
155

11
BEST PRACTICES IN QUASI-
EXPERIMENTAL DESIGNS

Matching Methods for Causal Inference

ELIZABETH A. STUART

DONALD B. RUBIN

M
any studies in social science that aim to
estimate the effect of an intervention
suffer from treatment selection bias,

where the units who receive the treatment may
have different characteristics from those in the
control condition. These preexisting differences
between the groups must be controlled to obtain
approximately unbiased estimates of the effects of
interest. For example, in a study estimating the
effect of bullying on high school graduation,
students who were bullied are likely to be very
different from students who were not bullied on
a wide range of characteristics, such as socioeco-
nomic status and academic performance, even
before the bullying began. It is crucial to try to
separate out the causal effect of the bullying from
the effect of these preexisting differences between
the “treated” and “control” groups. Matching
methods provide a way to attempt to do so.

Random assignment of units to receive (or
not receive) the treatment of interest ensures
that there are no systematic differences between
the treatment and control groups before treat-
ment assignment. However, random assignment

is often infeasible in social science research, due
to either ethical or practical concerns. Matching
methods constitute a growing collection of tech-
niques that attempt to replicate, as closely as
possible, the ideal of randomized experiments
when using observational data.

There are two key ways in which the match-
ing methods we discuss replicate a randomized
experiment. First, matching aims to select sub-
samples of the treated and control groups that
are, at worst, only randomly different from one
another on all observed covariates. In other
words, matching seeks to identify subsamples of
treated and control units that are “balanced”
with respect to observed covariates: The
observed covariate distributions are essentially
the same in the treatment and control groups.
The methods described in this chapter examine
how best to choose subsamples from the origi-
nal treated and control groups such that the 
distributions of covariates in the matched
groups are substantially more similar than in the
original groups, when this is possible. A second
crucial similarity between a randomized experiment
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and a matched observational study is that each
study has two clear stages. The first stage is
design, in which the units to be compared are
selected, without use of the values of the out-
come variables. Like the design of a randomized
experiment, the matches are chosen without
access to any of the outcome data, thereby pre-
venting intentional or unintentional bias when
selecting a particular matched sample to achieve
a desired result. Only after the design is set does
the second stage begin, which involves the analy-
ses of the outcome, estimating treatment effects
using the matched sample. We only discuss
propensity score methods that are applicable at
the design stage in the sense that they do not
involve any outcome data. Some methods that
use propensity scores, including some weighting
techniques, can involve outcome data, and such
methods are not discussed here.

This chapter reviews the diverse literature on
matching methods, with particular attention paid
to providing practical guidance based on applied
and simulation results that indicate the potential of
matching methods for bias reduction in observa-
tional studies. We first provide an introduction to
the goal of matching and a very brief history of
these methods; the second section presents the
theory and motivation behind propensity scores,
discussing how they are a crucial component when
using matching methods. We then discuss other
methods of controlling for covariates in observa-
tional studies, such as regression analysis, and
explain why matching methods (particularly when
combined with regression in the analysis stage) are
more effective. The implementation of matching
methods, including challenges and evaluations of
their performance, is then discussed. We conclude
with recommendations for researchers and a discus-
sion of software currently available. Throughout
the chapter, we motivate the methods using data
from the National Supported Work Demonstration
(Dehejia & Wahba, 1999; LaLonde, 1986).

Designing Observational Studies

The methods described here are relevant 
for two types of situations. The first, which is
arguably more common in social science
research, is a situation where all covariate and
outcome data are already available on a large set
of units, but a subset of those units will be cho-
sen for use in the analysis. This subsetting (or
“matching”) is done with the aim of selecting

subsets of the treated and control groups with
similar observed covariate distributions, thereby
increasing robustness in observational studies by
reducing reliance on modeling assumptions. The
main objective of the matching is to reduce bias.
But what about variance? Although discarding
units in the matching process will result in
smaller sample sizes and thus might appear to
lead to increases in sampling variance, this is not
always the case because improved balance in the
covariate distributions will decrease the variance
of estimators (Snedecor & Cochran, 1980).
H. Smith (1997) gives an empirical example where
estimates from one-to-one matching have lower
estimated standard deviations than estimates
from a linear regression, even though thousands
of observations were discarded in the one-to-one
matching, and all were used in the regression.

The second situation is one in which outcome
data are not yet collected on the units, and cost
constraints prohibit measuring the outcome vari-
ables on all units. In that situation, matching
methods can help choose for follow-up the
control units most similar to those in the treated
group. The matching identifies those control units
who are most similar to the treated units so that
rather than random samples of units being dis-
carded, the units discarded are those most irrele-
vant as points of comparison with the treated
units. This second situation motivated much of
the early work in matching methods (Althauser &
Rubin, 1970; Rubin, 1973a, 1973b), which com-
pared the benefits of choosing matched versus
random samples for follow-up.

Matching methods can be considered as one
method for designing an observational study,
in the sense of selecting the most appropriate
data for reliable estimation of causal effects, as
discussed in Cochran and Rubin (1973), Rubin
(1977, 1997, 2004), Rosenbaum (1999, 2002),
and Heckman, Hidehiko, and Todd (1997). These
papers stress the importance of carefully design-
ing an observational study by making appropri-
ate choices when it is impossible to have full
control (e.g., randomization). The careful
design of an observational study must involve
making careful choices about the data used in
making comparisons of outcomes in treatment
and control conditions.

Other approaches that attempt to control 
for covariate differences between treated and
control units include regression analysis or
selection models, which estimate parameters of
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a model for the outcome of interest conditional
on the covariates (and a treatment/control indi-
cator). Matching methods are preferable to these
model-based adjustments for two key reasons.
First, matching methods do not use the outcome
values in the design of the study and thus pre-
clude the selection of a particular design to yield
a desired result. As stated by Rubin (2001),

Arguably, the most important feature of
experiments is that we must decide on the
way data will be collected before observing the
outcome data. If we could try hundreds of
designs and for each see the resultant answer,
we could capitalize on random variation in
answers and choose the design that generated
the answer we wanted! The lack of availability
of outcome data when designing experiments
is a tremendous stimulus for “honesty” in
experiments and can be in well-designed
observational studies as well. (p. 169)

Second, when there are large differences in 
the covariate distributions between the groups,
standard model-based adjustments rely heavily 
on extrapolation and model-based assumptions.
Matching methods highlight these differences and
also provide a way to limit reliance on the inher-
ently untestable modelling assumptions and the
consequential sensitivity to those assumptions.

Matching methods and regression-based
model adjustments should also not be seen as
competing methods but rather as complemen-
tary, which is a decades-old message. In fact, as
discussed earlier, much research over a period of
decades (Cochran & Rubin, 1973; Ho, Imai, King,
& Stuart, 2007; Rubin, 1973b, 1979; Rubin &
Thomas, 2000) has shown that the best approach
is to combine the two methods by, for example,
doing regression adjustment on matched sam-
ples. Selecting matched samples reduces bias due
to covariate differences, and regression analysis
on those matched samples can adjust for small
remaining differences and increase efficiency of
estimates. These approaches are similar in spirit
to the recent “doubly robust” procedures of
Robins and Rotnitzky (2001), which provide con-
sistent estimation of causal effects if either the
model of treatment assignment (e.g., the propen-
sity scores) or the model of the outcome is cor-
rect, although these later methods are more
sensitive to a correctly specified model used for
weighting and generally do not have the clear

separation of stages of design and analysis that 
we advocate here.

The National Supported 
Work Demonstration

The National Supported Work (NSW)
Demonstration was a federally and privately
funded randomized experiment done in the 1970s
to estimate the effects of a job training program
for disadvantaged workers. Since a series of
analyses beginning in the 1980s (Dehejia &
Wahba, 1999, 2002; LaLonde, 1986; J. Smith &
Todd, 2005), the data set from this study has
become a canonical example in the literature on
matching methods.

