32

32-Osborne (Best)-45409.gxd 10/9/2007 1:00 PM P% 488

BEST PRACTICES IN STRUCTURAL
EQuUATION MODELING

Rarpa O. MUELLER

GREGORY R. HAaNCOCK

evolved into a mature and popular

methodology to investigate theory-derived
structural/causal hypotheses. Indeed, with the
continued development of SEM software pack-
ages such as AMOS (Arbuckle, 2007), EQS
(Bentler, 2006), LISREL (Joreskog & Sorbom,
2006), and Mplus (Muthén & Muthén, 2006),
SEM “has become the preeminent multivariate
method of data analysis” (Hershberger, 2003,
pp- 43—44). Yet, we believe that many practitioners
still have little, if any, formal SEM background,
potentially leading to misapplications and pub-
lications of questionable utility. Drawing on our
own experiences as authors and reviewers of
SEM studies, as well as on existing guides for
reporting SEM results (e.g., Boomsma, 2000;
Hoyle & Panter, 1995; McDonald & Ho, 2002),
we offer a collection of best practices guidelines
to those analysts and authors who contemplate

S tructural equation modeling (SEM) has

using SEM to help answer their substantive
research questions. Throughout, we assume that
readers have at least some familiarity with the
goals and language of SEM as covered in any
introductory textbook (e.g., Byrne, 1998, 2001,
2006; Kline, 2005; Loehlin, 2004; Mueller, 1996;
Schumacker & Lomax, 2004). For those desiring
even more in-depth or advanced knowledge, we
recommend Bollen (1989), Kaplan (2000), or
Hancock and Mueller (2006).

SETTING THE STAGE

The foundations of SEM are rooted in classical
measured variable path analysis (e.g., Wright,
1918) and confirmatory factor analysis (e.g.,
Joreskog, 1966, 1967). From a purely statistical
perspective, traditional data analytical techniques
such as the analysis of variance, the analysis of
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covariance, multiple linear regression, canonical
correlation, and exploratory factor analysis—as
well as measured variable path and confirmatory
factor analysis—can be regarded as special cases
of SEM. However, classical path- and factor-ana-
lytic techniques have historically emphasized an
explicit link to a theoretically conceptualized
underlying causal model and hence are most
strongly identified with the more general SEM
framework. Simply put, SEM defines a set of
data analysis tools that allows for the testing of
theoretically derived and a priori specified causal
hypotheses.

Many contemporary treatments introduce
SEM not just as a statistical technique but as a
process involving several stages: (a) initial model
conceptualization, (b) parameter identification
and estimation, (¢) data-model fit assessment,
and (d) potential model modification. As any
study using SEM should address these four
stages (e.g., Mueller, 1997), we provide brief
descriptions here and subsequently use them as
a framework for our best practices analysis illus-
trations and publication guidelines.

Initial Model Conceptualization

The first stage of any SEM analysis should
consist of developing a thorough understanding
of, and justification for, the underlying theory or
theories that gave rise to the particular model(s)
being investigated. In most of the traditional
and typical SEM applications, the operational-
ized theories assume one of three forms:

o A measured variable path analysis (MVPA)
model: hypothesized structural/causal
relations among directly measured variables;
the four-stage SEM process applied to MVPA
models was illustrated in, for example,
Hancock & Mueller, 2004.

o A confirmatory factor analysis (CFA) model:
structural/causal relations between
unobserved latent factors and their measured
indicators; the four-stage SEM process applied
to CFA models was illustrated in, for example,
Mueller & Hancock, 2001.

o A latent variable path analysis (LVPA) model:
structural/causal relations among latent
factors. This type of SEM model is the focus
in this chapter and constitutes a combination
of the previous two. A distinction is made
between the structural and the measurement
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portions of the model: While the former is
concerned with causal relations among latent
constructs and typically is the focus in LVPA
studies, the latter specifies how these
constructs are modeled using measured
indicator variables (i.e., a CFA model).

More complex models (e.g., multisample,
latent means, latent growth, multilevel, or mix-
ture models) with their own specific recommen-
dations certainly exist but are beyond the
present scope. Regardless of model type, how-
ever, a lack of consonance between model and
underlying theory will have negative repercus-
sions for the entire SEM process. Hence, metic-
ulous attention to theoretical detail cannot be
overemphasized.

Parameter Identification and Estimation

A model’s hypothesized structural and non-
structural relations can be expressed as popula-
tion parameters that convey both magnitude
and sign of those relations. Before sample esti-
mates of these parameters can be obtained, each
parameter—and hence the whole model—must
be shown to be identified; that is, it must be pos-
sible to express each parameter as a function of
the variances and covariances of the measured
variables. Even though this is difficult and cum-
bersome to demonstrate, fortunately, the identi-
fication status of a model can often be assessed
by comparing the total number of parameters
to be estimated, #, with the number of unique
(co)variances of measured variables,

u="rp+1)/,

where p is the total number of measured vari-
ables in the model. When t > u (i.e., when
attempting to estimate more parameters than
there are unique variances and covariances), the
model is underidentified, and estimation of
some (if not all) parameters is impossible. On
the other hand, ¢ < u is a necessary but not suf-
ficient condition for identification, and usually
parameter estimation can commence: t = u
implies that the model is justidentified, while
t < u implies that it is overidentified (provided
that indeed all parameters are identified and any
latent variables in the system have been assigned
an appropriate metric; see Note 4).
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SEM software packages offer a variety of
parameter estimation techniques for models
whose identification can be established. The
most popular estimation method (and the
default in most SEM software packages) is max-
imum likelihood (ML), an iterative large-sample
technique that assumes underlying multivariate
normality. Alternative techniques exist (e.g.,
generalized least squares [GLS], asymptotically
distribution free [ADF; Browne, 1984], and
robust estimators [Satorra & Bentler, 1994]),
some of which do not depend on a particular
underlying distribution of the data, but still, the
vast majority of substantive studies use ML.

Data-Model Fit Assessment

A central issue addressed by SEM is how to
assess the fit between observed data and the
hypothesized model, ideally operationalized as
an evaluation of the degree of discrepancy
between the true population covariance matrix
and that implied by the model’s structural and
nonstructural parameters. As the population
parameter values are seldom known, the differ-
ence between an observed, sample-based covari-
ance matrix and that implied by parameter
estimates must serve to approximate the popula-
tion discrepancy. For a justidentified model, the
observed data will fit the model perfectly: The
system of equations expressing each model param-
eter as a function of the observed (co)variances is
uniquely solvable; thus, the sample estimate of
the model-implied covariance matrix will, by
default, equal the sample estimate of the popula-
tion covariance matrix. However, if a model is
overidentified, it is unlikely that these two matri-
ces are equal as the system of equations (express-
ing model parameters as functions of observed
variances and covariances) is solvable in more
than a single way.

