplest of 
cases: the 2  2 contingency table (see Macdonell, 1902; Blanchard, 1902). It 
developed subsequently into the analysis of the more general 2  c table (see 
Macdonell, 1903) and culminated in the r  c case (see Yule 1906a; 1906b)4.

The presentation of innovative methods in social statistics moved during 
the inter-war period from biological and medical journals into mainstream 
statistical journals on both sides of the Atlantic, notably the Journal of the Royal 
Statistical Society (JRSS) and the Journal of the American Statistical Association
(JASA). These two journals have remained pivotal for the dissemination of 
new methods within social statistics and quantitative sociology. The 1930s 
and 1940s witnessed the further extension of the chi-squared test to handle 
higher dimensional tables (see Bartlett, 1935; Norton, 1945). 

The analysis of complex data structures, such as those encountered in the 
study of processes of social mobility, required the development of new methods 
that could permit the estimation of the simultaneous effects of a wide range 
of explanatory variables. Some of these would be categorical in form (such as 
social class, gender and ethnicity) but others would be continuous (such as age 
and income). There was therefore, a pressing need to develop methods that 
permitted the simultaneous control for categorical and continuous variables, 
and which also considered likely interactions amongst the explanatory vari-
ables themselves. These issues were resolved within a variety of modelling 
frameworks (see Volumes 2, 3 and 4).

The practical solutions to these statistical problems also relied upon the 
parallel emergence of computers with sufficient power to fit models. It also 
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required the development of appropriate software to facilitate their widespread 
adoption. Initially, social statisticians wrote their own software but the late 
1960s saw the emergence of SPSS (Statistical Package for the Social Sciences)
as a standard software package available to social scientists. The combina-
tion of SPSS software and IBM mainframe computers underpinned the rapid 
development of the incorporation of new methods of statistical analysis within 
the social sciences in the 1970s and 1980s, particularly in the United States. 
Indeed, during this period, key contributions were overwhelmingly published 
in US statistics and sociology journals. 

The main difficulty inherent in much of the traditional analysis of con-
tingency tables was the problem of chronology. Social scientists wanted to be 
able to examine causal processes such as whether unemployment led to ill 
health. However, a contingency table that cross-tabulated ‘employment’/
‘unemployment’ by ‘good health’/‘poor health’ could not demonstrate such 
a relationship since a statistically significant correlation between unemploy-
ment and illness could equally be the result of illness leading to unemployment. 
Indeed, a putative correlation could be the result of both processes operating 
simultaneously. 

Longitudinal data offered a solution to this impasse. In the example above, 
a longitudinal research design producing simultaneous data over time on states 
of health and on employment status would permit the disentangling of the two 
processes, by the measurement of the two relative sets of effects. However, 
longitudinal analysis brought its own problems that also needed new solu-
tions (see Volumes 3 and 4). 

Volume 1: The Fundamentals of Descriptive 
Social Statistics

The earliest articles in this volume laid down the fundamental principles for 
the exploratory analysis of categorical data. A classic example of such data 
was social class as measured by occupational groups (see Macdonell, 1903: 
Table IX, p.138) [1.5]. Social class often comprised several occupational cat-
egories, but Macdonell reduced it to a binary variable comprising two 
categories, ‘higher class’/‘lower class’. 

The relationship between two binary variables could be summarised using 
a 2  2 contingency table or crosstabulation. The higher and lower classes 
of fathers were cross-classified by the higher and lower classes of their sons 
(see Macdonell (1901, 1903) [1.1, 1.5] and Blanchard (1902) [1.3]5).

The relationship between two binary ‘attributes’6 (or variables) was 
expressed in terms of a correlation or an association (see Yule, 1903) [1.4]. 
Association was defined in terms of the presence of dependence, or equiva-
lently, the absence of independence, between two binary variables (see Yule, 
1903) [1.4]. The correlation or association displayed in a single 2  2 table 
was encapsulated in a single summary statistic. Early attempts at developing 
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such a statistic included the ‘coefficient of correlation’ (see Macdonell, 1903; 
Pearson et al., 1903; Yule, 1906a) [1.5, 1.6, 1.7] and the ‘coefficient ratio’ 
(see Pearson, 1910) [1.10]. 

1.1 Data Comprising More Than Two Variables

Even in these early studies, there was an appreciation that processes were 
rarely bivariate in nature, and could not be summarised adequately using a 
single 2  2 table. More often, there was a complex series of inter-relationships 
between more than two binary variables. This was initially resolved by the con-
struction of a series of 2  2 tables (see Macdonell (1901, 1903) [1.1, 1.5]).

The ideas underlying the theory of complete independence were gen-
eralised from two variables to more than two (see Yule, 1904) [1.4]. However, 
modelling approaches, better able than hypothesis testing to handle such 
multivariate data, would not start to be developed until the second half of 
the twentieth century (see Volume 2 onwards). 

1.2 Variables Comprising More Than Two Categories

As time passed, there was a recognition that two categories were insuffi-
cient to capture much social scientific data. In the early research on heredity, 
‘unmeasured characters’ (or categorical variables) such as eye-colour were 
categorised into more than two categories: these included light/medium/dark 
hues (see Yule, 1906b: pp.337–8) [1.8] or, with greater resolution, eight tints 
(see Yule, 1906a: p.330) [1.7]. 

There was an appreciation that collapsing such multi-categorical data into 
two categories (see Macdonell, 1903, p.139) [1.5] was problematic for sev-
eral reasons. The first involved the loss of potentially useful information. The 
second involved the problem that different ways of dichotomising groupings 
led to different crosstabulations7 and resulted in different coefficients of cor-
relation (see Macdonell, 1903) [1.5].

1.3 A Typology of Categorical Data

As a general rule, different types of data require different types of analysis. 
This rule applies to the analysis of categorical data. Multi-categorical vari-
ables can be classified into two types: ordered (or ordinal) and unordered 
(or nominal). 