In the NSW Demonstration, eligible individ-
uals were randomly selected to participate in 
the training program. Treatment group members
and control group members (those not selected
to participate) were followed up to estimate the
effect of the program on later earnings. Because
the NSW program was a randomized experi-
ment, the difference in means in the outcomes
between the randomized treated and control
groups is an unbiased estimate of the average
treatment effect for the subjects in the random-
ized experiment, and indicated that, on average,
among all male participants, the program raised
annual earnings by approximately $800.

To investigate whether certain nonexperi-
mental methods yielded a result similar to 
that from the randomized experiment, LaLonde
(1986) attempted to use certain nonexperimen-
tal methods to estimate the treatment effect,
with the experimental estimate of the treatment
effect as a benchmark. LaLonde used, in anal-
ogy with then current econometric practice,
two sources of comparison units, both large
national databases: the Panel Survey of Income
Dynamics (PSID) and the Current Population
Survey (CPS). LaLonde found that the nonex-
perimental methods gave a wide range of
impact estimates, ranging from approximately
−$16,000 to $700, and concluded that it was dif-
ficult to replicate the experimental results with
any of the nonexperimental methods available
at that time.

In the 1990s, Dehejia and Wahba (1999) used
propensity score matching methods to estimate
the effect of the NSW program, using compari-
son groups similar to those used by LaLonde.
They found that most of the comparison group

Quasi-Experimental Designs 157

11-Osborne (Best)-45409.qxd  10/9/2007  10:58 AM  Page 157



members used by LaLonde were in fact very dis-
similar to the treated group members and that by
restricting the analysis to the comparison group
members who looked most similar to the treated
group, they were able to replicate results found 
in the NSW experimental data. Using the CPS,
which had a larger pool of individuals compara-
ble to those in the treated group, for the sample
of men with 2 years of pretreatment earnings
data available, Dehejia and Wahba (1999)
obtained a range of treatment effect estimates of
$1,559 to $1,681, quite close to the experimental
estimate of approximately $1,800 for the same
sample. Although there is still debate regarding
the use of nonexperimental data to estimate the
effects of the NSW program (see, e.g., Dehejia,
2005; J. Smith & Todd, 2005), this example has
nonetheless remained an important illustration
of the use of matching methods in practice.

We will use a subset of these data as an illus-
trative example throughout this chapter. The
“full” data set that we use has 185 treated males
who had 2 years of preprogram earnings data
(1974 and 1975) as well as 429 comparison
males from the CPS who were younger than age
55, unemployed in 1976, and had income below
the poverty line in 1975. The goal of matching
will be to select the comparison males who 
look most similar to the treated group on other
covariates. The covariates available in this data
set include age, education level, high school
degree, marital status, race, ethnicity, and earn-
ings in 1974 and 1975. In this chapter, we do not
attempt to obtain a reliable estimate of the effect
of the NSW program but rather use the data
only to illustrate matching methods.1

Notation and Background

As first formalized by Rubin (1974), the esti-
mation of causal effects, whether from data in a
randomized experiment or from information
obtained from an observational study, is inher-
ently a comparison of potential outcomes on
individual units, where a unit is a physical object
(e.g., a person or a school) at a particular point
in time. In particular, the causal effect for unit i
is the comparison of unit i ’s outcome if unit i
receives the treatment (unit i ’s potential out-
come under treatment), Yi(1), and unit i’s out-
come if unit i receives the control (unit i’s
potential outcome under control), Yi(0). The
“fundamental problem of causal inference”

(Holland, 1986; Rubin, 1978) is that, for each
unit, we can observe only one of these potential
outcomes because each unit will receive either
treatment or control, not both. The estimation of
causal effects can thus be thought of as a missing
data problem, where at least half of the values of
interest (the unobserved potential outcomes) are
missing (Rubin, 1976a). We are interested in pre-
dicting the unobserved potential outcomes, thus
enabling the comparison of the potential out-
comes under treatment and control.

For efficient causal inference and good esti-
mation of the unobserved potential outcomes,
we would like to compare groups of treated and
control units that are as similar as possible. If
the groups are very different, the prediction of
the Yi(1) for the control group will be made
using information from treated units, who look
very different from those in the control group,
and likewise, the prediction of the Yi(0) for the
treated units will be made using information
from control units, who look very different from
the treated units.

Randomized experiments use a known ran-
domized assignment mechanism to ensure “bal-
ance” of the covariates between the treated and
control groups: The groups will be only ran-
domly different from one another on all back-
ground covariates, observed and unobserved. In
observational studies, we must posit an assign-
ment mechanism, which stochastically deter-
mines which units receive treatment and which
receive control. A key initial assumption in
observational studies is that of strongly ignor-
able treatment assignment (Rosenbaum &
Rubin, 1983b), which implies that (a) treatment
assignment (W) is unconfounded (Rubin,
1990); that is, it is independent of the potential
outcomes (Y(0),Y(1)) given the covariates (X):
W⊥(Y(0),Y(1))|X, and (b) there is a positive
probability of receiving each treatment for 
all values of X: 0 < P(W = 1|X) < 1 for all X. Part
(b) essentially states that there is overlap in the
propensity scores. However, since below we
discuss methods to impose this by discarding
units outside the region of overlap, in the rest of
the chapter, we focus on the first part of the
strong ignorability assumption: unconfounded
treatment assignment, sometimes called “selec-
tion on observables” or “no hidden bias.”
Imbens (2004) discusses the plausibility of this
assumption in economics, and this issue is dis-
cussed further later in this chapter, including
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tests for sensitivity to the assumption of uncon-
founded treatment assignment.

A second assumption that is made in nearly all
studies estimating causal effects (including ran-
domized experiments) is the stable unit treat-
ment value assumption (SUTVA; Rubin, 1980).
There are two components to this assumption.
The first is that there is only one version of
each treatment possible for each unit. The second
component is that of no interference: The treat-
ment assignment of one unit does not affect the
potential outcomes of any other units. This is also
sometimes referred to as the assumption of “no
spillover.” Some recent work has discussed relax-
ing this SUTVA assumption, in the context of
school effects (Hong & Raudenbush, 2006) or
neighborhood effects (Sobel, 2006).

History of Matching Methods

Matching methods have been in use since the
first half of the 20th century, with much of the
early work in sociology (Althauser & Rubin,
1970; Chapin, 1947; Greenwood, 1945). How-
ever, a theoretical basis for these methods was
not developed until the late 1960s and early
1970s. This development began with a paper by
Cochran (1968), which particularly examined
subclassification but had clear connections with
matching, including Cochran’s occasional use of
the term stratified matching to refer to subclassi-
fication. Cochran and Rubin (1973) and Rubin
(1973a, 1973b) continued this development 
for situations with one covariate, and Cochran
and Rubin (1973) and Rubin (1976b, 1976c)
extended the results to multivariate settings.

Dealing with multiple covariates was a chal-
lenge due to both computational and data prob-
lems. With more than just a few covariates, it
becomes very difficult to find matches with close
or exact values of all covariates. An important
advance was made in 1983 with the introduction
of the propensity score by Rosenbaum and
Rubin (1983b), a generalization of discriminant
matching (Cochran & Rubin, 1973; Rubin,
1976b, 1976c). Rather than requiring close or
exact matches on all covariates, matching on the
scalar propensity score enables the construction
of matched sets with similar distributions of
covariates.