Abiding by a general desire for parsimony,
overidentified models tend to be of more sub-
stantive interest than justidentified ones because
they represent simpler potential explanations of
the observed associations. While data-model fit
for such models was initially conceived as a for-
mal statistical test of the discrepancy between the
true and model-implied covariance matrices (a
chi-square test with df = u—t Joreskog, 1966,
1967), such a test now is often viewed as overly
strict given its power to detect even trivial devia-
tions of a proposed model from reality. Hence,
many alternative assessment strategies have

emerged (for a now classic review, see Tanaka,
1993) and continue to be developed. Data-model
fit indices for such assessment can be categorized
roughly into three broad classes (with recom-
mended indices in italics):

o Absolute indices evaluate the overall dis-
crepancy between observed and implied covari-
ance matrices; fit improves as more parameters
are added to the model and degrees of freedom
decrease: for example, the standardized root
mean square residual (SRMR), the chi-square test
(recommended to be reported mostly for its his-
torical significance), and the goodness-of-fit
index (GFI).

e Parsimonious indices evaluate the overall
discrepancy between observed and implied
covariance matrices while taking into account a
model’s complexity; fit improves as more param-
eters are added to the model, as long as those
parameters are making a useful contribution: for
example, the root mean square error of approxima-
tion (RMSEA) with its associated confidence
interval, the Akaike information criterion (AIC)
for fit comparisons across nonnested models, and
the adjusted goodness-of-fit index (AGFI).

o Incremental indices assess absolute or parsi-
monious fit relative to a baseline model, usually
the null model (a model that specifies no relations
among measured variables): for example, the
comparative fit index (CFI), the normed fit index
(NFI), and the nonnormed fit index (NNFI).

If, after considering several indices, data-
model fit is deemed acceptable (and judged best
compared to competing models, if applicable),
the model is retained as tenable, and individual
parameters may be interpreted. If, however, evi-
dence suggests unacceptable data-model fit, the
next and often final stage in the SEM process
is considered: modifying the model to improve
fit in hopes of also improving the model’s corre-
spondence to reality.

Potential Model Modification

In a strict sense, any hypothesized model
is, at best, only an approximation to reality; the
remaining question is one of degree of that mis-
specification. With regard to external specification
errors—when irrelevant variables were included in
the model or substantively important ones were left
out—remediation can only occur by respecifying
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the model based on more relevant theory. On the
other hand, internal specification errors—when
unimportant paths among variables were included
or when important paths were omitted—can
potentially be diagnosed and remedied using Wald
statistics (predicted increase in chi-square if a previ-
ously estimated parameter were fixed to some
known value, e.g., zero) and Lagrange multiplier
statistics (also referred to as modification indices;
estimated decrease in chi-square if a previously
fixed parameter were to be estimated). As these
tests’ recommendations are directly motivated by
the data and not by theoretical considerations, any
resulting respecifications must be viewed as
exploratory in nature and might not lead to a
model that resembles reality any more closely than
the one(s) initially conceptualized.

BEest PracTICES IN SEM DATA
ANALYSIS: A SET OF ILLUSTRATIONS

Using the four-stage SEM process as a frame-
work, we turn to an illustration of best practices
in the most common type of SEM analyses. We
chose to focus on a set of hypothesized models
involving structural/causal relations among
latent factors (i.e., LVPA models) to demonstrate
our preference for using a two-phase approach
(i.e., a measurement phase followed by a struc-
tural phase) over a single-phase, all-in-one
analysis. We conclude this section by illustrating
the statistical comparison of hierarchically
related or nested models (occurring, for example,
when one model’s parameters are a proper sub-
set of another model’s parameters) and address-
ing the disattenuation (i.e., purification and
strengthening) of structural parameter esti-
mates obtained from an LVPA when compared
with those obtained from an analysis of the
same overall structure but one that uses mea-
sured variables only.

Suppose an educational researcher is inter-
ested in investigating the structural effects of
girls’ reading and mathematics self-concept
(Read-SC and Math-SC, respectively) on math-
ematics proficiency (Math-Prof), as potentially
mediated by task-goal orientation (Task-Goal).
More specifically, the investigator might have
strong theoretical reasons to believe that at least
one of three scenarios is tenable: In Model 1
(Figure 32.1a), it is hypothesized that the effects
of Read-SC and Math-SC on Math-Prof are
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both completely mediated by Task-Goal. In
Model 2 (Figure 32.1b), only the effect of Read-
SC on Math-Prof is completely mediated by
Task-Goal, while Math-SC affects Math-Prof
not only indirectly via Task-Goal but also
directly without other intervening variables.
Finally, in Model 3 (Figure 32.1c), Read-SC and
Math-SC are thought to affect Math-Prof
directly as well as indirectly via Task-Goal. To
illustrate the testing of the tenability of these
three competing models, multivariate normal
data on three indicator variables for each of the
four constructs were simulated for a sample of
n = 1,000 ninth-grade girls. Table 32.1 describes
the 12 indicator variables in more detail, while
Table 32.2 contains relevant summary statistics."

At this point, it is possible and might seem
entirely appropriate to address the research ques-
tions implied by the hypothesized models through
a series of multiple linear regression (MLR) analy-
ses. For example, for Model 2 in Figure 32.1b, two
separate regressions could be conducted: (1) An
appropriate surrogate measure of Math-Prof
could be regressed on proxy variables for Math-
SC and Task-Goal, and (2) a suitable indicator of
Task-Goal could be regressed on proxies for Read-
SC and Math-SC. If the researcher would choose
items ReadSC3, MathSC3, TG1, and Proc from
Table 32.1 as surrogates for their respective con-
structs, MLR results would indicate that even
though all hypothesized effects are statistically sig-
nificantly different from zero, only small amounts
of variance in the dependent variables TG1 and
Proc are explained by their respective predictor
variables (R5;, = 0.034, R}, = 0.26; see Table
32.6 for the unstandardized and standardized
regression coefficients obtained from the two
MLR analyses®). As we will show through the
course of the illustrations below, an appropriately
conducted LVPA of the models in Figure 32.1 and
the data in Table 32.2 will greatly enhance the util-
ity of the data to extract more meaningful results
that address the researcher’s key questions.

SEM Notation

As the three alternative structural models
depicted in Figure 32.1 are at the theoretical/
latent construct level, we followed common
practice and enclosed the four factors of Read-
SC, Math-SC, Task-Goal, and Math-Prof in
ellipses/circles. On the other hand, a glance
ahead at the operationalized model in Figure 32.2
reveals that the now included measured variables
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(a) Model 1

Task-Goal Math-Prof
(F3) (F4)
D4
Cps
(b) Model 2
Read-SC
(F1)
Task-Goal Math-Prof
(F3) (F4)
D3 D4

(c) Model 3

Task-Goal Math-Prof

(F3) (F4)

Figure 32.1 The theoretical models.