In the earlier example on heredity, Yule (1906a) [1.7] wished to examine 
the association between the heights of fathers and their sons. He started his 
analysis by categorising the fathers’ and sons’ heights into three categories, 
thereby creating two new ordered variables, each comprising three cat-
egories. These ordered variables were cross-classified to produce a 3  3 table. 
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However, he subsequently analysed this 3  3 table by means of a series of 
2  2 tables. Unfortunately, this served to increase the complexity of the prob-
lem rather than to resolve the underlying issue. 

1.4 Chi-Squared Test

Several statistics such as Yule’s Q (see Yule, 1900, 1912) were developed to 
quantify strength of association. However, no formal test of statistical signifi-
cance was attached to them. Pearson (1907) concluded: ‘I cannot therefore 
accept Mr Yule’s test as very likely to be helpful in measuring deviation from 
Gaussian…’ (pp. 470–1). To rectify this situation, Pearson (1907) [1.9] himself 
calculated expected frequencies assuming a Gaussian (normal) distribution 
and applied the chi-squared test to a 3  3 table that examined the transmis-
sion of eye colour from father to son (pp. 471–2).

Subsequently, Pearson (1916) [1.11] applied the chi-squared test statistic 
for testing the null hypothesis of no association. He referred the chi-squared test 
statistic to the table of critical values for the chi-squared distribution presented 
earlier by Palin Elderton (1902) [1.2]. In a later article, Fisher (1922) [1.12] 
clarified the use of the chi-squared test for contingency tables. In particular, he 
stated that one should take, not the number of cells but the number of degrees 
of freedom, to produce more accurate p-values.

Yule (1922) [1.13] also applied the chi-squared test to compare observed 
and expected frequencies. He applied the test to data from a series of physical 
experiments. Fisher (1923) [1.14] then used the chi-squared test to com-
pare data observed from an experiment with two members of the family of 
chi-squared distributions (p.145) in order to assess which of the two displayed 
the better fit. A correction to the chi-squared test for 2  2 tables with small 
cell counts was proposed subsequently by Yates (1934) [1.16].

Hotelling (1931) [1.15] provided a useful summary of developments at 
that time, including the chi-squared test and Fisher’s ‘likelihood’. In the dis-
cussion of his article, Shewhart made an observation which still stands today: 
‘The logic of discovery is beginning to take on a new form, and today, the 
subject of statistical inference is of interest to all scientists.’

1.5 Interactions

In a 2  2 table comprising two variables A and B, the first order interaction is 
denoted by ‘A  B’. This indicates how A varies with B. The main effects comprise 
the marginal distributions of A and of B. Once the two main effects of A and 
B have been taken into account, the first order interaction can be tested. This 
principle was extended to higher dimensional tables. As Bartlett (1935) [1.17] 
explained, ‘For a 2  2  2 table … the only additional problem to consider… 
is the testing of the second order interaction (A  B  C).’ 
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1.6 High Dimensional Tables

Norton (1945) [1.18] presented a scheme of successive approximations for 
2N  R tables8. He made an important point which, even today, is sometimes 
difficult to convey to undergraduates in social statistics and social science: 
‘… a main effect may appear to be nil even though one of the interactions is 
clearly significant’ (p.251)! 

Yates (1952) [1.19] provided a concise summary of developments in 
social statistics by the middle of the twentieth century.

Kastenbaum and Lamphiear (1959) [1.22] developed an iterative pro-
cedure to estimate parameters of a multinomial distribution in a (r – 1) 
(s – 1)  (t – 1) crosstabulation and calculated the corresponding chi-squared 
test statistic. They emphasised the importance of being able to implement 
their methods using the latest technology: ‘It is the purpose of this paper to 
demonstrate a technique which… is particularly well suited for modern high-
speed computers’ (p.107).

Volume 1 concludes with a wide-ranging article by Yates (1984) [1.23], 
which summarised the developments covered in the volume. He provided an 
excellent review of early work (Section 3). He also reviewed the chi-squared test, 
including criticisms of the exact test and continuity correction (Section 11).

Volume 2: The Development of Statistical Modelling 

In Volume 1, we examined how the analysis of contingency tables focused on 
the testing of the null hypothesis of no association using the chi-squared test. In 
Volume 2, we explore how methods increased in sophistication as researchers 
started to examine issues such as social mobility (see Goodman, 1969 [2.5]; 
Hauser, 1978 [2.8]; Duncan, 1979 [2.9]; Penn and Dawkins, 1983 [2.11]; 
Hout, 1988 [2.15]; Biblarz and Raftery, 1993 [2.19]) and occupational mobility 
(see Duncan, 1979 [2.9]; Sobel et al., 1985 [2.13]). Social and occupational 
mobility, together with marital endogamy, were areas in which statisticians 
and social scientists interacted fruitfully during the 1970s and 1980s.

In Volume 2, we witness the transition from hypothesis testing to statistical 
modelling. Goodman and Kruskal (1954) [2.1] reviewed traditional measures 
of association and declared, ‘… we propose the construction of probabilistic 
models…’ (p. 735). Existing methods for handling two-way contingency tables 
were adapted to analyse three-way cross-tabulations. Darroch (1962) [2.2] 
proposed a likelihood ratio test for the hypothesis of no second-order inter-
action (A  B  C), and used Kastenbaum and Lamphiear’s (1959) [1.22] earlier 
2  3  5 example. Darroch (1962) [2.2] also extended his approach to handle 
four-way tables (A  B  C  D).

Birch (1963) [2.3] showed how interactions could be defined as cer-
tain linear combinations of logarithms of expected frequencies which could 
be estimated using maximum likelihood (ML). These ML estimates were 
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shown to be identical for a range of different sampling methods (Section 2). 
He also demonstrated that these ML estimates had three elegant mathematical 
properties:

(i) likelihood equations had a unique solution at which the likelihood is 
maximised;

(ii) ML estimates were the same under a wide variety of sampling conditions;
(iii) ML estimates were sufficient statistics9.