Developments were also made regarding the
theory behind matching methods, particularly
in the context of affinely invariant matching

methods (such as most implementations of
propensity score matching) with ellipsoidally
symmetric covariate distributions (Rubin &
Stuart, 2006; Rubin & Thomas, 1992a, 1992b,
1996). Affinely invariant matching methods are
those that yield the same matches following 
an affine (e.g., linear) transformation of the 
data (Rubin & Thomas, 1992a). This theoretical
development grew out of initial work on equal
percent bias-reducing (EPBR) matching meth-
ods in Rubin (1976a, 1976c). EPBR methods
reduce bias in all covariate directions by the
same percentage, thus ensuring that if close
matches are obtained in some direction (such as
the discriminant), then the matching is also
reducing bias in all other directions and so can-
not be increasing bias in an outcome that is a
linear combination of the covariates. Methods
that are not EPBR will infinitely increase bias for
some linear combinations of the covariates.

Since the initial work on matching methods,
which was primarily in sociology and statistics,
matching methods have been growing in popu-
larity, with developments and applications in 
a variety of fields, including economics (Imbens,
2004), medicine (D’Agostino, 1998), public health
(Christakis & Iwashyna, 2003), political science
(Ho et al., 2007), and sociology (Morgan &
Harding, 2006; Winship & Morgan, 1999). A
review of the older work and more recent applica-
tions can also be found in Rubin (2006).

PROPENSITY SCORES

In applications, it is often very difficult to find
close matches on each covariate. Rather than
attempting to match on all of the covariates indi-
vidually, propensity score matching matches on
the scalar propensity score, which is the most
important scalar summary of the covariates.
Propensity scores, first introduced in Rosenbaum
and Rubin (1983b), provided a key step in the
continual development of matching methods by
enabling the formation of matched sets that have
balance on a large number of covariates.

The propensity score for unit i is defined as
the probability of receiving the treatment given
the observed covariates: ei(X) = P(Wi = 1|X).
There are two key theorems relating to their use
(Rosenbaum & Rubin, 1983b). The first is that
propensity scores are balancing scores: At each
value of the propensity score, the distribution of
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the covariates, X, that define the propensity score
is the same in the treated and control groups. In
other words, within a small range of propensity
score values, the treated and control groups’
observed covariate distributions are only ran-
domly different from each other, thus replicating
a mini-randomized experiment, at least with
respect to these covariates. Second, if treatment
assignment is unconfounded given the observed
covariates (i.e., does not depend on the potential
outcomes), then treatment assignment is also
unconfounded given only the propensity score.
This justifies matching or forming subclasses
based on the propensity score rather than on the
full set of multivariate covariates. Thus, when
treatment assignment is unconfounded, for a
specific value of the propensity score, the differ-
ence in means in the outcome between the
treated and control units with that propensity
score value is an unbiased estimate of the mean
treatment effect at that propensity score value.

Abadie and Imbens (2006) present theoretical
results that provide additional justification for
matching on the propensity score, showing that
creating estimates based on matching on one
continuous covariate (such as the propensity
score) is N ½ consistent, but attempting to match
on more than one covariate without discarding
any units is not. Thus, in this particular case,
using the propensity score enables consistent esti-
mation of treatment effects.

Propensity Score Estimation

In practice, the true propensity scores are
rarely known outside of randomized experi-
ments and thus must be estimated. Propensity
scores are often estimated using logistic regres-
sion, although other methods such as classifica-
tion and regression trees (CART; Breiman,
Friedman, Olshen, & Stone, 1984), discriminant
analysis, or generalized boosted models (McCaffrey,
Ridgeway, & Morral, 2004) can also be used.
Matching or subclassification is then done using
the estimated propensity score (e.g., the fitted
values from the logistic regression).

In the matching literature, there has been
some discussion of the effects of matching using
estimated rather than true propensity scores,
especially regarding the variance of estimates.
Theoretical and analytic work has shown that,
although more bias reduction can be obtained
using true propensity scores, matching on estimated

propensity scores can control variance orthogo-
nal to the discriminant and thus can lead to more
precise estimates of the treatment effect (Rubin &
Thomas, 1992b, 1996). Analytic expressions for
the bias and variance reduction possible for these
situations are given in Rubin and Thomas
(1992b). Specifically, Rubin and Thomas (1992b)
state that “with large pools of controls, matching
using estimated linear propensity scores results in
approximately half the variance for the difference
in the matched sample means as in correspond-
ing random samples for all covariates uncorre-
lated with the population discriminant” (p. 802).
This finding is confirmed in simulation work in
Rubin and Thomas (1996) and in an empirical
example in Hill, Rubin, and Thomas (1999).
Hence, in situations where nearly all bias can be
eliminated relatively easily, matching on the esti-
mated propensity scores is superior to matching
on the true propensity score because it will result
in more precise estimates of the average treat-
ment effect.

Model Specification

The model specification and diagnostics
when estimating propensity scores are not the
standard model diagnostics for logistic regres-
sion or CART, as discussed by Rubin (2004).
With propensity score estimation, concern is not
with the parameter estimates of the model but
rather with the quality of the matches and 
sometimes in the accuracy of the predictions of
treatment assignment (the propensity scores
themselves). When the propensity scores will be
used for matching or subclassification, the key
diagnostic is covariate balance in the resulting
matched samples or subclasses. When propen-
sity scores are used directly in weighting adjust-
ments, more attention should be paid to the
accuracy of the model predictions since the esti-
mates of the treatment effect may be very sensi-
tive to the accuracy of the propensity score
values themselves.

Rosenbaum and Rubin (1984); Perkins, Tu,
Underhill, Zhou, and Murray (2000); Dehejia and
Wahba (2002); and Michalopoulos, Bloom, and
Hill (2004) described propensity score model-fit-
ting strategies that involve examining the result-
ing covariate balance in subclasses defined by the
propensity score. If covariates (or their squares 
or cross-products) are found to be unbalanced,
those terms are then included in the propensity
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score specification, which should improve bal-
ance, subject to sample size limitations.

Drake (1993) stated that treatment effect
estimates are more sensitive to misspecification
of the model of the outcome than to misspecifi-
cation of the propensity score model. Dehejia
and Wahba (1999, 2002) and Zhao (2004) also
provided evidence that treatment effect estimates
may not be too sensitive to the propensity score
specification. However, these evaluations are
fairly limited; for example, Drake considered
only two covariates.

WHEN IS REGRESSION

ANALYSIS TRUSTWORTHY?

It has been known for many years that regres-
sion analysis can lead to misleading results when
the covariate distributions in the groups are very
different (e.g., Cochran, 1957; Cochran & Rubin,
1973; Rubin, 1973b). Rubin (2001, p. 174) stated
the three basic conditions that must generally be
met for regression analyses to be trustworthy, in
the case of approximately normally distributed
covariates:2

1. The difference in the means of the propensity
scores in the two groups being compared must
be small (e.g., the means must be less than half
a standard deviation apart), unless the
situation is benign in the sense that:
a. the distributions of the covariates in both

groups are nearly symmetric,
b. the distributions of the covariates in both

groups have nearly the same variances, and
c. the sample sizes are approximately the same.

2. The ratio of the variances of the propensity
score in the two groups must be close to 1
(e.g., 1/2 or 2 are far too extreme).

3. The ratio of the variances of the residuals 
of the covariates after adjusting for the
propensity score must be close to 1 (e.g.,
1/2 or 2 are far too extreme).

These guidelines arise from results on the bias
resulting from regression analysis in samples with
large initial covariate bias that show that linear
regression adjustment can grossly overcorrect 
or undercorrect for bias when these conditions 
are not met (Cochran & Rubin, 1973; Rubin,
1973b, 1979, 2001). For example, when the propen-
sity score means are one quarter of a standard

deviation apart in the two groups, the ratio of the
treated to control group variance is 1/2, and 
the model of the outcome is moderately nonlin-
ear (y = ex/2), linear regression adjustment can
lead to 300% reduction in bias. In other words, an
increase in the original bias, but 200% in the
opposite direction! Results are even more striking
for larger initial bias between the groups, where
the amount of bias remaining can be substantial
even if most (in percentage) of the initial bias has
been removed (see Rubin, 2001, Table 1).