Table 32.1 Indicator Variable/Item Description
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Construct Variable Label — Item

Scores

Read-SC (F1)

1 (false) to 6 (true)

1 (false) to 6 (true)

1 (false) to 6 (true)

Mathematics subtest scores
of the Stanford Achievement
Test 9

Problem Solving subtest
scores of the Stanford
Achievement Test 9

RSC1 (V1) “Compared to others my age,
I am good at reading.”
RSC2 (V2) “I get good grades in reading.”
RSC3 (V3) “Work in reading class is easy for me.”
Math-SC (F2)
MSCL1 (V4) “Compared to others my age,
I am good at math.”
MSC2 (V5) “I get good grades in math.”
MSC3 (V6) “Work in math class is easy for me.”
Task-Goal (F3)
TG1 (V7) “I like school work that I’ll learn
from, even if I make a lot of mistakes.”
TG2 (V8) “An important reason why I do
my school work is because I like
to learn new things.”
TG3 (V9) “I like school work best when
it really makes me think.”
Math-Prof (F4)
Math (V10)
Prob (V11)
Proc (V12)

Procedure subtest scores
of the Stanford Achievement
Test 9

(items RSCI to RSC3, MSC1 to MSC3, TG1 to
TG3, Math, Prob, and Proc) are enclosed in rec-
tangles/squares. Using the Bentler-Weeks
“VFED” labeling convention (V for measured
Variable/item, F for latent Factor/construct, E
for Error/measured variable residual, D for
Disturbance/latent factor residual), the latent
and measured variables in the current models
are labeled F1 through F4 and V1 through V12,
respectively. The hypothesized presence or
absence of relations between variables in the
model is indicated by the presence or absence of
arrows in the corresponding path diagram:
One-headed arrows signify direct structural or
causal effects hypothesized from one variable to
another, while two-headed arrows denote

hypothesized covariation and variation without
structural specificity. For example, for Model 1
in Figure 32.1a, note (a) the hypothesized
covariance between Read-SC and Math-SC and
the constructs’ depicted variances (two-headed
arrows connect the factors to each other and to
themselves, given that a variable’s variance can
be thought of as a covariance of the variable
with itself), (b) the hypothesized structural
effects of these two factors on Task-Goal (one-
headed arrows lead from both to Task-Goal),
but (c) the absence of such hypothesized direct
effects on Math-Prof (there are no one-headed
arrows directly leading from Read-SC and
Math-SC to Math-Prof; the former two con-
structs are hypothesized to affect the latter only
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Table 32.2 Correlations and Standard Deviations of Simulated Data
READSCI READSC2 READSC3 MATHSC1 MATHSC2 MATHSC3
(V1) (V2) (V3) (V4) (V5) (V6)
READSC1 1.000
READSC2 0.499 1.000
READSC3 0.398 0.483 1.000
MATHSC1 0.206 —0.148 -0.123 1.000
MATHSC2 —-0.150 0.244 —0.095 0.668 1.000
MATHSC3 -0.121 —-0.091 0.308 0.633 0.641 1.000
GOALS1 0.141 0.150 0.123 0.140 0.143 0.167
GOALS2 0.123 0.151 0.134 0.163 0.180 0.145
GOALS3 0.161 0.199 0.160 0.147 0.151 0.158
SATMATH —0.049 —0.007 0.003 0.556 0.539 0.521
SATPROB —-0.031 -0.009 0.023 0.544 0.505 0.472
SATPROC —-0.025 -0.029 0.006 0.513 0.483 0.480
SD 1.273 1.353 1.285 1.396 1.308 1.300
GOALS1 GOALS2 GOALS3 SATMATH SATPROB SATPROC
(V7) (V8) (V9) (V10) (V11) (Vi2)
READSC1
READSC2
READSC3
MATHSC1
MATHSC2
MATHSC3
GOALS1 1.000
GOALS2 0.499 1.000
GOALS3 0.433 0.514 1.000
SATMATH 0.345 0.385 0.337 1.000
SATPROB 0.304 0.359 0.281 0.738 1.000
SATPROC 0.259 0.330 0.279 0.714 0.645 1.000
SD 1.334 1.277 1.265 37.087 37.325 45.098

indirectly, mediated by Task-Goal). Finally,
because variation in dependent variables usually
is not fully explainable by the amount of variation
or covariation in their specified causes, each
dependent variable has an associated residual
term. For example, in the operationalized model
in Figure 32.2, D3 and D4 denote the prediction
errors associated with the latent factors F3
(Task-Goal) and F4 (Math-Prof), while E1
through E3 indicate the residuals associated

with the measured indicator variables (V1 to
V3) of the latent construct Read-SC.

For purposes of labeling structural and non-
structural parameters associated with the connec-
tions between measured and/or latent variables in a
path diagram, we used the abc system® (Hancock &
Mueller, 2006, pp. 4-6). Structural effects from one
variable (measured or latent) to another are labeled
b, som> With the subscripts indicating the toand from

1

variables (e.g., in Figure 32.2, b, indicates the path
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N EAA e @
E7 Es E9 E10  E11 E12
<1 L 1 1 1 1
TG1 || TG2 || TG3 || Math || Prob || Proc

wv8) || voy || vio) || (vin) || (vi2)

by12r3

Task-Goal
(F3)

Math-Prof
(F4)

Figure 32.2 Initially operationalized Model 1.

to F3 from F1, and b,,,, denotes the path/factor
loading to item V2 from factor F1). On the other
hand, variances and covariances are labeled by the
letter ¢ (e.g., in Figure 32.2, ¢;, denotes the variance
of the latent construct F1, while ¢, represents the
covariance between the factors F2 and F1).

All-in-One SEM Analysis—
Generally Not Recommended

Although we generally do not recommend
the analytic strategy outlined in this section, it
nevertheless will prove pedagogically instruc-
tive and will motivate arguments in later sec-
tions. With a hypothesized structure among
latent constructs in place and associated mea-
sured indicators selected, Model 1 in Figure 32.1a
can be operationalized as illustrated in Figure
32.2. This path diagram implies a set of 14
structural equations, one for each dependent
variable: two equations from the structural por-
tion of the model (i.e., the part that specifies the
causal structure among latent constructs) and
12 equations from the measurement portion of

the model (i.e., the part that links each of the
indicator variables with the designated latent
constructs). Table 32.3 lists all 14 structural
equations and their associated endogenous
(dependent) and exogenous (independent)
variables that together specify the model in
Figure 32.2 (variables are assumed to be mean-
centered, thus eliminating the need for inter-
cept terms; items V1, V4, V7, and V10 are used
as reference variables for their respective fac-
tors, and thus their factor loadings are not free
to be estimated but fixed to 1.0; also see Note 4).

