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We come finally, however, to the relation of the ideal theory to real world, or “real” probabil-
ity. . .. To someone who wants [applications, a consistent mathematician] would say that the
ideal system runs parallel to the usual theory: “If this is what you want, try it: it is not my
business to justify application of the system; that can only be done by philosophizing I am a
mathematician.” In practice he is apt to say: “try this; if it works that will justify it.” But now
he is not merely philosophizing; he is committing the characteristic fallacy. Inductive experi-

ence that the system works is not evidence.

PROBABILITY AS A MODEL SYSTEM

For millennia, Euclidean geometry was a state-
ment of fact about the world order. Only in the
19th century did it come to be recognized
instead as a model system—an “ideal theory”—
that worked exceedingly well when applied to
many parts of the real world. It then stepped
down from a truth about the world to its current
place as first among equals as models of the
world—the most useful of a cohort of geome-
tries, each of differential service in particular
cases, on spherical surfaces and relativistic uni-
verses and fractal percolates. In like manner,
probability theory was born as an explanation of
the contingent world—“real’ probability”—
and, with the work of Kolmogorov among many

Littlewood (1953, p. 73)

others, it matured as a coherent model system,
inheriting most features of the earlier versions of
the probability calculus.

The abstraction of model systems from the
world permits their development as coherent,
clear, and concise logics. But the abstraction
has another legacy: the eventual need for scien-
tists to reconnect the model system to the
empirical world. That such rapprochement is
even possible is amazing; it stimulated Wigner’s
well-known allusion to “the unreasonable
effectiveness of mathematics in describing the
world.” Realizing such “unreasonably effective”
descriptions, however, can present reasonably
formidable difficulties—difficulties that are
sometimes overcome only by fiat, as noted by
Littlewood, a mathematician of no mean ability,
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and M. Kline (1980), a scholar of comparable
acuity. The toolbox that helps us apply the
“ideal theory” of probability to scientific ques-
tions is called inferential statistics. These tools
are being continually sharpened, with new
designs replacing old.

Intellectual ontogeny recapitulates its cul-
tural phylogeny. Just as we must outgrow naive
physics, we must outgrow naive statistics. The
former is an easier transition than the latter.
Not only must we as students of contingency
deal with the gamblers’ fallacies and exchange
paradoxes; we must also cope with the acade-
mics’ fallacies and statistical paradoxes that are
visited upon us as idols of our theater, the uni-
versity classroom. The first step, one already
taken by most readers of this volume, is to rec-
ognize that we deal with model systems, some
more useful than others, not with truths about
real things. The second step is to understand
the character of the most relevant tools for
their application, their strengths and weak-
nesses, and attempt to determine in which
cases their marriage to data is one of mere
convenience and in which it is blessed with
a deeper, Wignerian resonance. That step
requires us to remain appreciative but critical
craftsmen. It requires us to look through the
halo of mathematics that surrounds all statisti-
cal inference to assess the goodness of fit
between tool and task, to ask of each statistical
technique whether it gives us leverage or just
adds decoration.

This chapter briefly reviews—briefly, because
there are so many good alternative sources (e.g.,
Harlow, Mulaik, & Steiger, 1997; R. B. Kline,
2004)—the most basic statistical technique we
use, null hypothesis statistical testing (NHST)
and its limits. It then describes an alternative
statistic, p,,, that predicts replicability. We
remain mindful of Littlewood’s (1953) observa-
tion that “inductive experience that the system
works is not evidence [that it is true].” But then
Littlewood was a mathematician, not a scientist.
The search for truth about parameters has often
befuddled the progress of science, which recog-
nizes simpler goals as well: to understand and
predict. If we “try [a tool, and] it works,” that can
be very good news and may constitute a signifi-
cant advance over what has been. So, try this
new tool, and see if it works for your inferential
problems.
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Connecting Probability to Data

You are faced with two columns of numbers,
data collected from two groups of subjects.
What do you want to know? Not, of course,
“whether there’s a significant difference between
them.” If they are identical, you would have
looked for the clerical error. If they are different,
they are different. You can review them 100
times, and they will continue to be different,
hopefully 100 times; p = 1.0. “Significantly dif-
ferent,” you might emphasize, irritated. But what
does that mean? “That the probability that they
would be so different by chance is less than 5%,”
you recite. OK. Progress. Now we just need clar-
ification of probability, so, and chance.

Probability. Probability theory is a deductive cal-
culus. One starts with probability generators,
such as coins or cards or dice, and makes deduc-
tions about their behavior. The premises are pre-
cise: coins with a probability of heads of .50,
perfectly balanced dice, perfectly shuffled cards.
Then elegant theorems solve problems such as
“Given an unbiased coin, what is the probability
of flipping 6 heads in a row?” But scientists are
never given such ideal objects. Their modal
inferences are inductions, not deductions: An
informant gives them a series of outcomes from
flipping a coin that landed heads six times in a
row, and they must determine what probability
of heads should be assigned to the coin. They can
solve this mystery either as Dr. Watson or as Mr.
Holmes in the cherished tale, “The Case of the
Hypothesis That Had No Teeth.” As you well
remember, Dr. Watson studiously purged his
mind of all prior biases and opined that the
probability of the coin being fair was manifestly
(¥5)®, < .025 and, further, that the best estimate of
the probability of a heads was 1 —27°. Mr. Holmes
stuffed his pipe; examined the coin; spun it;
asked about its origin, how the coin was released
and caught, and how many sequences were
required to get that run of six; and then inquired
about the bank account of the informant and his
recent associates. Dr. Watson objected that that
was going beyond the information given; in any
case, how could one ever combine all those diverse
clues into a probability statement that was not
intrinsically subjective? “Elementary,” Mr. Holmes
observed, “probability theory this is not, my dear
Watson; nor is it deduction. When I infer a state
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of nature from evidence, the more evidence the
better I infer. My colleague shall explain how to
concatenate evidence in a later chapter of this
sage book I saw you nodding over.”

How do we infer probability from a situation
in which there is no uncertainty—the six heads
in a row, last week’s soccer cup, your two
columns of experimental data? There are two
root metaphors for probability: For frequentists,
probability is the long-run relative frequency
of an outcome; it does not apply to novel events
(no long run) or to accomplished events (faits
accomplis support no probability other than
unity). For Bayesians, probability is the relative
odds that an individual gives to an outcome.

You do not have resources or interest to recon-
duct your experiment thousands of times, to esti-
mate the relative frequency of two means being so
different. And even if you did, you'd just be left
with a much larger sample of accomplished data.
This seems to eliminate the frequentist solution.
On the other hand, the odds that you give to your
outcome will be different from the odds your
reviewers or editor or your significant other gives
to your outcome. This eliminates any unique
Bayesian probability. What next? Just imagine.

Instead of conducting the experiment thou-
sands of times, just imagine that it has been
conducted thousands of times. This is Fisher’s
brilliant solution to the problem of connecting
data to the “ideal theory” of probability. Well
then, just how big an effect should we imagine
that your experiment yielded? Here we must
temper imagination with discipline: We must
imagine that the experiment never worked—
that there was never a real effect in all those
imaginary trials but that the outcomes were dis-
tributed by that rogue called Chance. Next,
graph the proportion of outcomes at various
effect sizes to give a sampling distribution. If
your measured outcome happens only rarely
among this cohort of no real effects, you may
conclude that it really is not of their type—it
does not belong on the group null bench. It is so
deviant, you infer, because more than Chance
was at work—the experimental manipulation
was at work! This last inference is, as we shall
see, as common, and commonly sanctioned, as it
is unjustified.

