
observations; or (4) use a method that is more robust and resistant to outliers.

We now turn our attention to various robust regression techniques.

Notes

1. As we shall see in Chapter 6, this is not the case for generalized linear models.

2. With large sample sizes, however, this cutoff is unlikely to identify any obser-

vations regardless of whether they deserve attention (Fox 1991).

3. Fox’s Influence Plot can be routinely implemented using the influence.plot

function in the car package for R (see Fox 2002:198 for more details).

4. Partial regression plots should not be confused with the similar partial residual

plots. The latter typically are not as effective for assessing influence but tend to be

better at distinguishing between monotone and nonmonotone nonlinearity. For more

details on the relative merits of the partial regression plots and partial residual plots,

see Fox (1997).

4. ROBUST REGRESSION FOR THE LINEAR MODEL

We now explore various robust regression techniques—including those

sometimes labeled as resistant regression techniques—in an evolutionary

manner, explaining how new methods evolved in response to limitations of

existing ones. Several classes of regression will be discussed: L-estimators

(based on linear combinations of order statistics); R-estimators (based on the

ranks of the residuals); M-estimators (extending from M-estimates of loca-

tion by considering the size of the residuals); GM-estimators (or generalized

M-estimators, which extend M-estimators by giving less weight to high

influence points as well as to large residual points); S-estimators (which

minimize a robust M-estimate of the residual scale); and MM-estimators

(which build on both M-estimation and S-estimation to achieve a high break-

down point with high asymptotic efficiency). Some of these methods should

be considered obsolete, but general descriptions are still provided because

more recent developments in robust regression build on them. The chapter

ends with a discussion of how robust regression can be used as a diagnostic

method for identifying problematic cases.

L-Estimators

Any estimator that is computed from a linear combination of order statis-

tics can be classified as an L-estimator. The first L-estimation procedure,
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which is somewhat more resistant than OLS, is least absolute values

(LAV) regression. Also known as L1 regression1 because it minimizes

the L1-norm (i.e., sum of absolute deviations), LAV is the simplest and

earliest approach to bounded influence robust regression, predating OLS

by about 50 years (Wilcox 2005:451). Least squares regression also fits

this definition, and thus it is sometimes referred to as L2, reflecting that

the L2-norm (i.e., the sum of squared deviations) is minimized. Other

well-known L-estimators are the least median of squares and the least

trimmed squares estimators.2

Least Absolute Values Regression

Least absolute values (LAV) regression is very resistant to observations

with unusual y values. Estimates are found by minimizing the sum of the

absolute values of the residuals

min
Xn

i=1

eij j= min
Xn

i=1

yi −
X

xijβj







: ½4:1�

The LAV can be seen as a case of the more general quantile regression. In

this case, the objective function to be minimized can be written as

Xn

i=1

ρα eið Þ, ½4:2�

where

ρα eið Þ= αei if ei ≥ 0

α− 1ð Þei if ei < 0

�

½4:3�

and α is the quantile being estimated. For general applications of quantile

regression, see Koenker and Bassett (1978; see also Koenker and d’Orey

1994; Koenker 2005). For a treatment geared toward social scientists, see

Hao and Naiman (2007).3

Although LAV is less affected than OLS by unusual y values, it fails to

account for leverage (Mosteller and Tukey 1977:366), and thus has a break-

down point of BDP= 0. Moreover, LAV estimates have relatively low

efficiency. Following the case of the mean, under the assumption that

y∼Nðµ, σ2Þ, the sampling variance of y for OLS is σ2=n; for LAV it

is π=2= 1:57 times larger at πσ2=2n (in other words, about 64% effi-

ciency). The combination of the low breakdown point and low efficiency
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makes LAV less attractive than other robust regression methods still to be

discussed.

Least Median of Squares Regression

First proposed by Rousseeuw (1984), least median of squares (LMS)4

replaces the summing of the squared residuals that characterizes OLS with

the median of the squared residuals. The estimates are found by

min M yi−
X

xijβj

� �2 = min M e2
i

� �
, ½4:4�

where M denotes the median. The idea is that by replacing the sum with the

more robust median, the resulting estimator will be resistant to outliers.

Although this result is achieved (it has a breakdown point of BDP= 0.5), the

LMS estimator has important deficiencies that limit its use. It has at best a

relative efficiency of 37% (see Rousseeuw and Croux 1993), and it does not

have a well-defined influence function because of its convergence rate of

n−1/3 (Rousseeuw 1984). Despite these limitations, as we shall see later,

LMS estimates can play an important role in the calculation of the much

more efficient MM-estimators by providing initial estimates of the residuals.