These results were generalised to many-way contingency tables (Section 5). 
Birch (1965) [2.4] subsequently presented an early form of the log-linear 
model (see, for example Nelder, 1974 [2.7]; Penn and Dawkins, 1983 [2.11] 
later in Volume 2) involving three variables I, J and K. He demonstrated that 
the hypothesis of a common cross-product ratio between variables I and J 
across all levels of variable K was, in its general form, equivalent to Roy and 
Kastenbaum’s (1956) hypothesis of no three-factor interaction. 

2.1 Social Mobility

Goodman (1969) [2.5] presented methods for examining two-way social 
mobility tables. Social class was classified into three categories: ‘upper’ (U), 
‘middle’ (M) and ‘lower’ (L). He divided each 3  3 table into a series of 2  2 
sub-tables, for example, father’s status (U or M) versus son’s status (U or M). 
He defined the interaction in each 2  2 sub-table in terms of an ‘odds ratio’. 
For example, the odds ratio of having ‘destination’ M rather than ‘destination’ 
U was defined for an individual whose origin is M, relative to an individual 
whose origin is U. If there were no difference in odds between these two indi-
viduals, then the odds ratio would take a value of 1 or, equivalently, the log 
odds ratio would take a value of 0. Goodman denoted the log odds ratio by G. 
By deriving a standard error S of G, he used the Z score (G/S) to test whether 
G was significantly different from zero.

The limitations of such bivariate analyses necessitated the development of 
multivariate techniques which could combine hypothesis testing and statistical 
modelling. The advantages of statistical modelling over hypothesis testing 
were threefold:

(i) It allowed for the examination of the joint effects of a set of n explana-
tory variables {X1, X2, …, Xn} on response variable Y simultaneously.

(ii) It permitted control of a set of secondary explanatory variables {X1,
X2, …, Xn–1} by including them in the model first, before assessing the 
relative significance of the factor of primary interest, Xn.

(iii) It enabled the assessment of the statistical significance of both main 
effects and interactions between explanatory variables.
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2.2 Major Methodological Developments in the 1970s

2.2.1 Generalised Linear Models

A major advance in data analysis came with the formalisation of the family of 
generalised linear models by Nelder and Wedderburn (1972). One member 
of this family, with Poisson error distribution and log link function, defined 
the log-linear model. Goodman (1972) [2.6] applied log-linear models to the 
analysis of a 24 table of counts. The goodness of fit between nested models 
was tested using chi-squared and likelihood ratio tests. Nelder (1974) [2.7] 
subsequently used a log-linear model to relate the log count (or frequency) 
to a set of explanatory variables. This early work by Nelder would lead to the 
development of the statistical software package Generalized Linear Interactive 
Modelling, GLIM (see Francis et al., 1993) which has been a cornerstone for 
the development of complex statistical modelling in the social sciences.

2.2.2 EM Algorithm

In their highly influential article, Dempster et al. (1977) [3.4] developed the 
EM algorithm, an iterative procedure comprising an expectation (E) step 
followed by a maximisation (M) step. The simplicity and generality of the 
associated theory would provide the inspiration for much later work (see 
Volumes 3 and 4). When the underlying data follow the exponential family, 
whose maximum likelihood estimates are easily computed, each M step is simi-
larly easily computed. Dempster et al. (1977) [3.4] provided many examples 
including ‘missing data situations, applications to grouped, censored or trun-
cated data, finite mixture models, variance component estimation, hyperpar-
ameter estimation, iteratively reweighted least squares and factor analysis’.

2.3 Occupational Mobility

The exploration of occupational mobility provided the basis for several 
methodological developments. Hauser (1978) [2.8] proposed a multiplica-
tive model for an observed crosstabulation of respondents’ occupations and 
their fathers’ occupations at an earlier time. The model expressed the expected 
frequencies as the product of four elements: an overall effect, a row effect, a 
column effect and an interaction effect. The cells in the mobility table were 
assigned to K mutually exclusive and exhaustive subsets, and each of these 
subsets shared a common interaction parameter. Thus, aside from total, row 
and column effects, each expected frequency was determined by only one par-
ameter which reflected the level of mobility or immobility in that cell, relative
to that in other cells in the table. 

Duncan (1979) [2.9] analysed occupational class in terms of eight group-
ings (p.794) and fitted a series of five different models to the resulting 8  8 
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occupational mobility table. He used likelihood ratios to compare ‘nested’ or 
‘hierarchical’ models (see Figure 1, p. 799).

In their own study of occupational mobility, Sobel et al. (1985) [2.13] 
made the distinction between ‘reciprocated’ and ‘unreciprocated’ mobility. 
They matched concepts of structure and exchange to parameters of a quasi-
symmetry model. Exchange or ‘reciprocated’ mobility was defined as the part 
of the mobility process that resulted from equal flows between pairs of occu-
pational categories. Structural mobility was defined as the effect of marginal 
heterogeneity operating uniformly on such origins. 

Whilst these articles developed the traditional interest in mobility tables, 
with the emphasis on the distinction between diagonal and off-diagonal cells, 
they suffered from an increasing propensity to generate complex and arcane 
explanations. This was resolved by the application of log-linear analysis. Penn 
and Dawkins (1983) examined matrices of marital endogamy to assess the 
extent to which men and women from different social classes intermarried in 
Britain between 1850 and 1964. The concinnity of their analyses exemplified 
the principle of parsimony and cut through much of the unnecessary complexity 
within earlier approaches.

Biblarz and Raftery (1993) [2.19] tested the hypothesis that family dis-
ruption affected subsequent occupational outcomes. They applied a log-linear 
model to a four-way table of counts, cross-classified by father’s occupation, son’s 
occupation, race (‘White’/‘Black’) and family type (‘intact’/‘nonintact’).