If the thousands-of-hypothetical-trials sce-
nario taxes the computational resources of your
imagination, then imagine instead that the data
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were drawn from a large, normally distributed
population of data similar to those of the
control group. Increase the power of the test by
estimating the population variance from the
variances of both the experimental and control
groups. Then a theoretical sampling distribu-
tion, such as the ¢ distribution, can be directly
used to infer how often so deviant an outcome
as what you measured would have happened by
chance under repeated sampling. This set of
tactics is the paradigmatic modus operandi
for statistical inference. In modern applications,
the theoretical sampling distribution may be
replaced with an empirical one, obtained by
Monte Carlo elaboration of the original empiri-
cal distribution function (e.g., Davison &
Hinkley, 1997; Mooney & Duval, 1993).

So in this standard scenario, probability
means the long-run relative frequency that you
stipulate in your test of the behavior of an ideal
object. It is against this that you will test your
data. Unlike a Bayesian probability, the parame-
ters tested (e.g., the null hypothesis that the
means of the two populations are equal) are not
inferred from data. Indeed, authorities such as
Kyburg (1987) argue that use of Bayesian inverse
inference, leading up from statistics to parame-
ters, undermines all direct inference thereafter,
including NHST.

So. Let us assume your experiment recorded a
standardized difference between the responses
of 30 control subjects and 30 experimental sub-
jects of d = 0.50, from which you calculated a
p value of < .05. What does that mean? Does it
mean that the probability of getting a d of 0.50
under the null is less than 5%? No, because we
know a priori that the probability of getting
exactly that value is always very close to zero; in
fact, the more decimal places in your measure-
ments, the closer to zero. That’s true for any real
number you might have recorded, even d=0.00,
which Chance favors.

Again an impasse, but again one that can
be solved through imagination (providing
inductive evidence supporting Einstein’s chest-
nut “Imagination is more important than
knowledge”). To get a probability requires an
interval on the x-axis. We could take one around
the observed value: say, d £ 0.05. This would
work; as we let the interval shrink toward zero,
comparison with a similar extent around 0
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would give us a likelihood analysis of the null
versus the observed (Royall, 1997). Fisher was a
pioneer of likelihood analyses but could not get
likelihoods to behave like probabilities, and so
he suggested a different interval on the evidence
axis: He gave the investigator credit for every-
thing more extreme than the observed statistic
(a benefice that amazed and pleased many gen-
erations of young researchers, who might have
been told instead, “The null will give effects up to
that size 95% of the time”). So, what so means
here is “more extreme than” what you found,
including d scores of 1, 2, ... 100. ... Don’t ask
why those extents of the x-axis never visited by
data should play a role in the decision; take the
p < .05 and run.

Chance. “The probability [relative frequency
under random sampling] that your data would
be so [at least that] extreme by chance.” Here
chance means your manipulation did not work
and only the null did. How does the null work?
Typically, thanks to the central limit theorem,
in ways that result in a Gaussian distribution of
effects (although for other test statistics or
inferences, related distributions such as the ¢
or F are the correct asymptotic distributions).
Two parameters completely determine the
Gaussian: its mean and variance. Under the
null, the mean is zero. Its variance? Since we
have no other way to determine it, we use the
data you brought with you, the variance of
your control group. Well . . . the experimental
group could also provide information. Hoping
that the experimental operations have not per-
turbed that too much, we will pool the infor-
mation from both sources. Then chance means
that “with no help from my experimental
manipulation, the impotent null could have
given rise to the observed difference by the luck
of the draw [of a sample from our hypothetical
population].” If it would happen in less than
5% of the samples we hypothetically take, we
call the data significantly different from that
expected under the null.

You knew all that from Stat 101, but it is
worth the review. What do you conclude with a
gratifying p < .05? Also as learned in Stat 101,
you conclude that those are improbably
extreme data. But what many of us thought
we heard was that we could then reject the
null. That, of course, is simplistic at best, false
at worst.
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FOUNDATIONAL PROBLEMS
WITH STATISTICAL INFERENCE

The Inverse Inference Problem. Assume the prob-
ability of the statistic S given the null (N) is less
than a prespecified critical number, p(SIN) < a,
where the null may be a hypothesis such as u, —
U = 0. It does not then follow that the probabil-
ity of the null given the statistic, p(NIS), is less
than o. We can get from one to the other, how-
ever, via Bayes theorem:

p(NIS) = p(SIN) p(N)/p(S).

By the (prior) probability of the null, p(N),
we mean the probability of the mathematical
implication of the null (for instance, that two
population means are equal, B, — [, = 0). That
prior must be assigned a value before looking at
the new data (S). By the probability of the statis-
tic, p(S), we mean its probability under relevant
states of the world—in this case, the probability
of the data given that the null is true, plus the
probability of the data given that the null is false:
p(S) = p(SIN)P(N) + p(SI~N)(1 — p(N)). By nor-
malizing the right-hand side of Bayes’s equation,
p(S) makes the posterior probabilities sum to 1.
Only in the unlikely case that the prior probabil-
ity of the null equals the probability of the sta-
tistic, p(N) = p(S), does p(NIS) = p(SIN).
Otherwise, to have any sense of the probability
of the null (and, by implication, of the alterna-
tive we favor, that our manipulation was effec-
tive: L, — e > 0), we must be able to estimate
p(N)/p(S). This is not easy. Even if we could
agree on assigning a prior probability to the
null, Bayes would not give us the probability of
our favored hypothesis (unless we defined it
broadly as “anything but the null”). In light of
these difficulties, Fisher (1959) made it crystal
clear that we generally cannot get from our
p value to any statement about the probability of
the hypotheses. But it was to make exactly such
statements about our hypotheses, with the bless-
ings of statistical rigor, that we attended all those
statistics courses. We were misled, but it was not,
we suspect, the first or last time that happened,
which goes some distance to explaining the con-
flation of statistics with lies in the public’s mind.

“It is important to remember that [relative
frequency] is but one interpretation that can be
given to the formal notion of probability” (Hays,
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1963, p. 63); given our inferential imbroglio, we
may well wonder if that interpreter ever spoke
the language of science. Neyman and Pearson
solved the problem of inverse inference by
emphasizing comparison with an alternate
hypothesis, setting criterial regions into which
our statistic would either fall, or not, and noting
that, whereas we have no license to change our
beliefs about the null even if our statistic falls
into such a critical (p < o) region, it would
nonetheless be prudent to change our behavior,
absent a change in belief. Like Augustine’s credo
quia impossibile, this tergiversation does solve
the problem—but only for those whose faith is
stronger than their reason.

What did we ever do that got us into this
mess? We wanted to know if our manipulation
(or someone else’s, perhaps Nature’s, if this
was an observational study) really worked. We
wanted to know how much of the difference
between groups was caused by the factor that
we used to sort the numbers into two or more
columns. We wanted to know if our results will
replicate or if we are likely to be embarrassed by
that most odious of situations, publication of
unreplicable results. Null hypothesis statistical
tests cannot get us from here to there. Let us go
back to basics and see if we cannot find a viable
alternate route to some of our valid goals.