Despite these striking results, regression
adjustment on unmatched data is still a com-
mon method for attempting to estimate causal
effects. Matching methods provide a way to
avoid extrapolation and reliance on the model-
ing assumptions, by ensuring the comparison of
treated and control units with similar covariate
distributions, when this is possible, and warning
of the inherent extrapolation in regression mod-
els when there is little overlap in distributions.

IMPLEMENTATION OF

MATCHING METHODS

We now turn to the implementation of match-
ing methods. There are five key steps when using
matching methods to estimate causal effects.
These are (1) choosing the covariates to be used
in the matching process; (2) defining a distance
measure, used to assess whether units are “simi-
lar”; (3) choosing a specific matching algorithm
to form matched sets; (4) diagnosing the
matches obtained (and iterating between 
(2) and (3)); and finally, (5) estimating the effect
of the treatment on the outcome, using the
matched sets found in (4) and possibly other
adjustments. The following sections provide
further information on each of these steps.

Choosing the Covariates

The first step is to choose the covariates on
which close matches are desired. As discussed
earlier, an underlying assumption when estimat-
ing causal effects using nonexperimental data 
is that treatment assignment is unconfounded
(Rosenbaum & Rubin, 1983b) given the covari-
ates used in the matching process. To make this
assumption plausible, it is important to include
in the matching procedure any covariates that
may be related to treatment assignment and the
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outcome; the most important covariates to
include are those that are related to treatment
assignment because the matching will typically
be done for many outcomes. Theoretical and
empirical research has shown the importance of
including a large set of covariates in the match-
ing procedure (Hill, Reiter, & Zanutto, 2004;
Lunceford & Davidian, 2004; Rubin & Thomas,
1996). Greevy, Lu, Silber, and Rosenbaum
(2004) provide an example where the power of
the subsequent analysis in a randomized experi-
ment is increased by matching on 14 covariates,
even though only 2 of those covariates are
directly related to the outcome (the other 12 are
related to the outcome only through their corre-
lation with the 2 on which the outcome explic-
itly depends).

A second consideration is that the covariates
included in the matching must be “proper”
covariates in the sense of not being affected 
by treatment assignment. It is well-known that
matching or subclassifying on a variable affected
by treatment assignment can lead to substantial
bias in the estimated treatment effect (Frangakis
& Rubin, 2002; Greenland, 2003; Imbens, 2004).
All variables should thus be carefully considered
as to whether they are “proper” covariates. This
is especially important in fields such as epidemi-
ology and political science, where the treatment
assignment date is often somewhat undefined. If
it is deemed to be critical to control for a vari-
able potentially affected by treatment assign-
ment, it is better to exclude that variable in the
matching procedure and include it in the analy-
sis model for the outcome (Reinisch, Sanders,
Mortensen, & Rubin, 1995) and hope for bal-
ance on it, or use principal stratification meth-
ods (Frangakis & Rubin, 2002) to deal with it.

Selecting a Distance Measure

The next step when using matching methods
is to define the “distance” measure that will be
used to decide whether units are “similar” in
terms of their covariate values. “Distance” is in
quotes because the measure will not necessarily
be a proper “full-rank” distance in the mathe-
matical sense. One extreme distance measure is
that of exact matching, which groups units only
if they have the same values of all the covariates.
Because limited sample sizes (and large numbers
of covariates) make it very difficult to obtain
exact matches, distance measures that are 
not full rank and that combine distances on

individual covariates, such as propensity scores,
are commonly used in practice.

Two measures of the distance between units
on multiple covariates are the Mahalanobis
distance, which is full rank, and the propensity
score distance, which is not. The Mahalanobis
distance on covariates X between units i and j is
(Xi − Xj)Σ−1(Xi − Xj), where Σ can be the true or
estimated variance-covariance matrix in the
treated group, the control group, or a pooled
sample; the control group variance-covariance
matrix is usually used. The propensity score dis-
tance is defined as the absolute difference in
(true or estimated) propensity scores between
two units. See the “Propensity Score Estimation”
section for more details on estimating propen-
sity scores. Gu and Rosenbaum (1993) and
Rubin and Thomas (2000) compare the per-
formance of matching methods based on
Mahalanobis metric matching and propensity
score matching and find that the two distance
measures perform similarly when there are a
relatively small number of covariates, but
propensity score matching works better than
Mahalanobis metric matching with large
numbers of covariates (greater than 5). One rea-
son for this is that the Mahalanobis metric is
attempting to obtain balance on all possible
interactions of the covariates (which is very dif-
ficult in multivariate space), effectively consider-
ing all of the interactions as equally important.
In contrast, propensity score matching allows
the exclusion of terms from the propensity score
model and thereby the inclusion of only the
important terms (e.g., main effects, two-way
interactions) on which to obtain balance.

As discussed below, these distance measures
can be combined or used in conjunction 
with exact matching on certain covariates.
Combining these distance measures with exact
matching on certain covariates sets the distance
between two units equal to infinity if the units
are not exactly matched on those covariates.

Selecting Matches

Once the distance measure is defined, the
next step is to choose the matched samples. This
section provides a summary of some of the most
common types of matching methods, given a
particular distance measure. These methods
include nearest neighbor matching and its vari-
ations (such as caliper matching) and subclassi-
fication methods (such as full matching). We
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provide an overview of each, as well as refer-
ences for further information and examples.

Nearest Neighbor Matching

Nearest neighbor matching (Rubin, 1973a)
generally selects k matched controls for each
treated unit (often, k = 1). The simplest nearest
neighbor matching uses a “greedy” algorithm,
which cycles through the treated units one at a
time, selecting for each the available control unit
with the smallest distance to the treated unit. A
more sophisticated algorithm, “optimal” match-
ing, minimizes a global measure of balance
(Rosenbaum, 2002). Rosenbaum (2002) argues
that the collection of matches found using opti-
mal matching can have substantially better
balance than matches found using greedy
matching, without much loss in computational
speed. Generally, greedy matching performs
poorly with respect to average pair differences
when there is intense competition for controls
and performs well when there is little competi-
tion. In practical situations, when assessing the
matched groups’ covariate balance, Gu and
Rosenbaum (1993) find that optimal matching
does not in general perform any better than
greedy matching in terms of creating groups
with good balance but does do better at reduc-
ing the distance between pairs. As summarized

by Gu and Rosenbaum (1993), “Optimal match-
ing picks about the same controls [as greedy
matching] but does a better job of assigning
them to treated units” (p. 413).

Figure 11.1 illustrates the result of a one-
to-one greedy nearest neighbor matching 
algorithm implemented using the NSW data
described in “The National Supported Work
Demonstration” section. The propensity score
was estimated using all covariates available in
the data set. Of the 429 available control individ-
uals, the 185 with propensity scores closest to
those of the 185 treated individuals were
selected as matches. We see that there is fairly
good overlap throughout most of the range of
propensity scores and that most of the control
individuals not used as matches had very low
propensity scores and so were inapposite for use
as points of comparison.