2.4 Canonical Analysis

Canonical analysis has often been employed instead of log-linear modelling 
to analyse the relationship between two categorical variables. However, until 
the mid-1980s, canonical analysis had taken place on an ad hoc basis. Gilula 
and Haberman (1986) [2.14] positioned canonical analysis within a more 
formal theoretical framework. They examined models that placed non-trivial 
restrictions on the values of canonical parameters so that a parsimonious 
description of association could be obtained. Parameter estimation was by 
maximum likelihood, and approximate confidence intervals were derived. 
Adequacy of models was assessed by using chi-squared tests. The resulting 
models could be used to determine the appropriateness of latent class analysis. 
They could also be used to determine whether a set of canonical scores had 
specified patterns. Comparisons with a log-linear parameterisation of the cell 
probabilities revealed that canonical analysis, which used interpretations based 
on regression and correlation, was an effective alternative to log-linear param-
eterisations based on cross-product ratios.

Gilula and Haberman (1988) [2.16] extended this approach from two-way 
tables to multivariate scenarios, but these were – somewhat paradoxically – 
reduced to two dimensions. Responses were treated by them as a single cat-
egorical variable, whilst the explanatory variables were likewise reduced to 
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a single factor. In this way, a multi-way table was reduced to a two-way array 
to which traditional canonical and association models could be applied. How-
ever, this rush to simplification was at the expense of much of the information 
inherent in the data under scrutiny. 

2.5 Latent Variable/Latent Class Analysis

An alternative form of analysis involved the concept of latent classes which 
underpinned the processes under observation. Clogg and Goodman (1984) 
[2.12] used four dichotomous response items to measure attitudes towards 
science and scientific careers. Responses to these items were cross-classified 
by ‘intelligence’ (high IQ or low IQ). They proposed a latent structure analysis 
through the introduction of two (or more) latent classes. Item responses were 
assumed to be conditionally independent of each other, given such latent class 
membership. Clogg and Goodman (1984) [2.12] showed how their alternative 
formulation led directly to the familiar log-linear model. 

Lindsay et al. (1991) [2.17] fitted a range of models to educational testing 
data. These models included the Rasch model which was defined as a func-
tion of item difficulty and subject ability parameters, and the T-class mixture 
model in which the subject ability parameters were treated as random effects. 
In the latter model, respondents were assumed to be drawn from a popula-
tion with T latent classes. This model was extended by maximising the mix-
ture likelihood over all possible latent class structures which were modelled 
non-parametrically. The final class of models described by Lindsay et al.
(1991) [2.17] were conventional models in which, within each latent class, 
response probabilities were independent with unknown and item-specific 
success probabilities.

Volume 3: Statistical Modelling of Longitudinal Data

Much of the classical work in social statistics in the first half of the twentieth 
century focused on the analysis of cross-sectional data. This became institu-
tionalised in the routine use of crosstabulations and associated chi-squared 
tests to analyse synchronic data. However, social science has had a longstand-
ing interest in diachronic processes of social change. Such concerns permeated 
the early development of sociological theory as seen in the works of Marx, 
Durkheim and Weber (see Giddens, 1971). 

An early reference to the concept of a ‘model’ applied to longitudinal 
data was made by Anderson and Goodman (1957) [3.1] (see Section A: State 
Dependence below). Heckman (1978) [3.5] subsequently formulated and 
estimated simultaneous equation models which included both discrete and con-
tinuous endogenous variables. His models relied on the idea that discrete 
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endogenous variables were generated by continuous latent variables crossing 
thresholds, a concept that dated back to Pearson (1900). Heckman explained 
how dummy endogenous variables served two distinct roles: firstly, as proxies 
for unobserved latent variables (‘spurious effects’) and secondly, as direct 
shifters of behaviour (‘true effects’). He demonstrated that these two roles 
needed to be carefully distinguished. 

In his seminal 1981 article, Heckman (1981a) [3.7] addressed a variety of 
issues which arose specifically in the analysis of longitudinal categorical data 
and which set the agenda for subsequent methodological developments in the 
field over the next 30 years. He formulated a general dynamic model for dis-
crete panel data that could be used to analyse the structure of ‘discrete choices’ 
(categorical outcomes or responses) over time. He generated a rich group of 
stochastic processes based upon time-discrete outcomes, including Markov 
models (see Section A: State Dependence) and renewal processes. This family 
of models was flexible enough to accommodate time-varying explanatory vari-
ables, general correlation structures for random effects and complex inter-
relationships among ‘decisions’ (outcomes) taken at different times.

A. State Dependence

State dependence is present in a dynamic social process if the probability of 
an individual being in a given state at time [t+1] depends on the state that 
same individual occupied at time [t]. A classic example of such state depend-
ence was the axiom of cumulative inertia proposed by McGinnis (1968) [3.3]: 
the longer an individual spends in a given state such as any particular social 
class, the less likely such an individual would be to leave that state (p.716). 
Indeed, some individuals would always, or almost always, remain in the 
same state regardless of duration. The existence of such individuals, known 
as ‘stayers’, in a longitudinal dataset presents special problems analytically 
(see Section C below).

Anderson and Goodman (1957) [3.1] generated maximum likelihood esti-
mates for transition probabilities in a Markov chain. Chi-squared and likelihood 
ratio tests were derived for testing whether the transition probabilities of a 
first order chain were constant, and when the transition probabilities were 
constant, whether they had specified numerical values.

Heckman’s (1981a) [3.7] method could be used to address the longstand-
ing problem of distinguishing between true and false contagion (Bates and 
Neyman, 1951), or in the language of Heckman (1981a) [3.7], distinguishing 
between ‘spurious’ and ‘true’ state dependence. In other words, state depend-
ence may exist through serial correlation in the observables generating the 
event (‘spurious state dependence’) or because past experience of the event 
affects subsequent behaviour (‘structural state dependence’) (p.167). 
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Davies et al. (1992) [3.10] handled state dependence by adding a dummy 
variable (previous state) to their model (for more details, see Section B below), 
rather than conditioning on previous state10.