DEerINING REPLICATION

Curious, isn’t it, that we have license to use the
measured variance () in estimating a parame-
ter of the population under the null hypothesis
(6?), but we do not use the measured mean to
estimate a parameter? Why evaluate data with
one hand tied behind our back? Assay the fol-
lowing hypothesis instead: H,: & = d, where 9 is
the value of the population effect size, and d is
the effect size you measured in your experiment.
But to ask the probability that this alternative to
the null is true seems to be creating a new logi-
cal fallacy: post hoc, ergo hoc. (Gigerenzer [2004]
called a similar solecism “The Feynman Fallacy”
because Feynman was so exasperated when a
young colleague asked him to calculate the
probability of an accomplished event.) But we
can ask a different, noncircular question, one
that takes advantage of the first two moments of
the observed data. What is the probability that,

using the same experimental operations and
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population of subjects, another investigator
can replicate those results? This can be com-
puted once we agree on the meaning of replicate.
Consider this definition:

To replicate means to repeat the empirical
operations and to record data that support the
original claim.

e If the claim is as modest as “This operation
works [generates a positive effect],” then any
replication attempt that finds a positive effect
could be deemed a successful replication.
Although this may seem a too-modest
threshold for replication, put it in the context
of what traditional significance tests test: In
a one-tailed test, 1 — p gives us the probability
that our statistic d has the same sign as the
population parameter (Jones & Tukey, 2000).

e If the claim is “This operation generates an
effect size of at least d,,” then only replication
attempts that return d > d; count as successful
replications.

o If the claim is “This operation generates
a significant effect,” then only replication
attempts that return a p < .05 are successful
replications.

o If the claim is “This operation is essentially
worthless, generating effect sizes less than d,,,”
then any replication attempt that returned
a d<d, could be deemed a successful
replication. One would have to decide
beforehand if a d less than, say, —0.5 was as
consistent with the claim or constituted
evidence for a stronger alternative claim, such
as “This operation could backfire.”

In the following, we shall show how to com-

pute such probabilities.

PREDICTING REPLICABILITY
RATHER THAN INFERRING PARAMETERS

How. How to estimate these probabilities? The
sampling distribution of effect sizes in replica-
tion, p(d,ld,), is required.

Effect size is calculated as

Mg — M,
d=——">, (1)

Sp
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with M, the mean of the experimental group, M.
the mean of the control group, and s, the esti-
mate of the population standard deviation based
on the pooled standard deviations of both
groups (see the appendix for more information).
Consider an effect size d = d, based on a total of
n observations randomly sampled from a popu-
lation with unknown mean & and variance G
The effect size d, for the next m observations
constitutes the datum that we wish to predict
based on the original observations: f(d,|d,).
Because d, provides information about d,, these
statistics are not independent. They are only
independent when considered as samples from a
large population whose parameter is 9. Solution
proceeds by considering the joint density of d,
and & conditional on the primary observations.
This is developed in the appendix, leading to
the distribution shown as the flatter curve in
Figure 7.1. In evaluating a claim concerning exper-
imental results, calculate replicability by integrat-
ing that density between the appropriate limits:

dy
- —d
Drep = /n(dl,ssR) — chU d, _ q)dL 1, (2)

SdR SdR

dr,

In cases where a positive effect has been
claimed, and we stipulate that the hypothetical
replication would have the same power as the
accomplished experiment—everything is done
exactly as in the original experiment—then d, =0,
dy=oo,and S jR =2§;. This is shown as the gray
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area of the predictive distribution on the right in
Figure 7.1. If the claim is that the effect size is
greater than d*, the probability of getting sup-
portive evidence is predicted by p,,, with d, = d*
and d, = 0. The probability of finding a signifi-
cant effect size in replication is given by p, with
dy = S}, 7, Other claims take other limits.

For convenience in calculation of the stan-
dard case, Equation 2 may be rewritten as

di1/o4r
prep = 1’1(0, 1) =0 dl/SdR, (3)
with ¢ iy estimated by S 0
The variance of d is

le

PN

nghc(n — 4)7

with n = n, + n. When experimental and
control groups are of equal size, 1, = n, then

and sz = 2. Predicting the effects in a different-
size prospective sample requires adjusting the
variance. These considerations are reviewed in
Killeen (2005a), whose derivation was corrected
along the lines of the appendix by Doros and
Geier (2005).

Prep

AN

P

Figure 7.1

The dark area to the right of the observed effect size d, gives the probability of finding data

more extreme than d,, given the null. The gray area to the right of 0 gives the probability of
finding a positive effect in replication (Equation 2). The figure is reproduced from Killeen

(2005a), with permission.
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Relation to p. How does the probability of repli-
cation compare to traditional indices of replica-
bility such as p? The p value is the probability of
rejecting the null hypothesis given that the
datum, d,, is sampled from a world in which the
null is true. It is shown as the area to the right of
d, in Figure 7.1, under a normal density centered
at 0 and having a variance of 67, estimated from
S;- The value of p, . for the same data—the prob-
ability of finding a positive effect in replication—
is the shaded area to the right of 0 in the normal
curve centered on d, and having a variance of
G’ estimated from S; = S;. As d, moves to the
right, or as the variance of d,, ], decreases, p,,,
will increase and p decrease in complement. For
use in spreadsheets such as Excel, Cumming
(2005) suggested the notation p,, = NORMs-
pIsT([NORMSINV(1 — p)]/N2), where NORMSDIST is
the standardized normal distribution function,
and NORMSINV is the normal p-to-z transforma-
tion. Drawn in probability coordinates, the
relation between these two probabilities is
transparent: The z scores for p, = decrease lin-
early with the z scores for p, z,,,=—kz, with
k=1N2.

Advantages of p,, over p. Given the affinity
between p and p,, why switch? Indeed, a first
reading may give the impression that p is prefer-
able: Sentences that contain it also contain
hypotheses, and those are what scientists are
interested in. Conversely, p,, does not give the
probability that your hypothesis is true, or that
the null is true, or that one or the other or both
are false. It gives the long-run probability that an
exact replication will support a claim. Both the
original and the replicate may work for the
wrong reasons—widdershins sampling errors in
both cases. Rational scientists would prefer to
know whether their hypotheses are true or false,
not just whether their data are likely to replicate.

But that knowledge is not granted by statistical
inference. Null hypothesis statistical tests never let
us assign probabilities to hypotheses (Fisher,
1959). This is a manifestation of the unsolved
problem of inverse statistical inference (Cohen,
1994; Killeen, 2005¢). Students are admonished,
“Never use the unfortunate expression ‘accept the
null hypothesis (Wilkinson & the Task Force on
Statistical Inference, 1999, p. 599); without priors
on the null, they should also be admonished,
“Never use the equally unfortunate expression
‘reject the null hypothesis”” One can make no
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claims more interesting than “My data are
absurdly improbable under the null,” leaving the
implication unsaid. Stipulating the null keeps its
truth value off the table as a conclusion.

A researcher can say, “My hypothesis led me
to predict a positive effect from this manipula-
tion. I found one, and if you repeat my manipu-
lation, you have a probability of approximately
P Of also finding one.” As ever, the investigator
can assert that the manipulation caused the
effect, and the hypothesis that birthed the
manipulation was correct, only to the extent all
confounds were eliminated, as other causes may
have been more operative than the ones manip-
ulated; those alternative causes may have been
systematic, or possibly discernable only as “error
[sampling] variance.” In the long run (as n
increases), nonetheless, exact replications
should succeed with probability p,, . Whereas
failure to reject the null is not easily interpreted,
a p,, = -85 is just as interpretable as a p,,, = .95.
Other advantages are discussed in Killeen
(2005a), who did not adequately emphasize that
P, based on a single experiment, is only an esti-
mate of replication probability (Cumming,
2005; Iverson, Myung, & Karabatsos, 2006). Like
confidence intervals and p values, its accuracy
depends on just how representative of the popu-
lation the original sample happened to be. Any
one estimate of replicability may be off, but in
the long run, p,, provides a reliable estimate of
replicability. Evidence of this is seen in p, s abil-
ity to predict the proportion of replications in
meta-analyses (Killeen, 2005a).