When there are large numbers of control
units, it is sometimes possible to get multiple
good matches for each treated unit, which can
reduce sampling variance in the treatment effect
estimates. Although one-to-one matching is the
most common, a larger number of matches for
each treated unit are often possible. Unless there
are many units with the same covariate values,
using multiple controls for each treated unit is
expected to increase bias because the second,
third, and fourth closest matches are, by definition,
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Figure 11.1 Matches chosen using 1:1 nearest neighbor matching on the propensity score. Black units 
were matched; gray units were unmatched. A total of 185 treated units were matched to 
185 control units; 244 control units were discarded.
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further away from the treated unit than is the
first closest match, but using multiple matches
can decrease sampling variance due to the larger
matched sample size. Of course, in settings
where the outcome data have yet to be collected
and there are cost constraints, researchers must
balance the benefit of obtaining multiple
matches for each unit with the increased costs.
Examples using more than one control match
for each treated unit include H. Smith (1997)
and Rubin and Thomas (2000).

Another key issue is whether controls can be
used as matches for more than one treated unit,
that is, whether the matching should be done
“with replacement” or “without replacement.”
Matching with replacement can often yield
better matches because controls that look simi-
lar to many treated units can be used multiple
times. In addition, like optimal matching, when
matching with replacement, the order in which
the treated units are matched does not matter.
However, a drawback of matching with replace-
ment is that it may be that only a few unique
control units will be selected as matches; the
number of times each control is matched should
be monitored and reflected in the estimated pre-
cision of estimated causal effects.

Using the NSW data, Dehejia and Wahba
(2002) match with replacement from the PSID
sample because there are few control individuals
comparable to those in the treated group, mak-
ing matching with replacement appealing.
When one-to-one matching is done without
replacement, nearly half of the treated group
members end up with matches that are quite 
far away. They conclude that matching with
replacement can be useful when there are a lim-
ited number of control units with values similar
to those in the treated group.

Limited Exact Matching

Rosenbaum and Rubin (1985a) illustrate the
futility in attempting to find matching treated
and control units with the same values of all the
covariates and thus not being able to find
matches for most units. However, it is often
desirable (and possible) to obtain exact matches
on a few key covariates, such as race or sex.
Combining exact matching on key covariates
with propensity score matching can lead to large
reductions in bias and can result in a design anal-
ogous to blocking in a randomized experiment.

For example, in Rubin (2001), the analyses are
done separately for males and females, with
male smokers matched to male nonsmokers 
and female smokers matched to female non-
smokers. Similarly, in Dehejia and Wahba
(1999), the analysis is done separately for males
and females.

Mahalanobis Metric Matching on Key 
Covariates Within Propensity Score Calipers

Caliper matching (Althauser & Rubin, 1970)
selects matches within a specified range (caliper c)
of a one-dimensional covariate X (which may
actually be a combination of multiple covariates,
such as the propensity score): | Xtj − Xcj | ≤ c for all
treatment/control matched pairs, indexed by j.
Cochran and Rubin (1973) investigate various
caliper sizes and show that with a normally dis-
tributed covariate, a caliper of 0.2 standard devia-
tions can remove 98% of the bias due to that
covariate, assuming all treated units are matched.
Althauser and Rubin (1970) find that even a
looser matching (1.0 standard deviations of X)
can still remove approximately 75% of the initial
bias due to X. Rosenbaum and Rubin (1985b)
show that if the caliper matching is done using the
propensity score, the bias reduction is obtained on
all of the covariates that went into the propensity
score. They suggest that a caliper of 0.25 standard
deviations of the logit transformation of the
propensity score can work well in general.

For situations where there are some key con-
tinuous covariates on which particularly close
matches are desired, Mahalanobis matching 
on the key covariates can be combined with
propensity score matching, resulting in particu-
larly good balance (Rosenbaum & Rubin, 1985b;
Rubin & Thomas, 2000). The Mahalanobis dis-
tance is usually calculated on covariates that are
believed to be particularly predictive of the out-
come of interest or of treatment assignment. For
example, in the NSW Demonstration data,
Mahalanobis metric matching on the 2 years of
preprogram earnings could be done within
propensity score calipers.

Subclassification

Rosenbaum and Rubin (1984) discuss reduc-
ing bias due to multiple covariates in obser-
vational studies through subclassification on
estimated propensity scores, which forms groups
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of units with similar propensity scores and thus
similar covariate distributions. For example, sub-
classes may be defined by splitting the treated and
control groups at the quintiles of the propensity
score in the treated group, leading to five
subclasses with approximately the same number
of treated units in each. That work builds on the
work by Cochran (1968) on subclassification
using a single covariate; when the conditional
expectation of the outcome variable is a mono-
tone function of the propensity score, creating
just five propensity score subclasses removes at
least 90% of the bias in the estimated treatment
effect due to each of the observed covariates.
Thus, five subclasses are often used, although
with large sample sizes, more subclasses, or even
variable-sized subclasses, are often desirable. This
method is clearly related to making an ordinal
version of a continuous underlying covariate.

Lunceford and Davidian (2004) assess subclas-
sification on the propensity score and find that
subclassification without subsequent within-
strata model adjustment (as discussed earlier)
can lead to biased answers due to residual imbal-
ance within the strata. They suggest a need for
further research on the optimal number of sub-
classes, a topic also discussed in Du (1998).

Subclassification is illustrated using the NSW
data in Figure 11.2, where six propensity score
subclasses were formed to have approximately

equal numbers of treated units. All units are
placed into one of the six subclasses. The control
units within each subclass are given equal weight,
proportional to the number of treated units in
the subclass; thus the treated and control units in
each subclass receive the same total weight.

If the balance achieved in matched samples
selected using nearest neighbor matching is 
not adequate, subclassification of the matches
chosen using nearest neighbor matching can be
done to yield improved balance. This is illustrated
in Figure 11.3, where, after one-to-one nearest
neighbor matching, six subclasses have been
formed with approximately the same number of
treated units in each subclass. This process is
illustrated in Rubin (2001) and Rubin (2007).

Full Matching

An extension of subclassification is “full
matching” (Rosenbaum, 1991a, 2002), in which
the matched sample is composed of matched
sets (subclasses), where each matched set con-
tains either (a) one treated unit and one or more
controls or (b) one control unit and one or more
treated units. Full matching is optimal in terms
of minimizing a weighted average of the dis-
tances between each treated subject and each
control subject within each matched set. Hansen
(2004) gives a practical evaluation of the
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Figure 11.2 Results from subclassification on the propensity score. Subclasses are indicated by vertical
lines. The weight given to each unit is represented by its symbol size; larger symbols
correspond to larger weight.
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method, estimating the effect of SAT coaching,
illustrating that, although the original treated
and control groups had propensity score differ-
ences of 1.1 standard deviations, the matched
sets from full matching differed by less than 2%
of a standard deviation. To achieve efficiency
gains, Hansen (2004) also describes a variation
of full matching that restricts the ratio of the
number of treated units to the number of con-
trol units in each matched set, a method also
applied in Stuart and Green (in press).

The output from full matching is illustrated
using the NSW data in Figure 11.4. Because it is
not feasible to show the individual matched sets
(in these data, 103 matched sets were created), the
units are represented by their relative weights. All
treated units receive a weight of 1 (and thus the
symbols are all the same size). Control units in
matched sets with many control units and few
treated units receive small weight (e.g., the units
with propensity scores close to 0), whereas con-
trol units in matched sets with few control units
and many treated units (e.g., the units with
propensity scores close to 0.8) receive large
weight. The weighted treated and control group
covariate distributions look very similar. As in
simple subclassification, all control units within a
matched set receive equal weight. However,
because there are many more matched sets than
with simple subclassification, the variation in the
weights is much larger across matched sets.

Because subclassification and full matching
place all available units into one of the subclasses,
these methods may have particular appeal for
researchers who are reluctant to discard some of
the control units. However, these methods are 
not relevant for situations where the matching 
is being used to select units for follow-up or for
situations where some units have essentially zero
probability of receiving the other treatment.