B. Residual Heterogeneity

A central problem in the social sciences involves the existence of unmeasured 
or, indeed, unmeasurable explanatory variables. If such factors are at work, this 
will be evident in the structure of residuals to any fitted models. Appropriate 
diagnostic tests to identify such potential variables were initially identified 
by Heckman (1981a) [3.7], and further developed by Davies and Crouchley 
(1985) [3.9] and Winship and Mare (1992) [3.11].

Heckman (1979) [3.6] argued that selection bias can also be a contri-
butory factor generating ‘omitted variable’ bias within a regression analysis. 
He proposed the incorporation of an explicit individual-specific error term 
(‘random effect’) within the modelling framework. This random effect was 
assumed to follow a normal distribution.

Davies and Crouchley (1985) [3.9] showed that uncontrolled heterogeneity 
can lead to bias in the estimation of coefficients for any exogenous variables 
included in the model, and can result in extremely misleading estimates of 
standard errors. They developed random effects models in order to control for 
heterogeneity, thereby minimising such bias. These models, which included 
Markovian structure, were initially applied to British election data (see Davies 
and Crouchley, 1985). Subsequently, Davies et al. (1992) [3.10] used an early 
version of SABRE to fit a logistic-normal random effects model to employment 
data in Britain.

C. Movers and Stayers

The mover-stayer model, a generalisation of the Markov chain model, assumed 
there are two types of individuals in the population under scrutiny: the ‘stayer’ 
who had a propensity to remain in the same state (such as ‘employed’) during 
the entire period of study, and the ‘mover’ whose tendency to change state 
(i.e. become ‘unemployed’) over time could be described by a Markov chain 
with a transition probability matrix. 

The transition probability matrix for movers and the proportion of 
stayers were unknown parameters. Goodman (1961) [3.2] presented various 
estimators of these parameters and compared their accuracy, as well as 
describing tests of several hypotheses concerning the mover-stayer model. 

Davies and Crouchley (1985) [3.9] argued that stayers could be handled 
within a random effects framework by adding a ‘spike’ (or concentration) of 
stayers to the appropriate mixing distribution. They handled stayers in states 1 
and 0 by supplementing a normal mixing distribution with mass points at 
plus and minus infinity. 
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D. Initial Conditions

Before a statistical model can be fitted to event history data, the social pro-
cess under scrutiny needs to be appropriately specified. In much social science 
research, this initial conditions problem is treated casually. Naive assump-
tions are often made: the initial conditions or relevant pre-sample history of 
the social process are often assumed to be exogenous. This assumption is valid 
only if the responses that generate the process are serially independent or if 
a genuinely new process fortuitously starts at the beginning of the observa-
tion period. 

Alfo and Aitkin (2000) [3.16] presented a solution to the initial conditions 
problem. They modelled the initial response separately whilst second and sub-
sequent responses were allowed to depend on previous response(s).

Wooldridge (2005) [3.19] proposed modelling the mixing distribution, 
conditional on the initial response and any exogenous explanatory variables. 
For the binary response model with a lagged response, Arellano and Carrasco 
(2003) proposed a maximum likelihood estimator conditional on the initial 
response, where the mixing distribution was assumed to be discrete. In the 
binary case, Wooldridge’s approach was more flexible and computationally 
much simpler than that of Arellano and Carrasco in three respects. Firstly, the 
response probability could take either the probit or the logit form. Secondly, 
strictly exogenous explanatory variables could be incorporated easily, along 
with a lagged response variable. Thirdly, standard random effects software 
could be used to estimate the resulting parameters.

Specifying a mixing distribution conditional on the initial condition has 
several advantages. Firstly, the mixing distribution can be chosen flexibly 
and regarded as an alternative approximation to that of Heckman (1981b) 
[3.8]. Secondly, in several cases, including the binary probit model, a mixing 
distribution can be chosen that leads to straightforward estimation using 
standard software.

E. Dropout

Dropout or ‘attrition’ occurs at random when each respondent in a panel survey 
is equally likely to drop out at any given wave. When dropout is correlated with 
the social process under scrutiny, dropout or attrition is said to be ‘informative’ 
about that process. The most efficient and effective way of handling dropout 
is to model the response and dropout processes simultaneously (see Little, 
1995 [3.13]).

Joint models for response and dropout can be classified into two broad 
types: selection models and pattern-mixture models. The difference between 
the two lies in the manner in which the joint distribution of the response-
dropout mechanism is factored. 

A major problem encountered in the development of such joint models 
was that results were often sensitive to assumptions about the nature of 
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dropout itself. Winship and Mare (1992) [3.11] provided a development of 
Heckman’s (1979) [3.6] two-stage estimator, and outlined a number of semi- 
and non-parametric approaches to estimating selection models that relied 
on weaker assumptions about the nature of the dropout process. Little (1995) 
[3.13] suggested that sensitivity analyses should be performed in order to 
assess the effect on inferences of alternative assumptions about the dropout 
process itself. 

Follmann and Wu (1995) [3.12] proposed a separate set of models for 
continuous responses with binary dropout processes which were linked by 
a common random parameter. An approximation to the response model was 
conditioned on dropout, thereby precluding the need to specify an explicit 
dropout model. This was extended by Ten Have et al. (1998) [3.15] to handle 
longitudinal binary responses subject to informative dropout by the use of a 
shared parameter model with logistic link. Molenberghs et al. (1998) [3.14] 
developed pseudo-likelihood solutions for the same problem. Albert (2000) 
[3.17] subsequently developed a transition model to analyse longitudinal 
binary data subject to non-ignorable missingness. Roy and Lin (2005) [3.18] 
considered the situation in which dropout was informative and both outcome 
and time-varying covariates were missing at the time of dropout. Both of 
these approaches used the EM algorithm developed some 25 years earlier by 
Dempster et al. (1977) [3.4]. 

Volume 4: Statistical Modelling of Ordinal 
Categorical Data

In the fourth and final volume, the issues raised in the general context of 
event history data, and more specifically repeated binary data, are extended to 
the modelling of ordinal categorical data. This area has been at the forefront 
of recent developments in the linkage between social scientists and social 
statisticians.