THE DISTRIBUTION OF P, P

REP?

AND LoG-LIKELIHOOD RATIOS

In order to compare p,_ with its cousins, p and
the log-likelihood ratio (LLR), a simulation was
conducted to generate an empirical sampling
distribution of effect sizes d.. Twenty thousand
samples of size n = 60 were taken from a normal
distribution with mean 0.5 and variance 67 =
4/(60 — 4). This corresponds to the sampling dis-
tribution of differences between the means of
experimental and control groups of 30 observa-
tions each, when the true difference between
them is half a standard deviation (6 = 0.5). This
should yield a typical p,,, =.907 and p = .029.
Values of Py D> and LLR were calculated,
along with the z score transformation of
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Drepy NORMSINV(P,, ). As expected, the distribution
of p,., is negatively skewed (coefficient of skew-
ness [CS] = —1.60; mean = .859; median = .906;
see Figure 7.2 and Cumming, 2005). This skew
has been cited as a fault of p,, (Iverson et al.,
2006). However, the distribution of p is even
more strongly skewed (CS = 2.41; mean = .093;
median = .031). Even though the means are
biased, however, both cases the median values of
the test statistics are very close to their predicted
values. The sampling distribution for the zscores
of p,, closely approximated a normal density,
having a CS of 0.02. To aggregate values of p,
over studies, it is therefore the z transform of p,
that should be averaged (inversely weighted by
the number of observations in each sample, if
those differ).

For comparison, consider the likelihood of
the data (d,) given that the parameter equals
zero, divided by the likelihood given that the
parameter equals that observed, here 0.5. In the
present scenario, its expected value is the ratio of
the ordinate of the normal density at d = 0.5
under the null (with mean at 0) to that of the
density under the alternate (with mean at 0.5).
The natural logarithm of this ratio is the LLR,
which is simply computed as —z*/2. For the present

Distribution of Probabilities
40
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exercise, this is —(.5)%/(4/(60 — 4))/2 =—-1.75. The
distribution of LLRs is shown in the right panel
of Figure 7.2. The likelihood ratio is positively
skewed (CS = 0.93) and, as visible in Figure 7.2,
the LLR is negatively skewed, to about the
same degree as Prep (CS = —1.46; mean = —2.25,
median = —1.75, just as predicted). Readers may
experiment with these and related distribu-
tions at the excellent site maintained by
Cumming (2006).

The Bayes factor is an analogous statistic
favored by Bayesians such as Iverson et al. (2006)
and M. D. Lee and Wagenmakers (2005). If the
hypotheses are simple and their prior plausibili-
ties equal, than the Bayes factor is the likelihood
ratio (P. M. Lee, 2004). If these conditions are
not met, then a prior distribution for the param-
eters must be chosen and then integrated out
(see, e.g., Wagenmakers & Griinwald, 2006). The
distribution of the Bayes factor will depend on
the nature of that prior distribution.

REFUTATION AND VINDICATION

Predicting a positive effect of any size in replica-
tion may seem too weak a prediction to merit

Distribution of Log Likelihood Ratios
20 ~

15 1

10

% Total

10 -8 -6 4 -2 0
LLR

Figure 7.2

Twenty thousand samples of a normally distributed random variable, with mean & = 0.5 and

variance 6% = 4/(60 — 4), yielded these distributions of three test statistics.
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attention. It is therefore useful to identify two
kindred indices of replicability, the probability
of strong support, p,,, and the probability of
strong contradictory results, p_ . Let us measure
the degree of support that a real replication gives
as its own value of p, . Set some threshold for
calling a result strong, say, p*=.8. Then a repli-
cation that returns a p,, > p* is called “strong
support,” and one that returns a p,, greater than
p*in the wrong direction (i.e., the replication’s
Py < 1 = p*) is called “strong contradiction.”
The middling outcomes between these are called
weak support or contradiction depending on
their sign. The criteria for just what constitutes
strong support and strong refutation are arbi-
trary; we could use p*s of .75 or .8 or .9 or any
other percentile. It is easy to calculate the result-
ing probabilities of support and refutation:

Py =1 — normsdist[normsinv(p*) -
normsinv(p,,,)1;

P.., = 1 — normsdist[normsinv(p*) +
normsinv( prep) 1.

Selected values of these expectations are
found in Table 7.1. The first criterion in that
table is p* = .5. This returns the probability that
a replication will have an effect of the same sign.
This is obviously just p,,. The probability of a
contradiction—an effect of an opposite sign—is
the complement of p, . Consider next the row
indexed by p,,, = .95. This corresponds to the
threshold LLR that Bayesians consider strong

Table 7.1
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evidence, as well as to a one-tailed critical region
for p of .01. The probability of strong support at
a p* =.8is .789. The probability of a replication
retuning an effect that is significant at p < .05 is
given by p* = .88, close to p* =.9. For p,,, = .95,
this happens about 2/3 of the time.

The probability of bad news—strong
contradiction—is also found in Table 7.1. For
Py = .95, p* = .8, it is .006: Fewer than one
attempted replication out of a hundred will go
that far in the opposite direction from the orig-
inal data. Experiments that yield a p,, in excess
of .9 are unlikely to be refuted (on statistical
grounds, at least!). Variations in the execution of
replication attempts (e.g., those deriving from
changes in the measurement instruments and
experimental or observational context) will
inevitably add realization variance and, to the
extent that they do so, will make these estimates
optimistic.

Readers familiar with signal detection theory
will immediately see that effect size d is nothing
other than their familiar index of discriminabil-
ity d’. The criterion p* is analogous to bias:
Changes in p* do not move the criterion from
left to right but move two criteria in and out.
The data in Table 7.1 can be represented as
points along receiver operating characteristics
(ROCs), with p,,, corresponding to hits and p,,,
to false alarms. The resulting isosensitivity func-
tions for the first few columns of Table 7.1 are
shown in Figure 7.3, with the criterion p*
increasing from .5 to .98 in smaller steps than
shown in that table to draw the curves. These

The Probability That a Result Will Be Replicated or Refuted at Different Levels of

Confidence Given the Strength of the Original Results

Criteria for
strong support

or contradiction 0.5 0.75 0.8 0.85 0.9
p Prep Payp Peon Doy Peon Py Peon Doy Peon Py Peon

0.1000 0.818 0.818 0.182 0.592 0.057 0.526 0.040 0.448 0.026 0.354 0.014
0.0500 0.878 0.878 0.122 0.687 0.033 0.626 0.022 0.550 0.014 0.453 0.007
0.0250 0.917 0.917 0.083 0.762 0.020 0.707 0.013 0.637 0.008 0.542 0.004
0.0100 0.950 0.950 0.050 0.834 0.010 0.789 0.006 0.729 0.004 0.642 0.002
0.0050 0.966 0.966 0.034 0.874 0.006 0.836 0.004 0.784 0.002 0.705 0.001
0.0025 0.976 0.976 0.024 0.905 0.004 0.874 0.002 0.829 0.001 0.759 0.001
0.0010 0.986 0.986 0.014 0.935 0.002 0.910 0.001 0.875 0.001 0.817 0.000
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Figure 7.3 The probability of strong support (ordinates) and probability of strong contradiction (abcissae)

both increase as the criterion for strong (p*) is reduced from an austere .98 (lower left origin of
curves) to a magnanimous .50. The parameter is p,,, and its corresponding z score, d”

are not the traditional yes/no ROCs, but
yes/no/uncertain, with the last category corre-
sponding to replications that will fall between
Pop and p,,, in strength.