Though it might seem that the statistical
estimation of the unknown coefficients in the
structural equations (the b and ¢ parameters)
should be the focus at this stage of the analysis,
a prior assessment of the data-model fit is more
essential as it allows for an overall judgment
about whether the data fit the structure as
hypothesized (indeed, should evidence materi-
alize that the data do not fit the model, inter-
pretations of individual parameter estimates
might be useless). As can be verified from the
path diagram in Figure 32.2 by counting one- and
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Table 32.3 Structural Equations Implied by the Path Diagram in Figure 32.2

Structural Portion

Endogenous Variable Structural Equations Exogenous Variables*®

Task-Goal (F3) F3 = by, F1 + by, F2 + D3 Read-SC (F1)
Math-SC (F2)
Math-Prof (F4) F4 = b, F3 + D4 Task-Goal (F3)

Measurement Portion

Endogenous Variable

Structural Equations

Exogenous Variables’

RSC1 (V1) V1= (1)F1 + El Read-SC (F1)
RSC2 (V2) V2= by, F1+E2

RSC3 (V3) V3 = by, F1 + E3

MSC1 (V4) V4 = (1)F2 + E4 Math-SC (F2)
MSC2 (V5) V5 = by, F2 + E5

MSC3 (V6) V6 = by, F2 + E6

TG1 (V7) V7 = (1)F3 + E7 Task-Goal (F3)
TG2 (V8) V8 = by, F3 + E8

TG3 (V9) V9 = byy, F3 + E9

Math (V10) V10 = (1)F4 + E10 Math-Prof (F4)
Prob (V11) V11 = by, ., F4 + E11

Proc (V12) V12 = b, F4 + E12

a. Residuals D, though technically independent, are not listed.
b. Residuals E, though technically independent, are not listed.

two-headed arrows labeled with b or ¢ symbols,
the model contains ¢ = 28 parameters to be esti-
mated:* two variances of the independent latent
constructs and one covariance between them,
two variances of residuals associated with the
two dependent latent constructs, three path
coefficients relating the latent constructs, eight
factor loadings, and 12 variances of residuals
associated with the measured variables. Further-
more, the 12 measured variables in the model
produce u =12 (12 +1)/2 =78 unique variances
and covariances; the model is overidentified (=
28 < u=78), and it is likely that some degree of
data-model misfit exists (i.e., the observed
covariance matrix will likely differ, to some
degree, from that implied by the model). To
assess the degree of data-model misfit, various
fit indices can be obtained and then should be
compared against established cutoff criteria
(e.g., those empirically derived by Hu & Bentler,
1999, and listed here in Table 32.4). Though
here LISREL 8.8 (Joreskog & Sorbom, 2006)

was employed, running any of the available
SEM software packages will verify the following
data-model fit results for the data in Table 32.2
and the model in Figure 32.2 (because the data
are assumed multivariate normal, the maxi-
mum likelihood estimation method was used):
¥*=3624.59 (df=u— t=50, p < .001), SRMR =
0.13, RMSEA = 0.20 with CI,;; (0.19, 0.20), and
CFI =0.55.

As is evident from comparing these results
with the desired values in Table 32.4, the current
data do not fit the proposed model; thus, it is
not appropriate to interpret any individual para-
meter estimates as, on the whole, the model in
Figure 32.2 should be rejected based on the cur-
rent data. Now the researcher is faced with the
question of what went wrong: (a) Is the source
of the data-model misfit indeed primarily a flaw
in the underlying structural theory (Figure 32.1a),
(b) can the misfit be attributed to misspecifica-
tions in the measurement portion of the model
with the hypothesized structure among latent
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Table 32.4 Target Values for Selected Fit Indices
to Retain a Model by Class
Index Class

Incremental Absolute Parsimonious
NFI = 0.90
NNFI = 0.95 GFI >20.90 AGFI > 0.90
CFI =2 0.95 SRMR £ 0.08 RMSEA £0.06

Joint Criteria
NNFI, CFI > 0.96 and SRMR < 0.09

SRMR £ 0.09 and RMSEA <£0.06

SOURCE: Partially taken from Hu and Bentler (1999).

NOTE: CFI = comparative fit index; NFI = normed fit index;
NNFI = nonnormed fit index; GFI = goodness-of-fit index;
AGFI = adjusted goodness-of-fit index; RMSEA = root mean
square error of approximation; SRMR = standardized root
mean square residual.

constructs actually having been specified cor-
rectly, or (c) do misspecifications exist in both
the measurement and structural portions of the
model? To help address these questions and pre-
vent potential confusion about the source of
observed data-model misfit, we do not recom-
mend that researchers conduct SEM analyses by
initially analyzing the structural and measure-
ment portions of their model simultaneously,
as was done here. Instead, analysts are urged to
follow a two-phase analysis process, as described
next.

Two-Phase SEM Analysis—Recommended

Usually, the primary reason for conceptualiz-
ing LVPA models is to investigate the tenability
of theoretical causal structures among latent
variables. The main motivation for recommend-
ing a two-phase process over an all-in-one
approach is to initially separate a model into its
measurement and structural portions so that
misspecifications in the former, if present, can
be realized and addressed first, before the struc-
ture among latent constructs is assessed.” This
approach will simplify the identification of
sources of data-model misfit and might also aid
in the prevention of nonconvergence problems
with SEM software (i.e., when the iterative esti-
mation algorithm cannot converge upon a
viable solution for parameter estimates).
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Consider the path diagram in Figure 32.3a. It
is similar to the one depicted in Figure 32.2 as it
involves the same measured and latent variables
but differs in two important ways: Not only are
Read-SC and Math-SC now explicitly connected
to Math-Prof, but all structural links among
latent variables have been changed to nonstruc-
tural relations (note in Figure 32.3a the two-
headed arrows between all latent constructs that
are now labeled with ¢ symbols). That is, latent
constructs are allowed to freely covary without
an explicit causal structure among them. In
short, Figure 32.3a represents a CFA model of
the latent factors Read-SC, Math-SC, Task-Goal,
and Math-Prof, using the measured variables in
Table 32.1 as their respective effect indicators.®

Measurement Phase. An analysis of the CFA
model in Figure 32.3a constitutes the beginning
of the measurement phase of the proposed two-
phase analysis process and produced the follow-
ing data-model fit results: *> = 3137.16 (df =48,
p < .001), SRMR = 0.062, RMSEA = 0.18 with
CI,,: (0.17, 0.18), and CFI = 0.61. These values
signify a slight improvement over fit results for
the model in Figure 32.2. To the experienced
modeler, this improvement was predictable
given that the model in Figure 32.2 is more
restrictive than, and a special case of, the CFA
model in Figure 32.3a (with the paths from
Read-SC and Math-SC to Math-Prof fixed to
zero); that is, the former model is nested within
the latter, a topic more fully discussed in the next
section. Irrespective of this minor improvement,
however, why did the data-model fit remain
unsatisfactory (as judged by the criteria listed in
Table 32.4)? Beginning to analyze and address
this misfit constitutes a move toward the fourth
and final phase in the general SEM process,
potential post hoc model modification.

First, reconsider the list of items in Table 32.1.
While all variables certainly seem to “belong” to
the latent factors they were selected to indicate,
note that for the reading and mathematics self-
concept factors, corresponding items are identical
except for one word: The word reading in items
RSC1 through RSC3 was replaced by the word
math to obtain items MSC1 through MSC3. Thus,
it seems plausible that individuals’ responses to
corresponding reading and mathematics self-con-
cept items are influenced by some of the same or
related causes. In fact, the model in Figure 32.3a
explicitly posits that two such related causes are
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the latent constructs Read-SC and Math-SC.
However, as the specification of residual terms (E)
indicates, responses to items are influenced by
causes other than the hypothesized latent con-
structs. Those other, unspecified causes could also
be associated. Thus, for example, the residual
terms E1 and E4 might covary to some degree,
particularly since both are associated with items
that differ by just one word. Based on similar the-
oretical reasoning, a nonzero covariance might
exist between E2 and E5 and also between E3 and
E6. In sum, it seems theoretically justifiable to
modify the CFA model in Figure 32.3a to allow
residual terms of corresponding reading and
mathematics self-concept items to freely covary, as
shown in Figure 32.3b. In fact, with enough fore-
sight, these covariances probably should have
been included in the initially hypothesized model.