Weighting Adjustments

Another method that uses all units is weight-
ing, where observations are weighted by their
inverse propensity score (Czajka, Hirabayashi,
Little, & Rubin, 1992; Lunceford & Davidian,
2004; McCaffrey et al., 2004). Weighting can
also be thought of as the limit of subclassifica-
tion as the number of observations and the
number of subclasses go to infinity. Weighting
methods are based on Horvitz-Thompson esti-
mation (Horvitz & Thompson, 1952), used fre-
quently in sample surveys. A drawback of
weighting adjustments is that, as with Horvitz-
Thompson estimation, the sampling variance of
resulting weighted estimators can be very large if
the weights are extreme (if the propensity scores
are close to 0 or 1). Thus, the subclassification 
or full matching approaches, which also use 
all units, may be more appealing because the
resulting weights are less variable.
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Figure 11.3 One-to-one nearest neighbor matching on the propensity score followed by subclassification.
Black units were matched; gray units were unmatched. Subclasses indicated by vertical lines.

11-Osborne (Best)-45409.qxd  10/9/2007  10:58 AM  Page 166



Another type of weighting procedure is that of
kernel weighting adjustments, which average over
multiple persons in the control group for each
treated unit, with weights defined by their dis-
tance from the treated unit. Heckman, Ichimura,
Smith, and Todd (1998) and Heckman, Ichimura,
and Todd (1998) describe a local linear matching
estimator that requires specifying a bandwidth
parameter. Generally, larger bandwidths increase
bias but reduce variance by putting weight on
units that are further away from the treated unit
of interest. A complication with these methods is
this need to define a bandwidth or smoothing
parameter, which does not generally have an intu-
itive meaning; Imbens (2004) provides some
guidance on that choice.

With all of these weighting approaches, it is
still important to separate clearly the design and
analysis stages. The propensity score should 
be carefully estimated, using approaches such as
those described earlier, and the weights set
before any use of those weights in models relat-
ing the outcomes to covariates.

Diagnostics for Matching Methods

Diagnosing the quality of the matches
obtained from a matching method is of primary
importance. Extensive diagnostics and propen-
sity score model specification checks are
required for each data set, as discussed by

Dehejia (2005). Matching methods have a vari-
ety of simple diagnostic procedures that can be
used, most based on the idea of assessing bal-
ance between the treated and control groups.
Although we would ideally compare the multi-
variate covariate distributions in the two groups,
that is difficult when there are many covariates,
and so generally comparisons are done for each
univariate covariate separately, for two-way
interactions of covariates, and for the propensity
score, as the most important univariate sum-
mary of the covariates.

At a minimum, the balance diagnostics
should involve comparing the mean covariate
values in the groups, sometimes standardized 
by the standard deviation in the full sample; ide-
ally, other characteristics of the distributions,
such as variances, correlations, and interactions
between covariates, should also be compared.
Common diagnostics include t tests of the
covariates, Kolmogorov-Smirnov tests, and other
comparisons of distributions (e.g., Austin &
Mamdani, 2006). Ho et al. (2007) provide a
summary of numerical and graphical summaries
of balance, including empirical quantile-quantile
plots to examine the empirical distribution 
of each covariate in the matched samples.
Rosenbaum and Rubin (1984) examine F ratios
from a two-way analysis of variance performed
for each covariate, where the factors are treat-
ment/control and propensity score subclasses.
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Figure 11.4 Results from full matching on the propensity score. The weight given to each unit is
represented by its size; larger symbols correspond to higher weight.
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Rubin (2001) presents diagnostics related to the
conditions given in the previous section that
indicate when regression analyses are trustwor-
thy. These diagnostics include assessing the stan-
dardized difference in means of the propensity
scores between the two treatment groups, the
ratio of the variances of the propensity scores in
the two groups, and, for each covariate, the ratio
of the variance of the residuals orthogonal to the
propensity score in the two groups. The stan-
dardized differences in means should generally
be less than 0.25, and the variance ratios should
be close to 1, certainly between 0.5 and 2, as dis-
cussed earlier.

Analysis of Outcome Data After Matching

The analysis of outcome(s) should proceed
only after the observational study design has been
set in the sense that the matched samples have
been chosen, and it has been determined that the
matched samples have adequate balance. In keep-
ing with the idea of replicating a randomized
experiment, the same methods that would be used
in an experiment can be used in the matched data.
In particular, matching methods are not designed
to “compete” with modeling adjustments such 
as linear regression, and in fact, the two methods
have been shown to work best in combination.
Many authors have discussed for decades the ben-
efits of combining matching or propensity score
weighting and regression adjustment (Abadie &
Imbens, 2006; Heckman et al., 1997; Robins 
& Rotnitzky, 1995; Rubin, 1973b, 1979; Rubin &
Thomas, 2000).

The intuition for using both is the same as
that behind regression adjustment in random-
ized experiments, where the regression adjust-
ment is used to “clean up” small residual
covariate imbalance between the treatment and
control groups. The matching method reduces
large covariate bias between the treated and con-
trol groups, and the regression is used to adjust
for any small residual biases and to increase effi-
ciency. These “bias-corrected” matching meth-
ods have been found by Abadie and Imbens
(2006) and Glazerman, Levy, and Myers (2003)
to work well in practice, using simulated and
actual data. Rubin (1973b, 1979), Rubin and
Thomas (2000), and Ho et al. (2007) show that
models based on matched data are much less
sensitive to model misspecification and more
robust than are models fit in the full data sets.

Some slight adjustments to the analysis meth-
ods are required with some particular matching
methods. With procedures such as full matching,
subclassification, or matching with replacement,
where there may be different numbers of treated
and control units at each value of the covariates,
the analysis should incorporate weights to
account for these varying weights. Examples 
of this can be found in Dehejia and Wahba
(1999), Hill et al. (2004), and Michalopoulos 
et al. (2004). When subclassification has been
used, estimates should be obtained separately
within each subclass and then aggregated across
subclasses to obtain an overall effect (Rosenbaum
& Rubin, 1984). Estimates within each subclass
are sometimes calculated using simple differ-
ences in means, although empirical (Lunceford
& Davidian, 2004) and theoretical (Abadie &
Imbens, 2006) work has shown that better results
are obtained if regression adjustment is used in
conjunction with the subclassification. When
aggregating across subclasses, weighting the sub-
class estimates by the number of treated units in
each subclass estimates the average treatment
effect for the units in the treated group; if
there was no matching done before subclassifica-
tion, weighting by the overall number of units in
each subclass estimates the overall average treat-
ment effect for the population of treated and
control units.

COMPLICATIONS IN USING

MATCHING METHODS

Overlap in Distributions

In some analyses, some of the control units
may be very dissimilar from all treated units, or
some of the treated units may be very dissimilar
from all control units, potentially exhibited by
propensity scores outside the range of the other
treatment group. Thus, it is sometimes desirable
to explicitly discard units with “extreme” values
of the propensity score—for example, treated
units for whom there are no control units with
propensity score values as large. Doing the
analysis only in the areas where there is distri-
butional overlap—that is, with “common sup-
port” (regions of the covariate space that have
both treated and control units)—will lead to
more robust inference. This, in essence, is what
matching is usually attempting to do; defining
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the area of common support is a way to discard
units that are unlike all units in the other treat-
ment group.

However, it is often difficult to determine
whether there is common support in multidi-
mensional space. One way of doing so is to
examine the overlap of the propensity score dis-
tributions. This is illustrated in Dehejia and
Wahba (1999), where control units with propen-
sity scores lower than the minimum propensity
score for the treated units are discarded. A sec-
ond method of examining the multivariate over-
lap involves examining the “convex hull” of the
covariates, essentially identifying the multidi-
mensional space that allows interpolation rather
than extrapolation (King & Zeng, 2007). Imbens
(2004) also discusses these issues in an eco-
nomic context.