One may also calculate the probability of a
nil effect in replication. This is analogous to the
probability of the null. If one takes a nil effect to
be one that falls within, say, 10% of chance (.4 <
Prep < -6), the probability of a nil effect in repli-
cation when p, = .95 is 5%. This probability
may easily be calculated as p,; = Py, — P,
where P¢ corresponds to the probability of
support returned by the lower limit (p* = .4 in
the example), and Pi{lp corresponds to the prob-
ability of support returned by the upper limit
(p*=.6 in the example). For further discussion,

see Sanabria and Killeen (2007).

Credible Confidence Intervals. A small but
increasing number of editors are encouraging
researchers to report measures of effect size
(Cumming & Finch, 2005). A convenient way to

specify the margin of error in effect size is by
bounding it with confidence intervals (CI; see
Chapter 17). Unfortunately, most investigators
do not really understand what confidence inter-
vals mean (Fidler, Thomason, Cumming, Finch,
& Leeman, 2004). This confusion can be reme-
died by study of Cumming and Finch (2001),
Loftus and Masson (1994), and Thompson
(1999), along with the handy chapters of this
volume. An alternate approach provides a more
intuitive measure of the margin of error in data.
One such measure is the range over which a
replication will fall with some stipulated proba-
bility. A convenient interval to use is the stan-
dard error of the statistic. Approximately half
the replication attempts will fall within + 1 stan-
dard error, centered on the measured statistic
(Cumming, Williams, & Fidler, 2004). I call this
kind of CI a replication interval (RI). Its inter-
pretation is direct, its calculation routine, and its
presentation as error bars hedging the datum
unchallenged (Estes, 1997).
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EVIDENCE, BELIEF, AND ACTION

What prior information should be incorporated
in the evaluation of a research claim? If there is a
substantial literature in relevant areas, then the
replicability of a new claim can be predicted more
accurately by incorporating that information. For
some uses, this is an optimal tactic and consti-
tutes a running meta-analysis of the relevant
literature. The evaluation of the evidence at hand
would then, however, be confounded with the
particular prior information that was engaged to
optimize predictions. Other consumers, with
other background information, would then
have to deconvolute the experimental results
from those priors. For most audiences, it seems
best to bypass this step, letting the data speak for
themselves and letting the consumers of the
results add their own qualification based on their
own sense of the prior results in the area (Killeen,
2005b). This decision is equivalent to assuming
that the prior distribution of the population
effect size is flat and is consistent with some ana-
lysts’” advice to use only likelihood ratios (e.g.,
Glover & Dixon, 2004; Royall, 1997), not Bayesian
posteriors, thereby eschewing the difficulties in
the choice of priors. Royall (2004) is perhaps the
most cogent, noting three questions that our sta-
tistical toolbox can help us address:

1. How should I evaluate this evidence?
2. What should I believe?
3. What should I do?

1. The first question confronts us when data
are first assembled. Here, considerations of the
past (priors) and the future (different prospec-
tive populations) confound analysis of the
data on the table. Such externals “can obfuscate
formal tests by including information not
specifically contained within the experiment
itself” (Maurer, 2004, p. 17). Royall (2004) and
Maurer (2004) argue for an evidential approach
using the likelihood ratios. They eschew the use
of priors to convert these into the probability of
the null because this ties the analysis to a refer-
ence set that may not be shared by other inter-
ested consumers of the evidence.

2. Belief, however, should take into account
prior information, even information that may
be particular to the individual. Each of us carries
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a unique reference set with which we update our
beliefs in light of evidence. This is why serious
crimes are evaluated by large juries of peers:
large, to accommodate a range of reference sets;
peers, to relate those priors to ones most rele-
vant to the defendant. The transformation of
evidence into belief (concerning a hypothesis or
proposition) transforms a public datum into
a personal probability. Shared evaluation of
strong evidence will bring those personal prob-
abilities toward convergence, but they will be
identical only for those with identical reference
sets. Savage (1972) took such personal probabil-
ities to be “the only probability concept essential
to science” (p. 56). Royall (2004) and Maurer
(2004) disagree. Belief is indeed best con-
structed with Bayesian updating and motivates
the acceptance or rejection of scientific theories,
but evidence evaluation must be kept insulated
from priors. Once that evaluation is executed,
belief adjustment is natural. But beliefs should
concern claims and hypotheses; they should not
contaminate evidence.

3. What we should do depends both on what
we believe and what we value. Decision theory
tells us how to combine these factors to deter-
mine the course of action yielding the greatest
expected benefit. In particular, the posterior pre-
dictive distribution shown in Figures 7.1 and 7.3
estimate the probability of different effect sizes in
replication. If we can assign utility to outcomes
as a function of their expected effect size, we can
determine what values of d, fall above a thresh-
old of action. The sigmoid function in Figure 7.4
represents such a utility function. Multiplying
the probability of each effect size in replication
by the utility function and summing gives the
expected utility of replicating the original results.

Given a posterior predictive distribution, it
is straightforward to construct a decision theory
to guide our action. Winkler (2003) teaches the
basics, and Killeen (2006) applies them to
recover traditional practices and extends them
in nontraditional ways. The execution may
employ flat priors and identical prospective
populations; it then will guide disposition of the
evidence: whether it be admitted to a corpus or
rejected, whether the paper be published or not.
Or the execution may employ informative priors
and may take into consideration the realiza-
tion variance involved in generalizing to new
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Figure 7.4 The Gaussian density is the posterior predictive distribution for a result with an effect size of

d, = 0.5. The sigmoid is an example of a utility function on effect size that expresses decreasing
marginal utility as a function of effect size and treats positive and negative effects symmetrically.

prospective populations. It then becomes a
pragmatic guide for action, an optimal tool to
guide medical, industrial, and civic programs.