Second, as part of the analysis of the initial CFA
model in Figure 32.3a, Lagrange multiplier (LM)
statistics may be consulted for empirically based
model modification suggestions. These statistics
estimate the potential improvement in data-model
fit (as measured by the estimated decrease in chi-
square) if a previously fixed parameter were to be
estimated. Here, the three largest LM statistics were
652.0, 567.8, and 541.7, associated with the fixed
parameters Gy, Cppp aNd Gy Tespectively.
Compared with the overall chi-square value of
3137.16, these estimated chi-square decreases seem
substantial,” foreshadowing a statistically signifi-
cant improvement in data-model fit. Indeed, after
respecifying the model accordingly (i.e., freeing
Caspyp Cuupp AN Gy see Figure 32.3b) and reanalyz-
ing the data, fit results for the modified CFA model
improved dramatically: x> = 108.04 (df = 45, p <
.001), SRMR = 0.018, RMSEA = 0.037 with CI:
(0.028, 0.046), and CFI = 0.99.

Though the degree of improvement might
have been a pleasant surprise, some improvement
was again to be expected: When compared with
the initial CFA model, the modified model places
fewer restrictions on parameter values (hence,
better data-model fit) by allowing three error
covariances to be freely estimated. Once again, the
two CFA models are nested, and their fit could be
statistically compared with a chi-square difference
test, as discussed in the next section. For now, suf-
fice it to say that an informal, descriptive compar-
ison of the fit results for the initial and modified
CFA models (e.g., a decrease from .., = 3137.16
toy2 .= 108.04,a drop from SRMR, . .= 0.062 to
SRMR_, = 0.018, and a reduction from

RMSEA, .. ,=0.18 to RMSEA _ _,=0.037) seems to
indicate that the data fit the modified model
much better. In more absolute terms, comparing
the fit results from the modified model to the tar-
get values in Table 32.4 suggests that the data fit
the model very well (due to the large sample size
of n = 1,000, relatively little weight should be
placed on the still significant y,;) = 108.04). An
examination of the remaining modification
indices indicated that, even though further modi-
fications would continue to slightly improve fit,
none of the suggested modifications were theoret-
ically justifiable (e.g., the largest estimated drop in
chi-square, 23.0, could be obtained by freeing c.y,,
the error covariance associated with the items
TG2 and RSC2). Thus, no further modifications
to the measurement model seem warranted.
Figure 32.4 lists partial results for this final CFA
model: Standardized factor loadings were statisti-
cally significant and sizable, estimated correlations
among error terms and among latent factors were
significant and of moderate size (except for the
nonsignificant correlation between the latent fac-
tors Read-SC and Math-Prof), item reliabilities
(the squared standardized factor loadings, ¢?)
ranged from ¢* = .36 for RSC3 to ¢? = .81 for
Math, and construct reliabilities® for the latent fac-
tors ranged from H = .74 for Read-SC to H = .89
for Math-Prof. Thus, with solid evidence of a
quality measurement model, we now are ready to
proceed to the second phase of the analysis.

Structural Phase. With a final measurement
model in place, the structural phase consists of
replacing the nonstructural covariances among
latent factors with the hypothesized structure
that is of main interest (currently, Model 1 in
Figure 32.1a) and reanalyzing the data. When
comparing these new data-model fit results (> =
601.85 with df = 47, p < .001, SRMR = 0.12,
RMSEA = 0.10 with CI,,;: [0.096,0.11], and CFI =
0.93) to those from the final CFA model, we
learn that the introduction of two key restric-
tions—namely, the a priori specified zero paths
from Read-SC and Math-SC to Math-Prof—
significantly eroded data-model fit.” Consulting
cutoff criteria in Table 32.4, we may conclude
that the data do not fit the conceptual model in
Figure 32.la. Having conducted a two-phase
analysis, however, we now know something we
could not glean from the all-in-one analysis: The
observed data-model misfit must largely be due
to misspecifications in the structural portion
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(b) Modified CFA Model
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Figure 32.3 The measurement (CFA) models.
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of the model since modifications to the mea-
surement portion of the model (freeing error
covariances for corresponding reading and
mathematics self-concept items) led to a CFA
model with no evidence of substantial data-
model misfit. Having not yet reached a state
where the data fit the hypothesized structure to
an acceptable degree, we forego an interpretation
of individual parameter estimates for a while
longer in favor of illustrating how to compare
and choose among the current model (Model 1)
and the two remaining a priori hypothesized
structures (Models 2 and 3) in Figure 32.1.

Choosing From Among Nested Models

Thus far in the illustrations, the comparison of
models with respect to data-model fit could be
accomplished only by descriptively weighing vari-
ous fit index values across models. However, in the
special case when two models, say Model 1 and
Model 2, are nested (such as when the estimated
parameters in the former are a proper subset of
those associated with the latter), fit comparisons
can be accomplished with a formal chi-square dif-
ference test. That is, if Model 1 (with df,) is nested
within Model 2 (with df,), their chi-square fit sta-
tistics may be statistically compared by Ay’ o) =
X — Xy Which is distributed as a chi-square
distribution with df = df, — df, (under conditions
of multivariate normality).

Now reconsider the three theoretical models
in Figure 32.1, all now incorporating the final
measurement model in Figure 32.3b. As the fit
information in Table 32.5 shows, Models 2 and 3
seem to fit well,'’ while Model 1 does not, as pre-
viously discussed. Furthermore, note that Model
1, the most parsimonious and restrictive model,
is nested within both Models 2 and 3 (letting
by, # 0 in Model 1 leads to Model 2; allowing
both b, # 0 and by, # 0 in Model 1 leads to
Model 3) and that Model 2 is nested in Model 3
(permitting b, # 0 in Model 2 leads to Model 3).
Thus, the chi-square fit statistics for the three
competing models can easily be compared by
chi-square difference tests. Based on the three
possible chi-square comparisons shown in Table
32.5, we glean that out of the three alternatives,
Model 2 is the preferred structure (when weigh-
ing chi-square fit and parsimony):

1. Both Models 2 and 3 are chosen over
Model 1 (they both exhibit significantly
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better fit, A%, = 492.56, p < .001; A 3%, =
493.81, p < .001; respectively), and

2. Model 2 is favored over Model 3 (even though
it is more restrictive—but hence more
parsimonious—the erosion in fit is
nonsignificant, Axfl) =1.25, p=.264).