Ordinal data are widespread in the social sciences but have tradition-
ally been neglected. Conventional statistical analyses have generally involved 
simplifying ordinal responses as binary outcomes11. Such an approach loses 
much of the resolution inherent within such ordinal data. Another strategy, 
often adopted by researchers, has been to apply a scoring system to ordered cat-
egories. The resulting variable is treated as continuous, and linear regression 
models which assume the normal distribution are routinely used. However, 
this strategy violates a range of assumptions about the nature of ordinal data: 
in particular, it ignores the fact that they are rarely normally distributed. 

Agresti (1981) [4.4] presented measures for summarising the strength of 
association between an ordered categorical variable and a nominal variable. 
For a 2  c table, these measures included Somers’ d, discrete analogues of 
the Mann-Whitney test and Goodman and Kruskal’s (1954) [2.1] . For the 
r  c case, Agresti (1981) [4.4] constructed two generalised measures that 
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were expressed in terms of event probabilities concerning two types of pairs 
of observations, including an alternative representation of Freeman’s (1965) 

 index. 
Agresti (1981) [4.4] also outlined two models: firstly, a log-linear model 

which assumed that a set of ordered scores could be assigned to the response 
categories; secondly, a cumulative logit model which did not require such a 
scoring system.

The cumulative logit model had been described earlier by McCullagh 
(1980) [4.2]. Within the cumulative logit model, the original ordinal response 
was represented by a series of binary responses. For example, a Likert item 
such as ‘Strongly Agree’ (SA), ‘Agree’ (A), ‘Neither Agree Nor Disagree’ (NAND), 
‘Disagree’ (D), ‘Strongly Disagree’ (SD) would be represented by the four binary 
responses: (i) SA vs. A to SD; (ii) SA, A vs. NAND to SD; (iii) SA to NAND vs. 
D, SD; (iv) SA to D vs. SD (see Berridge and Penn, 2009, for an illustration 
of this approach). The model intercepts were allowed to vary between these 
four partitions. The effects of explanatory variables were assumed to remain 
constant across all partitions12.

McCullagh (1980) [4.2] suggested other models that did not require con-
tinuous scores. These included the complementary log-log model, a discrete-
data version of Cox’s proportional hazards model (see Cox, 1972), and the 
adjacent-logit model. He also made a distinction between symmetric and 
asymmetric models. A symmetric model was one in which the results were 
invariant to a reversal in the order of the categories. The cumulative logit 
(or proportional odds) model was an example of such a symmetric model, 
and remains the natural starting point when analysing a Likert item. 

Asymmetric (or sequential) responses were appropriately analysed using 
models such as the continuation ratio. This was originally developed for 
the analysis of educational data (see Fienberg and Mason, 1979; Mare, 1980, 
1981) [4.1, 4.3, 4.5].

The multi-level model for ordinal data, like the continuation ratio model, 
also originated in the area of educational research, and was closely related to 
the random effects and variance component models introduced in Volume 3. 
We have not provided an extensive review of multi-level models here13. How-
ever, to illustrate their applicability for modelling ordinal data, we have 
included in Volume 4 a selection of influential articles within which multi-
level models have been applied to data on educational attainment (see Aitkin 
and Longford, 1986; Fielding and Yang, 2005; Penn and Berridge, 2008) 
[4.7, 4.18, 4.20] and earnings (see Davies et al., 1988) [4.8].

Aitkin and Longford (1986) [4.7], in their general analysis of clustered 
educational data, argued for the use of variance component or ‘random par-
ameter’ models. They applied a range of linear models to data on 907 pupils 
in 18 schools from one Local Education Authority. 

Fielding and Yang (2005) [4.18] fitted a series of multi-level cumulative 
logit models to data on ‘A’-level grades14, cross-classified by student and teach-
ing group within a number of educational institutions. 
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Their initial models were defined at three levels:

Level 1: a set of explanatory variables to explain ‘A’-level grades, lodged within 
the cross-classification of a particular student and teaching group at 
level 2, within a particular institution at level 3.

Level 2: independent teaching group and student random effects.
Level 3: an institution-specific random effect.

To incorporate teacher effects, Fielding and Yang examined a subset of data 
on a small number of further education colleges. They used a fixed effects 
specification for such colleges by incorporating dummy variables into a set of 
explanatory factors. The resulting models were defined at two levels:

Level 1: as per the initial model, but without the link to a particular insti-
tution at level 3.

Level 2(a): independent teaching group and student random effects, as per 
the initial model.

Level 2(b): a set of teacher-specific explanatory variables and teacher-specific 
random effects, both weighted according to each teacher’s share 
of the complete teaching timetable of a teaching group over the 
two years of its provision.

Penn and Berridge (2008) [4.20] analysed a wide range of school-level and 
locality-level factors that affect each of the three stages in a young adult’s 
educational trajectory in England: GCSE results, subsequent path taken at 
age 16 and ‘A’-level results. By applying three-level models to data collected as 
part of the EFFNATIS15 project, they found no evidence of any locality-level 
effects. Furthermore, none of the factors conventionally considered to affect 
educational attainment such as gender, social class and ethnicity had a con-
sistent effect across all three stages. Rather, each factor had a contingent effect 
at specific points within the overall trajectory of educational outcomes.

Earlier, Davies et al. (1988) [4.8] presented a linear model that was also 
appropriate for examining such hierarchical data. Their model had conven-
tional regression, variance component and random coefficient models as 
special cases and was fitted using the software VARCL (Longford, 1990). The 
effectiveness of the model was demonstrated through an analysis of earnings 
in the British engineering industry. Particular emphasis was placed by them 
on the interpretation of parameter estimates and residuals.

During the 1980s, extensions to earlier ordinal models were developed. 
Anderson (1984) [4.6] developed the stereotype model. The choice between 
stereotype models was made empirically on the basis of comparative model 
fit. This was deemed particularly important for ‘assessed, ordered categorical 
response variables’, where it was not obvious a priori whether the ordering was 
relevant to the regression relationship. Model simplification was assessed in 
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terms of whether the response categories were distinguishable with respect 
to the vector of explanatory factors. 