REALIZATION VARIANCE

Whenever an attempt is made to replicate, it is
inevitable that details of the procedure and subject
population will vary. Successful replication with
different instruments, instructions, and kinds of
subjects lends generality to the results—but it
also increases the risk of different results. This risk
may be represented as realization variance, Gy, the
uncertainty added by deviations from exact repli-
cation (Raudenbush, 1994; Rubin, 1981; van den
Noortgate & Onghena, 2003). The subscript j
indicates that this variance is indexed to a partic-
ular field of research. The estimated variance of
effect size in replication becomes

sz = (sj,1 + sgj) + (sjl2 + sgj). (4)

If the replication involves the same number of
subjects, then s}, = 57, and the estimated stan-

dard error of replication is

Sd, = \/m. (5)

In a meta-analysis of studies involving 8
million participants, Richard, Bond, and Stokes-
Zoota (2003) reported a mean within-literature
variance of 63 = 0.092 (median = 0.08; 0} =
0.30), after correction for sampling variance
(Hedges & Vevea, 1998). This substantial realiza-
tion variance puts an upper limit on the proba-
bility of replicating results, even with n
approaching infinity. The limit is given by
Equation 3 with d, = —ec and

dy = dl/ﬁsaj-

This limit on replicability is felt most severely
when d, is small: For the typical realization vari-
ance within a field (0.08), the asymptotic p,,
for d, = 0.1, 0.2, and 0.3 is .60, .69, and .77. It
requires an effect size of d, = 0.5 to raise replica-
bility into the respectable range (p,,, =.9). Alas,
that is substantially larger than the effect size
typical of the social psychological literature,
found by Richard and associates to be d, = 0.3. It
appears that we can expect a typical (d, = 0.3)

o
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Distribution of Meta-analytic Effect Sizes
in the Social Psychology Literatures
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Stokes-Zoota (2003)
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Figure 7.5

The distribution of effect sizes measured in 474 research literatures in social psychology. The

data were extracted from Richard et al. (2003, Figure 1). The curve is Gaussian with mean 0

and overall variance 0.3.

research finding to receive positive support
at any level in replication only about 75% of
the time.

Validation. Simulations were conducted to vali-
date the logic of p,,, and the accuracy of normal
approximation for the noncentral ¢ sampling
distribution of d for small n. The analysis of
Richard et al. (2003) provided a representative
set of parameters. These investigators displayed
the distribution of effect sizes for social psycho-
logical research involving 457 literatures, com-
prising 25,000 studies. Their measure of effect
size, 1, was converted into d by the relation d =
2r(1 — )V (Rosenthal, 1994). The authors
reported absolute values of effect sizes because
the direction of effect often reflects an arbitrary
coding of dependent variables; however, it also
may inflate the impression of replicability. The
smooth curve through the data in Figure 7.5
provides another perspective on their report.
(The nonpublication of small or conflicting
effects—the “file drawer effect”—might be

responsible for the outlier near d = 0.) The data
in Figure 7.5 are used to create a population
from which the simulation will sample effect
sizes. The within-literature standard deviation
o; was set to 0.30, consistent with Richard and
associates’ estimate. Given these fingerposts, the
simulation is described in Figure 7.6.

The relative frequency of successful replica-
tion was gauged for values of n = n. + n, rang-
ing from 6 to 200, for nine ranges of |d! starting
at 0 with upper limits of 0.08, 0.16, 0.24, 0.33,
0.43, 0.53, 0.65, 0.81, and 1.10. These frequen-
cies, expressed as probabilities of replication
(P,p)> are the ordinates of Figure 7.7. The abcis-
sae are from Equation 2, with d, taken as the
midpoints of the nine ranges. s; was calculated
from the simulata (see the appendix). The only
parametric information used in the predictions
was the realization variance G5, set to 0.09. The
predictions held good down through very small
ns, with average absolute deviations of 1.2 per-
centage points, on the order of binomial vari-
ability around exact predictions.
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Predicted and Obtained Replicability
in Simulation
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Figure 7.7

Results of the simulation. The obtained proportions of successful replications are plotted

against the area over the positive axis of N(d,, szR)~ Symbols indicate the total number of
observations in the experimental and control groups combined.

META-ANALYSIS

Despite the width of the distributions of p,
shown in Figure 7.2, p,, proves generally accurate
in predicting replicability, both in simulations
such as those above and in meta-analytic com-
pendia. For any one study, conclusions should
always be tempered by the image of Figure 7.2
and the recognition that our test statistics were
sampled from one like it. This is why real replica-
tions are crucial for science. These replications are
best aggregated using meta-analyses. Consider,
for example, the recent meta-analysis of body sat-
isfaction among women of different ethnic
groups (Grabe & Hyde, 2006). Ninety-three stud-
ies contributed data, whose median effect size was
0.30, indicating that Black women were more sat-
isfied with their body image than were White
women. The authors of the meta-analysis
reported a random effects variance of 0.09, which
is the average value Richard et al. (2003) reported
for social-psychological literatures in general.
Using that realization variance, the median p,

for these studies was 0.78, and the proportion
predicted by the 20% trimmed mean (Wilcox, 1998)
of the z, was p, = .80. The percentage of pub-
lished studies showing a positive effect was close
to these predictions, .85. These are unweighted
predictions because the point is to demonstrate
predictive validity of single estimates of p,,, not
to combine studies in an optimal fashion. Note
that with realization variance set to zero, p,,
would seriously overestimate replicability (p,,, =
.93), as expected.

Based on comparison of published and
unpublished studies, as well as of studies that
focused on ethnicity and those not so focused, the
authors concluded that there was little evidence
of publication bias—the inflation of effect sizes
due to nonpublication of nonsignificant effects.
Another way of estimating the influence of studies
left in the “file drawer” because they did not yield
a significant p value is to use the posterior predic-
tive distribution to estimate the number of studies
that should have reported nonsignificant effects.
For the median number of observations in each

o



group of the meta-analysis, the effect size would
have to exceed 0.36 for significance (o0 = .05,
assuming a fixed effect model with zero realiza-
tion variance, as is typical in conducting tests of
significance, and a one-tailed critical region).
Integration of the posterior predictive distribu-
tion (Equation 3) from d, = —o up to d;,; = 0.36
gives an expected number of studies with non-
significant effects equal to 56; 53 were found in the
literature. This corroborates the authors’ inference
of little publication bias. Assuming instead that
authors of the original studies used two-tailed
tests requires us to compare the expected and
observed number of studies with effect sizes
falling between +0.43. Integration between these
limits predicts 66 such results, 10 greater than the
56 observed. If 10 additional studies are inferred
to reside only in file drawers because their effect
sizes averaged around 0, when these are added to
the 93 analyzed, the median effect size decreases
from 0.30 to 0.27, leaving all conclusions intact.
The same would be the case if this process were
iterated, assuming the same proportion were filed
for the larger hypostatized population. This fur-
ther corroborates the authors inference of little
effect from publication bias.

A serious attempt to generalize—to predict
replicability—must incorporate realization vari-
ance, just as traditional random and mixed
effects models and hierarchical Bayesian models
internalize it. But few original studies attempt to
incorporate such estimates, resulting in discom-
fiture when results do not replicate (Ioannidis,
2005a, 2005b). This is compounded by the
prevalent notion that “to replicate” means get-
ting a significant effect in replication, rather
than increasing our confidence in the original
claim or narrowing our confidence intervals
around an estimate. The posterior predictive
distribution of Figure 7.1 and its integration
over relevant domains by Equation 2 provide
useful tools in the meta-analysis of results.

Deployment

This development of p,,, concerns only the
simplest scenario, corresponding to a ¢ test. Most
inferential questions are more complicated. How
does one calculate and interpret p,,, values in
more interesting scenarios, such as analyses of
variance (ANOVAs) with multiple levels, multi-
variate ANOVAs (MANOVAs), and multiple
regression analysis? The provisional answer,
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given users’ familiarity with traditional analyses,
is to calculate a p value and transform it to
P.p, using the standard conversion, z(p,,) =
—z(p)N2. The p values returned from ANOVA
stat-packs are analogous to # and thus allow
deviation among scores in either direction (even
though they employ just the right tail of the F
distribution). They should therefore be halved
before converting to p,,.. In the case of multiple
independent comparisons, the probability of
replicating each of the observed effects equals the
product of the constituent p_s. This may be con-
trasted with the probability of finding positive
effects if the null was true in all k cases, 27
Cortina and Nouri (2000) show how to adjust d
for correlated measures, and Bakeman (2005)
provides detailed recommendations for the use
of generalized eta squared as the preferred effect
size statistic for repeated-measure designs. Manly
(1997) and Westfall and Young (1993) describe
resampling techniques for multiple testing. It is
trivial to adjust such resampling to calculate p,,
directly: (a) Resample from within the control
data and independently from within the experi-
mental data, (b) calculate the resampled statistics
(e.g., mean difference, trimmed mean difference,
etc.) over half the resampled numbers to double
the variance for the predictive distribution,
(c) count the number of statistics of the same
sign as the measured test, and (d) divide by the
total number of resamples to estimate p,.