Having chosen Model 2 from among the
three alternative models and judging its data-
model fit as acceptable (Table 32.5), what
remains is an examination and interpretation of
the structural parameter estimates that link the
latent constructs (see Table 32.6; interpretations
of results from the measurement phase are listed
in Figure 32.4 and were examined earlier). Note
that the latent factors Read-SC and Math-SC
explained 20% of the variance in Task-Goal (R* =
0.20) and that those three factors explained more
than 70% of the variance in latent mathematics
proficiency (R*= 0.71). All structural estimates
were statistically significant and can be inter-
preted in a manner similar to regression coeffi-
cients, but now with a focus on structural
direction, given the specific causal nature of the
underlying hypothesized theory. For example,
considering the standardized path coefficients,"!
one might expect from within the context of
Model 2 that a one standard deviation increase in
ninth-grade girls’ latent reading self-concept
causes, on average, a bit more than a third (0.36)
of a standard deviation increase in their latent
task-goal orientation; similarly, a one standard
deviation increase in girls’ task-goal orientation
leads, on average, to a 0.38 standard deviation
increase in latent mathematics proficiency. Given
the hypothesized structure, the effect of reading
self-concept on mathematics proficiency is com-
pletely mediated by Task-Goal, with an estimated
standardized indirect effect of 0.36 x 0.38 = 0.14
(p < .05, as indicated by SEM software).

Finally, recall from the beginning of this sec-
tion the two separate multiple linear regression
analyses for a somewhat crude initial attempt at
addressing coefficient estimation for the struc-
ture in Model 2. In addition to LVPA results,
Table 32.6 also lists R* values and the unstandard-
ized and standardized regression coefficients
associated with the two implied structural equa-
tions (using the proxy variables ReadSC3 for
latent reading self-concept, MathSC3 for latent
mathematics self-concept, TG1 for latent task-
goal orientation, and Proc for latent mathematics
proficiency). First, compare the two regression
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NOTE: g2 is indicator reliability computed as the squared standardized loading. H is Hancock and Mueller’s (2001) measure

of construct reliability.

Standardized results for final CFA model.

a. Unstandardized loading fixed to 1.0; thus, no standard error computed.

*p < .05.

R? values with those obtained from the SEM analy-
sis and appreciate the huge increases observed
with the LVPA approach: Explained variability in
task-goal orientation jumped from 3.4% to 20%;

in mathematics proficiency, it improved from

o

26% to 71%. Second, compare the MLR to the
LVPA coefficients and note how in each case, the
standardized LVPA estimates are higher/stronger
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than their MLR counterparts. This disattenuation
of relations among variables is due to LVPA’s abil-
ity to “cleanse” estimates of the “noise” in the sys-
tem that was introduced by the indicator
variables” inevitable measurement error. Herein,
then, lies one of the strengths of latent variable
SEM approaches: Structural parameter estimates
become purer, untangled from errors that origi-
nated in the measurement portion of the system,
thus generating a higher portion of explained
variability in dependent constructs.

BEest PrACTICES IN SEM:
SHARING THE STUDY WITH OTHERS

The four-stage SEM process and pointers
gleaned from the above analysis illustrations
map nicely onto the broadly accepted manu-
script sections of introduction, methods, results,
and discussion. What follows are some brief and
general best practices guidelines on communi-
cating research that uses SEM.

Introduction Section

Early in a manuscript—in the introduction
and background to the problem under study—

Table 32.6 Regression/Structural Coefficients
for Model 2
Analysis Method
Effect From/To MLRs LVPA
Read-SC 0.08% 0.37*
Task- 0.08 0.36
Goal
Math-SC 0.15% 0.25%
0.14 0.35
Math-SC 15.59* 18.41*
Math- 0.45 0.65
Prof
Task-Goal 6.22* 14.64*
0.18 0.38
R Ry, = 0.034 | Ry 0y =0.20
Rzproc =0.26 RzMalh-Prof =0.71

NOTE: Top coefficient is unstandardized; bottom coefficient
is standardized.

*p <.05.

authors should convey a firm, overall sense of
what led to the initial model conceptualization
and of the specific model(s) investigated. The
existence of latent constructs, as well as the
hypothesized causal relations among them, must
be justified clearly and convincingly based
on theoretical grounds. Often, the articulation of
competing, alternative models strengthens a
study as it provides for a more complete picture
of the current thinking in a particular field. The
justification of measured and/or latent variables
and models is accomplished by analyzing and
synthesizing relevant literature by authors who
proposed particular theories or empirically
researched the same or similar models as the
one(s) under current investigation. Path dia-
grams often are helpful in expressing the hypoth-
esized structural links relating the measured
and/or latent variables. Especially in complex
models involving many variables, the hypothe-
sized causal structure among latent variables can
be easily illustrated in a diagram, while the psy-
chometric details of how each latent variable was
modeled may be left for the method section.

Method Section

In addition to specific information on partici-
pants, instruments, and procedures, this section
should include a reference to the specific version of
the SEM software package used since results can
vary not only across programs but also across ver-
sions of a single package (mainly due to differences
and continual refinements in estimation algo-
rithms). Given the complexities of demonstrating
each parameter’s identification—and its necessity
for parameter estimation—it is generally accepted
to omit detailed discussions of identification issues
from a manuscript, unless some unique circum-
stances warrant their inclusion. However, since the
accuracy of parameter estimates, associated stan-
dard errors, and the overall chi-square value all
depend on various characteristics of the indicators
chosen and the data collected, authors should
address issues such as multivariate distributions,
sample size, missing data, outliers, and potential
multilevel data structures, if applicable.

In most applied studies, ML estimates are pre-
sented that assume underlying multivariate nor-
mality and continuity of the data. Studies have
shown that if sample size is sufficiently large, ML
parameter estimates are quite robust against viola-
tions of these assumptions, though their associated
standard errors and the overall chi-square might
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not be (e.g., West, Finch, & Curran, 1995). Some
have suggested, as a rough guideline, a 5:1 ratio of
sample size to number of parameters estimated in
order to trust ML parameter estimates (but associ-
ated standard errors and the model chi-square sta-
tistic might still be compromised; e.g., Bentler &
Chou, 1987). We hesitate to endorse such a “one-
size-fits-all” suggestion for three reasons. First, if
data are not approximately normal, then alternate
strategies such as the Satorra-Bentler rescaled sta-
tistics should be employed that have larger sample
size requirements. Second, even under normality,
methodological studies have illustrated that for
models with highly reliable factors, quite satisfac-
tory solutions can be obtained with relatively small
samples, while models with less reliable factors
might require larger samples (e.g., Gagné &
Hancock, 2006; Marsh, Hau, Balla, & Grayson,
1998). Third, such general sample size recommen-
dations ignore issues of statistical power to evalu-
ate models as a whole or to test parameters within
those models (see, e.g., Hancock, 2006).