Research subsequently progressed from the analysis of cross-sectional 
ordinal data to the modelling of repeated or clustered ordinal data. Exactly the 
same issues that arose in the analysis of longitudinal categorical data, outlined 
in Volume 3, needed to be addressed in the context of repeated or clustered 
ordinal data. 

A. State Dependence

Albert et al. (1997) [4.12] proposed a class of latent Markov chain models 
for analysing repeated ordinal responses with medical diagnostic misclassifi-
cation. They modelled the underlying monotonic response and the misclassi-
fication processes separately, and proposed an EM algorithm (see Dempster 
et al., 1977 [3.4]) that allowed for ordinal parameterisations, time-dependent 
covariates and randomly missing data. 

Pudney (2008) [4.21] subsequently developed a simulated maximum 
likelihood approach for the estimation of dynamic linear models, where the 
continuous response variable was observed through the prism of an ordinal 
scale. He applied the latent auto-regression (LAR) model to BHPS data on 
households’ perceptions of their financial well-being, and demonstrated the 
superior fit of the LAR model to the state dependence (SD) model.

B. Residual Heterogeneity

Crouchley (1995) [4.9] developed a random effects model for multivariate and 
grouped (clustered) ordered categorical data. He preferred the complementary 
log-log link function to other link functions such as the logit, probit and log-log 
(McCullagh and Nelder, 1989). The complementary log-log link function had 
the advantage that it provided a closed-form expression for the likelihood of the 
model, unconditional on the random effect over a wide range of distributions. 
This likelihood was computed without recourse to numerical integration or 
Gaussian quadrature. Crouchley assumed that the distribution for the random 
effects belonged to the Hougaard (1986) family of distributions16.

C. Movers and Stayers

Ekholm et al. (2003) [4.17] modelled the probabilities of particular sequences 
of responses (‘path probabilities’). In order to specify the association between 
responses measured for the same ‘generic unit’ or individual, they used 
measures of association that were ratios of moments17 (‘dependence ratios’). 
The two-way dependence ratio (of order two) between any two responses 
from the same individual was defined as the ratio of the moment of order two 
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relative to the product of the respective moments of order one. For meaningful 
association, a strong structure had to be imposed on the dependence ratios by 
deriving them from a vector of association parameters18. In Ekholm et al.’s as-
sociation model, dependence ratios were expressed as explicit functions of 
association parameters, explanatory variables and time. An explicit expres-
sion for an individual’s path probability was then derived which permitted the 
calculation of that individual’s contribution to the overall likelihood.

D. Initial Conditions

Pudney (2008) [4.21] indicated that, in the state dependence (SD) model, 
there are two alternative approaches for dealing with random effects. Heckman 
(1981b) [3.8] specified an approximation to the distribution of the initial 
response, conditional on strictly exogenous explanatory variables and on ran-
dom effects. He then derived the distribution of subsequent responses, con-
ditional on the initial response, explanatory variables and random effects, by 
using sequential conditioning. The alternative approach, used by Wooldridge 
(2005) [4.19], was to specify the mixing distribution, conditional on the initial 
response and exogenous explanatory variables (see Volume 3).

Wooldridge’s (2005) [4.19] binary probit model can be extended in a 
straightforward manner to fit a dynamic ordered probit model. If the response 
comprises ordered categories, then an ordered probit model can be specified 
with lagged response indicator variables and strictly exogenous explanatory 
variables. The observed value of the ordered response variable is determined 
by a latent variable falling in a particular interval, where the cutpoints must 
be estimated, as in the cumulative logit model (see McCullagh, 1980 [4.2]). 
If the mixing distribution, conditional on both the initial response and strictly 
exogenous explanatory variables, is specified as having a homoscedastic 
normal distribution, then standard random effects ordered probit software 
can be used.

The Wooldridge approach has advantages in SD models but is less attrac-
tive in LAR models, where the latent response of interest is not observable and 
cannot be conditioned upon. For this reason, Pudney (2008) [4.21] used the 
Heckman treatment of initial conditions to model longitudinal panel data.

E. Dropout

In recent years, there has been considerable work examining the issue of 
repeated ordinal data subject to dropout or ‘attrition’. Some approaches have 
made strong assumptions about the nature of dropout. One of these was the 
population-averaged approach of Molenberghs et al. (1997) [4.10]. They 
developed a multivariate Dale model combined with logistic regression for 
dropout. The association between observations was measured by a global 
odds ratio. Response and dropout processes were modelled as conditionally 
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independent given complete data, resulting in a likelihood that could be esti-
mated reliably using the EM algorithm. They cautioned that the interpreta-
tion of the results of any model depended upon the specific assumptions made 
and also that a parallel sensitivity analysis should be performed. 

There is an important difference between the analyses of Molenberghs 
et al. (1997) [4.10] and those of Ekholm et al. (2003) [4.17]. The association 
parameters used by Molenberghs et al. involved global odds ratios which 
varied over time but which did not discriminate between movers and stayers. 
Ekholm et al. concentrated attention on the characteristics of ‘paths travelled’ 
(or the sequences of responses). They examined individual paths by speci-
fying meaningful models in terms of local, rather than global, association 
measures.

Another method for handling ordinal data subject to dropout involved 
subject-specific approaches. The random effects model for ordinal data 
developed by Crouchley (1995) [4.9] has been extended in a variety of ways. 
Sheiner et al. (1997) [4.11] developed a cumulative logit model which was 
conditional upon subject-specific random effects, and an empirical model for 
dropout (‘censoring’) which was conditional upon observed responses and 
subject-specific random effects. Following the marginal likelihood approach 
proposed by Davies and Crouchley (1985) [3.9], random effects were assumed 
to be normally distributed and then integrated out. Hedeker and Mermelstein 
(2000) [4.14] suggested an alternative random effects model which allowed 
individual changes over time to be estimated. 