Missing Covariate Values

Most of the literature on matching and
propensity scores assumes fully observed covari-
ates, so that models such as logistic regression
can be used to estimate the propensity scores.
However, there are often missing values in the
covariates, which complicates matching and
propensity score estimation. Two complex
statistical models used to estimate propensity
scores in this case are pattern mixture models
(Rosenbaum & Rubin, 1984) and general loca-
tion models (D’Agostino & Rubin, 2000). A key
consideration when thinking about missing
covariate values is that the pattern of missing
covariates can be prognostically important, and
in such cases, the methods should condition on
the observed values of the covariates and on the
observed missing data indicators.

There has not been much theoretical work
done on the appropriate procedures for deal-
ing with missing covariate values. Multiple
researchers have done empirical comparisons of
methods, but this is clearly an area for further
research. D’Agostino, Lang, Walkup, and Morgan
(2001) compare three simpler methods of deal-
ing with missing covariate values: The first uses
only units with complete data and discards 
all units with any missing data, the second does 
a simple imputation for missing values and
includes indicators for missing values in the
propensity score model, and the third fits sepa-
rate propensity score models for each pattern of
missing data (a pattern mixture approach, as in

Rosenbaum & Rubin, 1984). All three methods
perform well in terms of creating well-matched
samples. They find that the third method per-
forms the best, evaluated by treating the original
complete-case data set (i.e., all individuals with
no missing values) as the “truth,” imposing addi-
tional nonignorable missing data values on that
complete-case data set and examining which
method best reproduces the estimate observed
in the original complete-case data, given the
imposed missingness. Song, Berlin, Lee, Gao, and
Rotheram-Borus (2001) compare two methods
of using propensity scores with missing covariate
data. The first uses mean imputation for the
missing values and then estimates the propensity
scores. The second multiply imputes the covari-
ates (Rubin, 1987) and estimates propensity
scores in each “complete” data set. A mixed
effects model is used to analyze the longitudinal
outcome data in each data set, and the multiple
imputation combining rules are used to obtain
one estimate of the treatment effect. Results are
similar using the two methods. Both methods
show that the covariates are very poorly balanced
between the treated and control groups, and that
good matches are hard to find (a finding that
standard modeling approaches would not neces-
sarily have discovered). Hill (2004) finds that
methods using multiple imputation work better
than complete data or complete variable meth-
ods (which use only units with complete data or
only variables with complete data).

Unobserved Variables

A critique of any observational study is that
there may be unobserved covariates that affect
both treatment assignment and the outcome,
thus violating the assumption of unconfounded
treatment assignment. The approach behind
matching is that of dealing as well as possible
with the observed covariates; close matching on
the observed covariates will also lessen the bias
due to unobserved covariates that are correlated
with the observed covariates. However, there
may still be concern regarding unobserved dif-
ferences between the treated and control groups.

The assumption of unconfounded treat-
ment assignment can never be directly tested.
However, some researchers have proposed tests
in which an estimate is obtained for an effect that
is “known” to be zero, such as the difference in 
a pretreatment measure of the outcome variable
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(Imbens, 2004) or the difference in outcomes
between multiple control groups (Rosenbaum,
1987b). If the test indicates that the effect is not
equal to zero, then the assumption of uncon-
founded treatment assignment is deemed to be
less plausible.

Analyses can also be performed to assess
sensitivity to an unobserved variable. Rosenbaum
and Rubin (1983a) extend the ideas of Cornfield
et al. (1959), who examined how strong the cor-
relations would have to be between a hypothetical
unobserved covariate and both treatment assign-
ment and the outcome to make the observed esti-
mate of the treatment effect be zero. This
approach is also discussed and applied to an eco-
nomic application in Imbens (2003). Rosenbaum
(1991b) describes a sensitivity analysis for case
control studies and discusses how sensitivity
could also be assessed in situations where there
are multiple sources of control units available—
some closer on some (potentially unobserved)
dimensions and others closer on other (poten-
tially unobserved) dimensions. See Stuart and
Rubin (in press) for another example of using
multiple sources of control units.

Multiple Treatment Doses

Throughout this discussion of matching, it
has been assumed that there are just two groups:
treated and control. However, in many studies,
there are actually multiple levels of the treat-
ment (e.g., doses of a drug). Rosenbaum (2002)
summarizes two methods for dealing with mul-
tiple treatment levels. In the first method, the
propensity score is still a scalar function of the
covariates (Joffe & Rosenbaum, 1999). This
method uses a model such as an ordinal logit
model to match on a linear combination of the
covariates. This is illustrated in Lu, Zanutto,
Hornik, and Rosenbaum (2001), where match-
ing is used to form pairs that balance covariates
but differ markedly in dose of treatment
received. This differs from the standard match-
ing setting in that there are not clear “treatment”
and “control” groups, and thus any two subjects
could conceivably be paired. An optimal match-
ing algorithm for this setting is described and
applied to the evaluation of a media campaign
against drug abuse. In the second method, each
of the levels of treatment has its own propensity
score (e.g., Imbens, 2000; Rosenbaum, 1987a),
and each propensity score is used one at a time

to estimate the distribution of responses that
would have been observed if all units had
received that treatment level. These distribu-
tions are then compared.

Encompassing these two methods, Imai and
van Dyk (2004) generalize the propensity score
to arbitrary treatment regimes (including ordi-
nal, categorical, and multidimensional). They
provide theorems for the properties of this gen-
eralized propensity score (the propensity func-
tion), showing that it has properties similar to
that of the propensity score for binary treat-
ments in that adjusting for the low-dimensional
(not always scalar, but always low-dimensional)
propensity function balances the covariates.
They advocate subclassification rather than
matching and provide two examples as well as
simulations showing the performance of adjust-
ment based on the propensity function.

Diagnostics are especially crucial in this set-
ting because it becomes more difficult to assess
the balance of the resulting samples when there
are multiple treatment levels. It is even unclear
what balance precisely means in this setting;
does there need to be balance among all of the
levels or only among pairwise comparisons of
dose levels? Future work is needed to examine
these issues.

EVALUATION OF MATCHING METHODS

Two major types of evaluations of matching
methods have been done, one using simulated
data and another trying to replicate results from
randomized experiments using observational
data. Simulations that compare the perfor-
mance of matching methods in terms of bias
reduction include Cochran and Rubin (1973),
Rubin (1973a, 1973b, 1979), Rubin and Thomas
(2000), Gu and Rosenbaum (1993), Frolich
(2004), and Zhao (2004). These generally
include relatively small numbers of covariates
drawn from known distributions. Many of
the results from these simulations have been
included in the discussions of methods provided
in this chapter.

A second type of evaluation has attempted to
replicate the results of randomized experiments
using observational data. Glazerman et al.
(2003) summarize the results from 12 case stud-
ies that attempted to replicate experimental esti-
mates using nonexperimental data, all in the
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context of job training, welfare, and employ-
ment programs with earnings as the outcome of
interest. The nonexperimental methods include
matching and covariance adjustment. From the
12 studies, they extract 1,150 estimates of the
bias (approximately 96 per study), where bias is
defined as the difference between the result from
the randomized experiment and the result using
observational data. They determine that it is in
general difficult to replicate experimental results
consistently and that nonexperimental estimates
are often dramatically different from experi-
mental results. However, some general guidance
can be obtained.

Glazerman et al. (2003) find that one-to-one
propensity score matching performs better than
other propensity score matching methods or
non–propensity score matching and that stan-
dard econometric selection correction proce-
dures, such as instrumental variables or the
Heckman selection correction, tend to perform
poorly. As discussed earlier, their results also
show that combining methods, such as match-
ing and covariance adjustment, is better than
using those methods individually. They also
stress the importance of high-quality data and a
rich set of covariates, and they discuss the diffi-
culties in trying to use large publicly available
data sets for this purpose. However, there are
counterexamples to this general guidance. For
example, using the NSW data, Dehejia and
Wahba (1999) found that propensity score
matching methods using a large, publicly avail-
able national data set replicated experimental
results very well.