Realization variance (o) inflates the sam-
pling variance of the effect size. This is awkward
to introduce into the resampling process, but an
adjustment can be easily made after the fact.
The variance of d in replication is approximately
8/(n—4) +20;. The resampling operation is essen-
tially a compound Bernoulli process that can, for
these purposes, be approximated by the normal
distribution. Compute the z score corresponding
to the p, resampled as above with no allowance
for realization variance, and divide it by

V1+oi(n—4)/4.

The normal transform of this adjusted z score
gives the p, . that can be expected in realistic
attempts to replicate.’

Conversion of the voluminous statistical
literature into p, -native applications remains a
task for the future—one that will be most expe-
ditiously and accurately accomplished with ran-
domization techniques, discussed below.

o



ProBLEMS WITH P,

Frequentists will object to the introduction of dis-
tributions of parameters needed for the present
derivation of p,,. Parameters are by their defini-
tion fixed, if unknown, quantities. Frequentists will
also be concerned that the choice of any particular
informative prior can introduce an element of
subjectivity into the calculation of probability. The
introduction of uninformative priors, on the other
hand, will expose the arbitrariness of choosing the
particular version of them: Should an ignorance
prior for the mass of a box be uniform on the
length of its side or uniform on the cube of that
length (Seidenfeld, 1979)? This debate has a long
and nuanced history.

Bayesians (e.g., Wagenmakers & Griinwald,
2006) object that p,, distracts us from an oppor-
tunity to compare alternative hypotheses. If
credible alternate hypotheses are available, both
the Neyman-Pearson framework and Bayesian
analyses are to be preferred to the present one.
But if those are not available, postulating them
reintroduces the very sources of subjectivity and
dependence on context-sensitive perspectives
that p,,, permits us to sidestep.

An inelegance in the above analyses is that
they invoked the unknown population parame-
ter §, only to marginalize it. Why not go directly
from d, to d,? As noted by O’Hagan and Forster
(2004), “If we take the view that all inference is
directly or indirectly motivated by decision
problems, then it can be argued that all inference
should be predictive, since inference about
unobservable parameters has no direct relevance
to decisions. . . . An extreme version of the pre-
dictivist approach is to regard parameters as nei-
ther meaningful nor necessary” (p. 90). Alas, as
these authors, as well as Cumming (2005) and
Doros and Geier (2005), note, unless 4, and d,
are treated as random samples from a popula-
tion, they are not independent of one another,
and the requisite evaluation of joint distribu-
tions of nonindependent variables is difficult.
Fisher spent many of his latter years attempting
to accomplish such direct inference with his
fiducial probability theory, but his work
was judged unsuccessful (Macdonald, 2005;
Seidenfeld, 1979). We must resort to the intro-
duction and marginalization of parameters
described in the appendix.

More important than the above objections is
the invalidity of a fundamental assumption in
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all of the above analyses. Traditional statistical
tests, as well as p, as developed to this point,
assume that the data are randomly sampled
from the population to which generalization is
desired—from the population whose parameter
under the null (e.g., §,) is typically assumed to
be zero. But this is a feat that is rarely attempted
in science. Ludbrook and Dudley (1998; cited in
Lunneborg, 2000, p. 551) surveyed 252 studies
from biomedical journals and found that exper-
imental groups were constructed by random
sampling in only 4% of the cases. Of the 96%
that were randomly assigned (rather than ran-
domly sampled), 84% of the analyses employed
inappropriate ¢t or F tests—inappropriate
because those tests assume random samples, not
convenience samples. The situation is unlikely to
be different in the fields known to the readers of
this book. One can speculate why analyses are so
misaligned with data. The potential causes are
multivariate and include bad education, limita-
tions to otherwise convenient stat-packs, the
desire for statistics that permit generalization to
a population (even though the data collection
technique a fortiori prohibits such generaliza-
tion), and the ubiquity of reviewers who recog-
nize that, even though statistical tests are merely
arbitrary conventional filters that cannot legiti-
mately be used to reject null hypotheses, they
retain pragmatic value for rejecting dull
hypotheses (Nickerson, 2000).

PERMUTATION STATISTICS

There is another way. It was introduced by
Fisher, developed for general cases by Pitman
(Pitman, 1937a, 1937b), and realized in a practi-
cal manner by modern randomization tech-
niques. Randomization, or rerandomization, or
permutation tests are ways of comparing distri-
butions of scores. They do not, like their com-
puterized siblings the bootstrap tests, attempt to
estimate or conditionalize on population param-
eters. Instead, they ask how frequently a random
reassignment of the observed scores would gen-
erate differences at least as large as those
observed. In executing such tests, the observed
scores are randomly reassigned (without replace-
ment) to ad hoc groups, the relevant statistics
(mean, trimmed mean, median, variance, t score,
etc.) computed, another random reassignment
executed, and so on, thousands of times to create
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a distribution of the sampling error expected
under chance. Calculate the percentile of the
observed statistic in that distribution. One minus
that percentile gives an analog to the p value. If
the observed statistic is in the 95th percentile,
only 5% of the time would random assignments
give deviations that large or larger.

What the Permutation Distribution Means. In a
deterministic world, no effects are uncaused,
although the causes may be varied and complex
and different for each observation (Hacking,
1990). Chance is the name for these otherwise
unnamed, and generally unnamable, causes; it
appears as the error variance that is added to our
regression equations to permit them to balance.
In resampling, we give the error variance free
rein. The resulting randomization distributions
may be viewed as random samples from
thousands of these unnamed “hypotheses”™—
each corresponding to a different pattern in the
data—that might account for the observations
with more or less accuracy. The empirical distri-
bution function generated by the random shuf-
fles of data among groups gives the final
rankings of hypotheses. All hypotheses except
the investigator’s are vague (“chance”) and post
hoc, so the investigator’s are typically preferred,
unless there are too many alternate reshuffles
that sort the data into more extreme configura-
tions—that is, unless they constitute more than,
say, 5% of the distribution.

Another way of thinking about the parti-
tioning is as the result of the random motion
of particles (data) in space. This is a problem
in thermodynamics, for analysis of which
Boltzman created the measure of randomness
called entropy. Using similar logic and mathe-
matics, we may calculate the amount by which
entropy is reduced by learning to which
group—experimental or control—each obser-
vation belongs. If there is no real effect, the
information transmitted by the group designa-
tion will be approximately 0. The information
transmitted by knowledge of the group grows
with effect size and with the logarithm of the
number of observations. Information-theoretic
measures such as Kullback-Leibler (K-L) dis-
tance, as well as its unbiased realization in the
Akaike information criterion, are modern
extensions of Boltzman’s approach. The K-L
distance is the average information that each
observation adds toward discriminating the
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experimental and control groups. There is a
natural affinity between permutation tech-
niques and information-theoretic analyses: As
the information gained from distinguishing
groups increases, there will be a corresponding
decrease in the number of alternate hypotheses
that will provide more information than the
investigator’s. Replicability may be measured in
terms of the probability of finding effects in
replication that continue to make the distinc-
tion between groups worthwhile.