Other subject-specific approaches have made fewer assumptions about 
the nature of dropout. Ten Have et al. (2000) [4.15] followed the shared par-
ameter approach of Follmann and Wu (1995) [3.12] by proposing a mixed 
effects logistic model, in which the random effects included random intercepts 
and random slopes (see Davies et al. (1988) [4.8]). The ordinal outcome and 
‘survival’ (or, conversely, dropout) processes were assumed to share a com-
mon random effects structure. Dropout was also assumed to be conditionally 
independent of outcome, given such underlying random effects. Once again, 
a parallel sensitivity analysis was suggested. 

Agresti and Natarajan (2001) [4.16] presented a review of Bayesian and 
non-Bayesian methods for clustered (or repeated) ordered categorical data. 
Their review concentrated on two classes of model. The first involved marginal 
(or population-averaged) models, including generalised estimating equa-
tions. The second entailed cluster-specific (or subject-specific) models which 
included the maximum likelihood estimation of random effects models 
as well as a Bayesian approach that used a Markov Chain Monte Carlo (MCMC) 
approach.

In the context of (ordinal) item response theory (IRT), Bradlow and Zaslavsky 
(1999) [4.13] developed a Bayesian hierarchical analysis comprising three 
levels19. Inferences were made using samples from the posterior distributions 
in order to compute point and interval estimates. Samples were obtained from 
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three different MCMC samplers: data augmentation, a Metropolis step and 
the Griddy-Gibbs sampler.

The IRT theme was continued in a non-Bayesian context by Liu and 
Hedeker (2006) [4.19]. They proposed a random effects model that allowed 
for three-level multivariate ordinal outcomes and accommodated multiple 
random subject effects. This approach allowed different item factor loadings 
(item discrimination parameters) to be estimated for multiple outcomes. The 
explanatory variables in their models were not required to follow the assump-
tion of proportional odds. 

Concluding Remarks

In this series, we have demonstrated how the discipline of social statistics 
has evolved over the last century or more. In recent years, the trend has been 
towards increasingly rigorous formulation of research hypotheses, larger and 
more detailed datasets, more complex statistical models to match such data, 
and a more sophisticated level of statistical analysis in the major international 
social science journals.

The advent of e-social science and high performance computing has opened 
up the way to easy replication of results, and has helped to produce standards 
of scientific rigour within the social sciences which are comparable to those 
in the natural and physical sciences.

There has been a long and distinguished track record of interdisciplinary 
collaborative research between statisticians and social scientists. There remain 
considerable opportunities for continued innovation at the interface between 
statistics and social science. We hope, therefore, that this present series will 
inspire a new generation of social statisticians to develop innovative methods 
of direct use to their social scientific colleagues.

Notes

1. Continuous measures are common in the natural sciences. They include such variables 
as height, weight and Body Mass Index (BMI). In the social sciences, they feature in 
psychology (IQ) and economics (income, profits, GNP).

2. Likert items measure attitudes and allow respondents to choose between a range 
of options ordered in terms of ‘strongly agree’, ‘agree’, ‘neither agree nor disagree’, 
‘disagree’ and ‘strongly disagree’. A Likert scale is the sum of responses across several 
Likert items. 

3. Departures of observed frequencies from expected frequencies produce greater chi-
squared values for a fixed sample size n. The p-value of the test is the null probability 
that the chi-squared test statistic takes a value at least as large as the observed value. 

4. The relationships in such tables produced a range of indices of association such as 
Yule’s Q, Goodman and Kruskal’s tau, and lambda (see Blalock, 1972, Chapter 15).

5. Blanchard’s article actually compared the characteristics of horses: specifically ‘grandsires’ 
and ‘grandchildren’.
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 6. Whilst much of the conceptual foundation of contemporary social statistics was 
developed during this period, the terminology used varied amongst authors. This is 
signalled by our use of quotations. Wherever necessary, we have provided current 
terms as appropriate.

 7. This issue was taken up once again by Penn and Dawkins (see Volume 3) in their log-
linear analysis of marital class endogamy. Their analysis revealed that dichotomising 
their seven occupational groupings into a ‘middle class’/‘working class’ divide produced 
a gross distortion of the underlying social processes.

 8. N refers to the number of variables comprising two categories. R refers to a single 
variable comprising more than two categories.

 9. For example, the distribution of a variable X is characterised by a single unknown par-
ameter, . In many of the estimation problems encountered, the information contained 
within a sample of observations {x1, …, xn} from this distribution can be summarised. 
Some function of the sample values (usually the mean) provides as much information 
about  as the sample itself. Such a function would be sufficient for estimation purposes 
(see Mood, Graybill and Boes, 1974, pp. 299–300).

10. This became possible in later versions of the statistical software package, Software for 
the Analysis of Binary Recurrent Events, SABRE (http://www.sabre/lancs.ac.uk/).

11. See, for example, Scott et al. (1998). 
12. This is known as the proportional odds assumption (cumulative logit models fitted 

under this assumption are known as proportional odds models).
13. See the Sage series on multi-level modelling edited by Skrondal and Rabe-Hesketh 

(2009).
14. These are assumed to be ordinal.
15. The Effectiveness of Integration Strategies in Europe. This was funded by the European 

Union’s Fourth Framework. The wider results of the project are presented in Penn and 
Lambert (2009).

16. Three well-known members of this family are the gamma, the inverse Gaussian and 
the positive stable law distributions (Aalen, 1988).

17. For realisations Y1, Y2, … of a variable Y, the first moment is defined as the expectation 
of Y1, the second moment is the expectation of Y1 Y2, etc.

18. See the ‘manifest classes’ or interaction parameters of Hauser (1978) (2.8).
19. Probabilities of individual responses to items were modelled as a function of person- 

and item-specific parameters 1 and general parameters 2 (regression coefficients 
corresponding to the covariates of interest); that is, [Y| 1, 2]. The distribution of 
[ 1| 2] was modelled and the prior distributions [ 2] were specified.
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