A number of authors, particularly Heckman
and colleagues, use data from the U.S. National
Job Training Partnership Act (JTPA) study to
evaluate matching methods (Heckman et al.,
1997; Heckman, Ichimura, Smith, & Todd, 1998;
Heckman, Ichimura, & Todd, 1998). Some of
their results are similar to those of Glazerman 
et al. (2003), particularly stressing the impor-
tance of high-quality data. Matching is best able
to replicate the JTPA experimental results when
(a) the same data sources are used for the partic-
ipants and nonparticipants, thereby ensuring
similar covariate meaning and measurement;
(b) participants and nonparticipants reside in
the same local labor markets; and (c) the data set
contains a rich set of covariates to model the
probability of receiving the treatment. Reaching
somewhat similar conclusions, Michalopoulos

et al. (2004) use data on welfare-to-work pro-
grams that had random assignment and again
find that within-state comparisons have less bias
than out-of-state comparisons. They compare
estimates from propensity score matching, ordi-
nary least squares, a fixed-effects model, and a
random-growth model and find that no method
is consistently better than the others but that the
matching method was more useful for diagnos-
ing situations in which the data set was insuffi-
cient for the comparison. Hill et al. (2004) also
stress the importance of matching on geography
as well as other covariates; using data from a
randomized experiment of a child care program
for low-birth-weight children and comparison
data from the National Longitudinal Study of
Youth, they were able to replicate well the exper-
imental results using matching with a large set of
covariates, including individual-level and geo-
graphic area–level covariates. Ordinary least
squares with the full set of covariates or match-
ing with a smaller set of covariates did not
perform as well as the propensity score match-
ing with the full set of covariates. Agodini and
Dynarski (2004) describe an example where
matching methods highlighted the fact that the
data were insufficient to estimate causal effects
without heroic assumptions.

ADVICE TO AN INVESTIGATOR

To conclude, this section provides advice to
investigators interested in implementing match-
ing methods.

Control Group and Covariate Selection

As discussed in Cochran (1965), Cochran and
Rubin (1973), and Rosenbaum (1999), a key to
estimating causal effects with observational data
is to identify an appropriate control group, ideally
with good overlap with the treated group. Care
should be taken to find data sets that have units
similar to those in the treated group, with com-
parable covariate meaning and availability.
Approximations for the maximum percent 
bias reduction possible can be used to determine
which of a set of control groups are likely to pro-
vide the best matches or to help guide sample
sizes and matching ratios (Rubin, 1976c; Rubin &
Thomas, 1992b, 1996). Large pools of potential
controls are beneficial, as many articles show that
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much better balance is achieved when there are
many controls available for the matching (Rubin,
1976c; Rubin & Thomas, 1996). As discussed
earlier, researchers should include all available
covariates in the propensity score specification;
excluding potentially relevant covariates can cre-
ate bias in the estimation of treatment effects, but
including potentially irrelevant covariates will
typically not reduce the quality of the matches
much (Rubin & Thomas, 1996).

Distance Measure

Once the control pool is selected, propensity
score matching is the most effective method 
for reducing bias due to many covariates (Gu 
& Rosenbaum, 1993; Rosenbaum & Rubin,
1985b). As discussed earlier, propensity scores
can be estimated using logistic regression, and
the propensity score specification should be
assessed using a method such as that in the
“Model Specification” subsection. This generally
involves examining the balance of covariates in
subclasses defined by the propensity score. If
there are a few covariates designated as particu-
larly related to the outcome, and thus it is con-
sidered desirable to obtain especially close
matches on those covariates, Mahalanobis
matching on those key covariates can be done
within propensity score calipers (Rosenbaum &
Rubin, 1985b; Rubin & Thomas, 2000).

Recommended Matching Methods

Our advice for the matching method itself is
very general: Try a variety of methods and use the
diagnostics discussed earlier to determine which
approach yields the most closely matched
samples. Since the design and analysis stages are
clearly separated and the outcome is not used in
the matching process, trying a variety of methods
and selecting the one that leads to the best covari-
ate balance cannot bias the results. Although the
best method will depend on the individual data
set, below we highlight some methods that are
likely to produce good results for the two general
situations considered in this chapter.

To Select Units for Follow-Up

For the special case of doing matching for the
purpose of selecting well-matched controls for
follow-up (i.e., when the outcome values are not
yet available), optimal matching is generally best

for producing well-matched pairs (Gu &
Rosenbaum, 1993). Optimal matching aims to
reduce a global distance measure, rather than
just considering each match one at a time, and
thus reconsiders earlier matches if better overall
balance could be obtained by breaking that
earlier match. Further details are given in the
“Nearest Neighbor Matching” subsection.
However, if overall balanced samples are all that
is desired (rather than specifically matched
pairs), then an easier and more straightforward
nearest neighbor greedy matching algorithm
can be used to select the controls.

Researchers should also consider whether it
is feasible (or desirable) to obtain more than
one matched control for each treated unit (or
even some treated units), as discussed earlier.
With relatively small control pools, it may be
difficult to obtain more than one match for each
treated unit and still obtain large reductions in
bias. However, with larger control pools, it may
be possible to obtain more than one match for
each treated unit without sacrificing bias reduc-
tion. This decision is also likely to involve cost
considerations.

If Outcome Data Are Already Available

When the outcome values are already avail-
able, first put the outcome values away when
matching! Then, a variety of good methods exist
and should be considered and tried. In particu-
lar, one-to-one propensity score matching is
often a good place to start (or k-to-one if there
are many controls relative to the number of
treated units). If there is still substantial bias
between the groups in the matched samples
(e.g., imbalance in the propensity score of more
than 0.5 standard deviations), the nearest neigh-
bor matching can be combined with subclassifi-
cation on the matched samples, as discussed
earlier. Full matching and subclassification on
the full data sets also often work well in practice,
where full matching can be thought of as in
between the two extremes of one-to-one match-
ing and weighting.

Outcome Analysis

After matched samples are selected, the out-
come analysis can proceed: linear regression,
logistic regression, hierarchical modeling, and
so on. As discussed earlier, results should be less
sensitive to the modeling assumptions and thus
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should be fairly insensitive to the model specifi-
cation, as compared with the same analysis on
the original unmatched samples. With proce-
dures such as full matching, subclassification, or
matching with replacement, where there may be
different numbers of treated and control units at
each value of the covariates, the analysis should
incorporate weights to account for these varying
distributions.

SOFTWARE

A variety of software packages are currently
available to implement matching methods.
These include multiple R packages (MatchIt,
Ho, Imai, King, & Stuart, 2006; twang, Ridgeway,
McCaffrey, & Morral, 2006; Matching, Sekhon,
2006), multiple Stata packages (Abadie,
Drukker, Herr, & Imbens, 2004; Becker &
Ichino, 2002; Leuven & Sianesi, 2003), and 
SAS code for propensity score matching
(D’Agostino, 1998; Parsons, 2001). A major ben-
efit of the R packages (particularly MatchIt and
twang) is that they clearly separate the design
and analysis stages and have extensive propen-
sity score diagnostics. The Stata and SAS pack-
ages and procedures do not explicitly separate
these two stages.

NOTES

1. The data for this example are available at
http://www.nber.org/%7Erdehejia/nswdata.html and
in the MatchIt matching package for R, available at
http://gking.harvard.edu/matchit.

2. With nonnormally distributed covariates, the
conditions are even more complex.
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