Although these considerations can give
deeper meaning to the analysis, most consumers
of statistics will be content to understand the
results of permutation analyses as an analog of
the p value, the proportion of randomizations
that provide a more informative sorting of the
observations than the experimenter’s labels
“experimental” and “control.” There are many
good programs available to carry out this analy-
sis; see Cai (2006) and the references in Good
(2000), Higgins (2004), and Manly (1997).

Permutation tests ask, “How often would this
happen by chance?” not “How likely is this to
happen again by design?” The short answer to
“How can I generalize this result?” is the same as
that given to users of traditional statistical
design who have not sampled randomly from
the populations to which they would generalize:
“At your own hazard.” To predict replicability in
an attempt with an # of the same size, follow the
same steps as given for bootstrap techniques
above, including within-group shuffling, half-
sizing, and correction for realization variance.
For permutation techniques, however, the ran-
domization is without replacement (whereas in
bootstrapping, it is with replacement). The half-
sizing makes this analysis a hybrid of permuta-
tion and bootstrap techniques—the bootstrap is
constructed not out of the unlimited population
of the bootstrap but out of populations twice
the size of the original investigation. It permits
extrapolation to a replication that samples from
a small population derived from individuals
identical to those in the original experiment,
one from which the original was also ostensibly
sampled. Because permutation techniques are
generally more powerful than bootstrap
techniques (see Mielke & Berry, 2001, and
Chapter 19, this volume), predictions of replica-
bility will be higher than for bootstrap tech-
niques, making inclusion of nonzero realization
variance even more important for realistic
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projections. The same post hoc correction
described above may be used: Divide the z score
of replicability by

V1i+aoi(n—4)/4.

As noted by Higgins (2004), Lunneborg (2000),
and others, computer-implemented permuta-
tion tests are the gold standard to which modern
techniques such as ANOVA are an approxima-
tion; they are worth learning to use.

THE THREE PATHS OF
STATISTICAL INFERENCE

Traditional Fisher/Neyman-Pearson statistics
have been the primary mode of inference in the
field for half a decade, despite the fact that “fre-
quentist theory is logically inadequate for the
task of uncertain estimation (it provides right
answers to wrong questions), . . . the bridge from
statistical technologies to actual working science
remains sketchy” (Dempster, 1987, p. 2). Twenty
years have not greatly changed that assessment.
Littlewood, if you remember from the epigraph,
did not see it as his “business to justify applica-
tion of the system”—an Olympian view shared
by some modern statisticians. Because NHST in
particular cannot provide mathematical esti-
mates of the probabilities of hypotheses, it is
constitutionally unfit for deciding between null
and alternate hypotheses. Introductory statistics
texts should carry warning labels: “The Statisti-
cian General warns that use of the algorithms
contained herein justifies no inferences about
hypotheses and no generalization to popula-
tions unsampled. Their assumptions seldom
match their applications. Their critical regions
can displace critical judgments. Their peremp-
tory authority can damage unborn hypotheses.
Their punctilio shifts authority from scientists
to stat-packs. Addictive.”

Bayesian analysis (Chapter 33, this volume) is
a step forward. It provides the machinery for
deriving the posterior predictive distribution on
which p, is based and on which a decision
theory for science may be erected. It has a vigor-
ous literature (e.g., Howson & Urbach, 1996;
Jaynes & Bretthorst, 2003). As currently
deployed, it is sometimes hobbled by continuing
to maintain the frequentists’ focus on parame-
ters. It has been blamed for making probabilities
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subjective, but as long as reference sets are
unique, probabilities must always be conditional
on those priors.

Permutation techniques are another step for-
ward, in that they more closely model the scien-
tific process. Modern computer packages make
them easy to implement and easier to teach than
traditional statistical pedagogy based on
Fisher/Neyman-Pearson inference.

What this chapter hopes to convey is that by
setting our sights a bit lower—down from the
heavens of Platonic parameters to the earthier
Aristotelian enterprise of predicting replicability—
our inferences will be simpler and more useful.
Much work needs yet to be accomplished: gen-
eralizing replicability statistics to cases with
multiple degrees of freedom in the numerator,
securing their implementation with permuta-
tion tests, and utilizing those tests for predicting
replicability in contexts involving substantial
realization variance. But accomplishing these
tasks should be straightforward, and their exe-
cution will bring us closer to the fundamental
task of scientists: to validate observations through
prediction and replication.

APPENDIX

The Statistics of Effect Size

Pooled variance is

2 L 2 _
g e Vs =D -y
n—2

The Route to Posterior
Predictive Distributions

Bayesian statistics provides a standard way
to calculate f(d,|d,)(see, e.g., Bolstad, 2004;
Winkler, 2003): Predicate the unknown param-
eter, such as the population mean effect size ;
update that predication with the observed data;
and then calculate the posterior predictions
over all possible values of the parameter,
weighted by the probability of the parameter
given the observed data. The predication is a
nuisance, and eliminating the nuisance parame-
ter by integrating it out in the last step is called
marginalization.
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f(d,ld)=]f(d, 5|d) d5
=]f(d)8.d) f(8\d) s
=[f(d)|s.d) f(d)5) f(5)ds

where f(8]d,) is the posterior distribution of
the parameter in light of the observations, and
f(8) is the prior distribution of the parameter.
Integration of the last line over all population
parameters O delivers the posterior predictive
distribution. If f(3) is assumed to have a very
large variance (flat or ignorance priors), then
the observed data dominate the result. If a
credible prior distribution is available (it is
generally sought by “empirical Bayesians”),
then the final predictions of replicability will
be more accurate.

Consider the case in which the prior on the
population mean & is normally distributed.
Then its posterior f(8|d,) is n(d}, s;*), where the
primed variables are weighted averages of
the priors and the observed statistics, with the
weights proportional to the precisions (recipro-
cal variances) of the means (s, and 7). If we
are relatively ignorant a priori of the value of
the parameter, its distribution is flat relative to
that of the observed statistic (s}, >> s}), and
then d/=d, and s/=s,. This is the case devel-
oped here. When the sampling distribution of
the statistic is also approximately normal—a
reasonable assumption for measures of effect
size even when n is relatively small (Hedges
& Olkin, 1985)—then factoring, completing
the square, and removing constants leads
eventually (Bolstad, 2004; Winkler, 2003) to a
normal density with mean d, and variance

2 — Q2 2 _ 2,
S;p= S; t5s;=2s;:

T
f(d|d) x e_2(5§+sf)(d2 dp) .

Integration of this between appropriate lim-
its, as in Equations 2 and 3, leads to the central
results of this chapter.

The Simulations

In the simulations for Figures 7.6 and 7.7, d’
was calculated using Equations 1 and Al.
Variance was calculated using Equation 5 and
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All simulations in this chapter used Resampling
Stats® software (Bruce, 2003), which creates
random numbers with Park and Miller’s (1988)
“Real Version 1” multiplicative linear congruen-
tial algorithm.

NoTE

1. The half-sizing recommended in Step b can
be bypassed by replacing the 1 in this radical with 2,
which allows for the increased variance inherent in
the posterior predictive distribution.
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