If the model posits latent constructs, the choice
of indicators usually is justified in an instrumen-
tation subsection. First, for each construct mod-
eled, the reader should be able to determine if
effect or cause indicators were chosen: Only the
former operationalize the commonly modeled
latent factors; the latter determine latent compos-
ites (see Note 6). In some SEM analyses, emergent
constructs are erroneously treated as latent,
implying a mismatch between the modeled and
the actual nature of the construct, hence leading
to the potential for incorrect inferences regarding
the relations the construct might have with other
portions of the model. Second, each latent con-
struct should be defined by a sufficient number of
psychometrically sound indicators: “Two might be
fine, three is better, four is best, and anything more
is gravy” (Kenny, 1979, p. 143). Doing so can pre-
vent various identification and estimation prob-
lems as well as ensure satisfactory construct
reliability (since latent constructs are theoretically
perfectly reliable but are measured by imperfect
indicators, numerical estimates of construct relia-
bility are likely to be less than 1.0 but can be
brought to satisfactory levels with the inclusion of
quality indicator variables; see, e.g., Hancock
& Mueller, 2001). Finally, the scale of the indica-
tor variables should be accommodated by the
estimation method, where variables clearly yield-
ing ordinal data might warrant the use of estima-
tion strategies other than ML (see Finney &
DiStefano, 2006).
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Results Section

How authors structure the results section obvi-
ously is dictated by the particular model(s) and
research questions under study. Notwithstanding,
it is the researcher’s responsibility to provide access
to data in order to facilitate verification of the
obtained results: If moment-level data were ana-
lyzed, a covariance matrix (or correlation matrix
with standard deviations) should be presented in a
table or appendix; if raw data were used, informa-
tion on how to obtain access should be provided.

When analyzing LVPA models, results from
both the measurement and structural phases
should be presented. For overidentified models,
judging the overall quality of a hypothesized model
usually is presented early in the results section.
Given that available data-model fit indices can lead
to inconsistent conclusions, researchers should
consider fit results from different classes so readers
can arrive at a more complete picture regarding a
model’s acceptability (Table 32.4). Also, a compari-
son of fit across multiple, a priori specified alterna-
tive models can assist in weighing the relative
merits of favoring one model over others. As illus-
trated, when competing models are nested, a for-
mal chi-square difference test is available to judge if
a more restrictive—but also more parsimonious—
model can explain the observed data equally well,
without a significant loss in data-model fit (alter-
native models that are not nested have tradition-
ally been compared only descriptively—relative
evaluations of AIC values are recommended, with
smaller values indicating better fit—but recent
methodological developments suggest statistical
approaches as well; see Levy & Hancock, 2007).

If post hoc model modifications are performed
following unacceptable data-model fit from either
the measurement or structural phase of the analy-
sis, authors owe their audience a detailed account of
the nature and reasons (both statistical and theoret-
ical) for the respecification(s), including summary
results from Lagrange multiplier tests and revised
final fit results. If data-model fit has been assessed
and deemed satisfactory, with or without respecifi-
cation, more detailed results are presented, usually
in the form of individual unstandardized and stan-
dardized parameter estimates for each structural
equation of interest, together with associated stan-
dard errors and/or test statistics and coefficients of
determination (R?). When latent variables are part
of a model, estimates of their construct reliability
should be presented, with values ideally falling
above .70 or .80 (see Hancock & Mueller, 2001).

o
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Discussion Section

In the final section of a manuscript, authors
should provide a sense of what implications the
results from the SEM analysis have on the theory
or theories that gave rise to the initial model(s).
Claims that a well-fitting model was “con-
firmed” or that a particular theory was proven to
be “true,” especially after post hoc respecifica-
tions, should be avoided. Such statements are
grossly misleading given that alternative, struc-
turally different, yet mathematically equivalent
models always exist that would produce identi-
cal data-model fit results and thus would explain
the data equally well (see Hershberger, 2006). At
most, a model with acceptable fit may be inter-
preted as one tenable explanation for the asso-
ciations observed in the data. From this
perspective, a SEM analysis should be evaluated
from a disconfirmatory, rather than a confirma-
tory, perspective: Based on unacceptable data-
model fit results, theories can be shown to be
false but not proven to be true by acceptable
data-model fit (see also Mueller, 1997).

If evidence of data-model misfit was presented
and a model was modified based on statistical
results from Lagrange multiplier tests, readers
must be made aware of potential model overfit-
ting and the capitalization on chance. Statistically
rather than theoretically based respecifications
are purely exploratory and might say little about
the true model underlying the data. While some
model modifications seem appropriate and theo-
retically justifiable (usually, minor respecifica-
tions of the measurement portion are more easily
defensible than those in the structural portion of
a model), they only address internal specification
errors and should be cross-validated with data
from new and independent samples."

Finally, the interpretation of individual
parameter estimates can involve explicit causal
language, as long as this is done from within the
context of the particular causal theory proposed
and the possibility/probability of alternative
explanations is raised unequivocally. Though
some might disagree, we think that explicit causal
statements are more honest than implicit ones
and are more useful in articulating a study’s prac-
tical implications; after all, is not causality the
ultimate aim of science (see Shaffer, 1992, p. x)?
In the end, SEM is a powerful disconfirmatory
tool at the researcher’s disposal for testing and
interpreting theoretically derived causal hypothe-
ses from within an a priori specified causal system

of observed and/or latent variables. However, we
urge authors to resist the apparently still popular
belief that the main goal of SEM is to achieve sat-
isfactory data-model fit results; rather, it is to get
one step closer to the “truth.” If it is true that a
proposed model does not reflect reality, then
reaching a conclusion of misfit between data and
model should be a desirable goal, not one to be
avoided by careless respecifications until satisfac-
tory levels of fit are achieved.

CONCLUSION

Throughout the sections of this chapter, we have
attempted to provide an overview of what we
believe should be considered best practices in
typical SEM applications. As is probably true for
the other quantitative methods covered in this
volume, a little SEM knowledge is sometimes a
dangerous thing, especially with user-friendly
software making the mechanics of SEM increas-
ingly opaque to the applied user. Before embrac-
ing SEM as a potential analysis tool and
reporting SEM-based studies, investigators
should gain fundamental knowledge from any of
the introductory textbooks referenced at the
beginning of this chapter. In an effort to aid in
the conduct and publication of appropriate, if
not exemplary, SEM utilizations, we offered
some best practices guidelines, except one, saving
it for last. While SEM offers a general and flexible
methodological framework, investigators should
not hesitate to consider other analytical tech-
niques—many covered in the present volume—
that potentially address research questions much
more clearly and directly. As it was explained to
the second author several years ago, “Just because
all your friends are doing this ‘structural equa-
tion modeling’ thing doesn’t mean you have to. If
all your friends jumped off a cliff....” (Marta
Foldi,” personal communication, 1992).

NoTtEs

1. Several indicator variables are rating scales
that could be argued to provide ordinal-level rather
than interval-level data. Given the relatively high
number of scale points, however, we analyzed these
data as if they were interval (see Finney &
DiStefano, 2006).

2. Using different proxy variables, or even
composites of indicators, would still yield attenuated
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results as none of the options filter the inherent
measurement error.

3. Only b and c coefficients are used here; the
letter a denotes intercept and mean terms in the
analysis of mean structures.

4. To help ensure identification and to provide a
metric for each latent factor, reference variables were
specified (i.e., one factor loading for each latent
construct was fixed to 1.0 as indicated in Figure 32.2).

5. Here it is assumed that measured variables
of “high quality” were chosen to serve as indicator
variables of the latent constructs (i.e., measured
variables with relatively high factor loadings).
Somewhat paradoxically, the use of low-quality
indicators in the measurement portion of the model
can erroneously lead to an inference of acceptable
data-model fit regarding the structural portion (see
Hancock & Mueller, 2007).

6. Effect indicators are measured variables that
are specified to be the structural effects of the latent
constructs that are hypothesized to underlie them
(e.g., Bollen & Lennox, 1991). The analysis of models
involving cause indicators—items that contribute to
composite scores to form emergent factors, or latent
composites—is theoretically different but also
possible, albeit more difficult (see Kline, 2006).

7. Typically, LM statistics are not additive; that is,
the chi-square statistic is not expected to drop by 1761.5
(=652.0 + 567.8 + 541.7). When a fixed parameter is
estimated in a subsequent reanalysis, LM statistics for
the remaining fixed parameters usually change. Hence,
theoretically justifiable model modifications motivated
by LM results should usually occur one parameter at a
time unless there is a clear theoretical reason for freeing
multiple parameters at once, as is the case here.

8. One way to assess construct reliability is
through Hancock and Mueller’s (2001, p. 202)
coefficient H. His a function of item reliabilities, £7,
and is computed by the equation

H=1 1+<1 ii:@?/(l—ﬂf)>’

where k is the number of measured variables
associated with a given latent factor.

9. Such a statistical comparison is possible with
a chi-square difference test since the current model
is nested within the final measurement model, as
explained next.

10. Perceptive readers will have noticed that fit
results for Model 3 equal those previously discussed
for the final measurement model. Indeed, this is no
coincidence but an illustration of two equivalent
models, that is, models that differ in structure but
exhibit identical data-model fit for any data set (see
Hershberger, 2006).

11. For a given sample, only the interpretation of
standardized coefficients is meaningful as the latent
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factor metrics are arbitrary (different choices for
reference variables could lead to different latent
metrics); unstandardized coefficients can be useful in
effect comparisons across multiple samples or studies.

12. If this is impractical or impossible, a cross-
validation index could be computed (see Browne &
Cudeck, 1993).

13. Mrs. Foldi is the second author’s mother;
she has no formal training in SEM or in any other
statistical technique.
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BAYESIAN M ODELING
FOR THE SOCIAL SCIENCES
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MARTA BLANGIARDO

n the context of statistical problems, the

frequentist (or empirical) interpretation

of probability has historically played a pre-
dominant role in modern statistics. In this
approach, probability is defined as the limiting
frequency of occurrence in an infinitely repeated
experiment. The underlying assumption is that
of a “fixed” concept of probability, which is
unknown but can be theoretically disclosed by
means of repeated trials, under the same exper-
imental conditions.

However, although the frequentist approach
still plays the role of the standard in various
applied areas, many other possible conceptual-
izations of probability characterize different
philosophies behind the problem of statistical
inference. Among these, an increasingly popular
one is the Bayesian (also referred to as subjec-
tivist), originated by the posthumous work of
Reverend Thomas Bayes (1763)—see Howie
(2002), Senn (2003), or Fienberg (2006) for a
historical account of Bayesian theory.

The main feature of this approach is that
probability is interpreted as a subjective degree

of belief in the occurrence of an event, repre-
senting the individual level of uncertainty in its
actual realization (cf. de Finetti, 1974, probably
the most comprehensive account of subjective
probability). One of the main implications of
subjectivism is that there is no requirement that
one should be able to specify, or even conceive
of, some relevant sequence of repetitions of the
event in question, as happens in the frequentist
framework, with the advantage that events of
the “one-oft” type can be assessed consistently.

In the Bayesian philosophy, the probability
assigned to any event depends also on the individ-
ual whose uncertainty is being taken into account
and on the state of background information
underlying this assessment. Varying any of these
factors might change the probability. Consequently,
under the subjectivist view, there is no assumption
of a unique, correct (or “true”) value for the prob-
ability of any uncertain event (Dawid, 2005).
Rather, each individual is entitled to his or her own
subjective probability, and according to the evi-
dence that becomes sequentially available, individ-
uals tend to update their beliefs."
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Bayesian methods are not new to the social
sciences—from Phillips (1973) to Iversen
(1984), Efron (1986), Raftery (1995), Berger
(2000), and Gill (2002)—but they are also not
systematically integrated into most research in
the social sciences. This may be due to the com-
mon perception among practitioners that
Bayesian methods are “more complex.”

In fact, in our opinion, the apparent higher
degree of complexity is more than compensated by
at least the two following consequences. First,
Bayesian methods allow taking into account,
through a formal model, all the available informa-
tion, such as the results of previous studies.
Moreover, the inferential process is straightfor-
ward, as it is possible to make probabilistic state-
ments directly on the quantities of interest (i.e.,
some unobservable feature of the process under
study, typically represented by a set of parameters).

Despite their subjectivist nature, Bayesian
methods allow the practitioner to make the most
of the evidence: In just the situation of “repeated
trials,” after observing the outcomes (successes and
failures) of many past trials (assuming no other
source of information), the individuals will be
drawn to an assessment of the probability of suc-
cess on the next event that is extremely close to the
observed proportion of successes so far. However,
if past data are not sufficiently extensive, it may
be reasonably argued that there should indeed be
scope for interpersonal disagreement as to the
implications of the evidence. Therefore, the
Bayesian approach provides a more general frame-
work for the problem of statistical inference.”

In order to facilitate comprehension, we shall
present two worked examples and switch
between theory and practice in every section. In
the first part of the chapter, we consider data
about nonattendance at school for a set of
Australian children, with additional information
about their race (Aboriginal, White) and age
band also included. We use this data set to pre-
sent the main feature of Bayesian reasoning and
to follow the development of the simplest form
of models (conjugated analysis). In the last sec-
tion of the chapter, we describe a more realistic
representation for the analysis of SAT score data.
The main objective of this analysis is to develop
a more complex model combining information
for a number of related variables, using the sim-
ulation techniques of Markov chain Monte Carlo
methods.

CONDITIONAL PROBABILITIES
AND BAYES THEOREM

A fundamental concept in statistics, particularly
within the Bayesian approach, is that of condi-
tional probability (for a technical review, see
Dawid, 1979). Given two events A and B, we can
define the event A | B (read “A given B”) as the
occurrence of the event A under the circumstance
that the event B has already occurred.

In other words, by considering the condi-
tional probability, we are in fact changing
the reference population; the probability of the
event A, Pr(A), is generally defined over the
space Q, which contains all the possible events
under study, including A. Conversely, when con-
sidering the conditional probability Pr(A | B), we
are restricting our attention to the subspace of Q
where both the events A and B can occur. Such a
subspace is indicated as (A & B). Moreover, the
basis of our comparison will not be Q but just its
subspace where B is possible. Consequently, the
probability of the occurrence of the event A con-
ditional on the event B is formally defined as

Pr(A|B) = %. (1)

Example: Nonattendance
at School in Australia

Paul and Banerjee (1998) studied Australian
educational data on the days of nonattendance
at school for 146 children by race (Aboriginal,
White) and age band (primary, first form, sec-
ond form, third form). The observed average
value of nonattendance days is 16, which will be
used as a cutoff threshold for our analysis.

Suppose we are interested in the probability
that a student accumulates more than the aver-
age number of nonattendance days, conditional
on his or her race. We can define the events of
interest as follows:

H = {>16 nonattendance days}
W = {White race}

(where H stands for high nonattendance) and
their complement as
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