Least Trimmed Squares Regression

Another method developed by Rousseeuw (1984) is least trimmed

squares (LTS) regression. Extending from the trimmed mean, LTS regres-

sion minimizes the sum of the trimmed squared residuals. The LTS estima-

tor is found by

min
Xq

i=1

e2
ðiÞ, ½4:5�

where q= n 1−αð Þ+ 1½ � is the number of observations included in the cal-

culation of the estimator, and α is the proportion of trimming that is per-

formed. Using q= n=2ð Þ+ 1 ensures that the estimator has a breakdown

point of BDP= 0.5. Although highly resistant, LTS suffers badly in terms

of relative efficiency at about 8% (see Stromberg, Hossjer, and Hawkins

2000). Its efficiency is so low that it is not desirable as a stand-alone estima-

tor. Still, the LTS has merit in the role it plays in the calculation of other

estimators. For example, the GM-estimators proposed by Coakley and Hett-

mansperger (1993) use LTS to obtain initial estimates of the residuals. LTS

residuals can also be used effectively in outlier diagnostic plots, to be dis-

cussed later.
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R-Estimators

First proposed by Jaeckel (1972), R-estimators rely on dispersion measures

that are based on the linear combinations of the ordered residuals (i.e.,

on the rank of the residuals). Let Ri represent the rank of the residuals ei.

R-estimators minimize the sum of some score of the ranked residuals

min
Xn

1−1

an Rið Þei ½4:6�

where an(i) is a monotone score function that satisfies

Xn

i=1

anðiÞ= 0: ½4:7�

Many possibilities have been proposed for the score function. The sim-

plest, and perhaps most commonly employed, are the Wilcoxon Scores,

which directly find the rank of observations from the median

anðiÞ= i− n+ 1

2

	 


: ½4:8�

Median Scores are a simple adjustment over the Wilcoxon scores,

anðiÞ= sin i− n+ 1

2

	 
� �

½4:9�

Van der Waerden Scores adjust the ranks according to the inverse of the

normal probability density function �−1:

anðiÞ=�−1 i

n+ 1

	 


½4:10�

Finally, Bounded Normal Scores adjust the Van der Waerden Scores by

bounding them according to a constant, c:

anðiÞ= min c, max �−1 i

n+ 1

	 


,−c

� �� �

½4:11�

An advantage of R-estimators over some others (such as M-estimators,

and those extending from them) is that they are scale equivariant. They have

some undesirable attributes, however. One problem is that the optimal choice

for the score function is unclear. A second problem is that the objective func-

tion is invariant with respect to the intercept. If an intercept is not required,

this is of no concern—it is simply not estimated. Even if one is needed, it

can be calculated manually after fitting the model from the median of the
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residuals, so this limitation is surmountable. More problematic is the fact that

most R-estimators have a breakdown point of BDP= 0. An exception is the

bounded influence R-estimator of Naranjo and Hettmensperger (1994),

which is also fairly efficient (90%–95%) when the Gauss-Markov assump-

tions are met. Even for this estimator, however, the breakdown point never

reaches more than 0.20. As a result, we leave R-estimates behind, proceed-

ing to more robust estimators. (For more extensive details of R-estimates, see

Huber 2004; Davis and McKean 1993; McKean and Vidmar 1994.)

M-Estimators

First proposed by Huber (1964, 1973, 2004), M-estimation for regression

is a relatively straightforward extension of M-estimation for location. It

represents one of the first attempts at a compromise between the efficiency

of the least squares estimators and the resistance of the LAV estimators,

both of which can be seen as special cases of M-estimation. In simple terms,

the M-estimator minimizes some function of the residuals. As in the case of

M-estimation of location, the robustness of the estimator is determined by

the choice of weight function.

If we assume linearity, homoscedasticity, and uncorrelated errors, the

maximum likelihood estimator of β is simply the OLS estimator found by

minimizing the sum of squares function

min
Xn

i=1

yi −
X

xijβj

� �2 = min
Xn

i=1

eið Þ2: ½4:12�

Following from M-estimation of location, instead of minimizing the sum

of squared residuals, a robust regression M-estimator minimizes the sum of

a less rapidly increasing function of the residuals

min
Xn

i=1

ρ yi−
X

xijβj

� �
= min

Xn

i=1

ρ eið Þ: ½4:13�

The solution is not scale equivariant, and thus the residuals must be standar-

dized by a robust estimate of their scale σ̂e, which is estimated simulta-

neously. As in the case of M-estimates of location, the median absolute

deviation (MAD) is often used. Taking the derivative of Equation 4.13 and

solving produces the score function

Xn

i=1

� yi−
X

xijβj

.
σ̂

� �
xik =

Xn

i=1

� ei=σ̂eð Þxi = 0 ½4:14�
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with �= ρ0. There is now a system of k+ 1 equations, for which � is

replaced by appropriate weights that decrease as the size of the residual

increases

Xn

i=1

wiðei=σ̂eÞxi = 0: ½4:15�

Iteratively Reweighted Least Squares

An iterative procedure is necessary to find M-estimates for regression. A

single step is impossible because the residuals can’t be found until the

model is fitted, and the estimates can’t be found without knowing the resi-

duals. As a result, iteratively reweighted least squares (IRLS) is employed5:

1. Setting the iteration counter at I= 0, an OLS regression is fitted to the

data, finding initial estimates of the regression coefficients β̂ðoÞ.
2. The residuals are extracted from the preliminary OLS regression,

e
ð0Þ
i , and used to calculate initial estimates for the weights.

3. A weight function is then chosen and applied to the initial OLS resi-

duals to create preliminary weights, wðeð0Þi Þ.
4. The first iteration, I= 1, uses weighted least squares (WLS) to mini-

mize
P

w
ð1Þ
i e2

i and thus obtain β̂ð1Þ. In matrix form, with W repre-

senting the n× n diagonal matrix of individual weights, the solution is

β̂ð1Þ= XTWX
� �−1

XTWy: ½4:16�

5. The process continues by using the residuals from the initial WLS to

calculate new weights, w
ð2Þ
i .

6. The new weights w
ð2Þ
i are used in the next iteration, I= 2, of WLS to

estimate β̂ð2Þ.
7. Steps 4–6 are repeated until the estimate of β̂ stabilizes from the pre-

vious iteration.

More generally, at each of the q iterations, the solution is β̂ðIÞ=
XT WqX
� �−1

XT Wqy, where Wq
ðn×nÞ

= diag w
ðI−1Þ
i

n o
. The iteration process

continues until β̂ðIÞ− β̂ðI−1Þ ffi 0. Typically, the solution is considered to

have converged when the change in estimates is no more than 0.01% from

the previous iteration. We return to IRLS in more detail in Chapter 6 with

respect to robust generalized linear models.
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M-estimators are defined to be robust against heavy-tailed error distribu-

tions and nonconstant error variance—and thus y outliers—but they also

implicitly assume that the model matrix X is measured without error. Under

these conditions, M-estimates are more efficient than OLS estimates. Under

the Gauss-Markov assumptions, however, M-estimates are about 95% as

efficient as OLS estimates.6 Moreover, although M-estimators are an

improvement over OLS in terms of resistance and robustness to regression

outliers (i.e., unusual y values given their xs), like LAV estimators, they

are not completely immune to unusual observations because they do not

consider leverage. Recall that M-estimates of location are highly robust,

having a bounded influence function and a breakdown point of BDP= 0:5.

M-estimates for regression share these attributes for y but not for the xs,

resulting in a breakdown point of BDP= 0. In other words, in some situa-

tions they perform no better than OLS (see Rousseeuw and Leroy 1987). As

we shall see later, these estimators are still important because of the role

they play in computing other, more robust estimates. Because these newer

estimates perform much better, they should generally be preferred over the

original M-estimation.

GM-Estimators

The M-estimator has unbounded influence because it fails to account for

leverage (Hampel et al. 1986). In response to this problem, bounded influ-

ence Generalized M-estimators (GM-estimators) have been proposed. The

goal was to create weights that consider both vertical outliers and leverage.

Outliers are dealt with using a standard M-estimator, and leverage points

are typically down-weighted according to their hat value. The general GM

class of estimators is defined by

Xn

i=1

wi xið Þ�
ei

v xið Þσ̂e

� �

xi = 0, ½4:17�

where � is the score function (as in the case of M-estimation, this is typi-

cally the Huber or biweight function), and the weights wi and vi initially

depend on the model matrix X from an initial OLS regression fitted to the

data but are updated iteratively.

The first GM-estimator proposed by Mallows (see Krasker and Welsch

1982) includes only the wi weights—that is, viðxiÞ= 1 in Equation 4.17.

The wi are calculated from the hat values. Because hat values range from 0

to 1, a weight of wi =
ffiffiffiffiffiffiffiffiffiffiffiffi
1− hi
p

ensures that observations with high leverage
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receive less weight than observations with small leverage (i.e., if hi > hj;
ui < uj). Although this strategy seems sensible at first, it is problematic

because even ‘‘good’’ leverage points that fall in line with the pattern in the

bulk of the data are down-weighted, resulting in a loss of efficiency.

Schweppe’s solution (introduced in Handschin et al. 1975) adjusts the

leverage weights according to the size of the residual ei. In order to achieve

this result, the wi weights are defined in the same way as for Mallows,

wi =
ffiffiffiffiffiffiffiffiffiffiffiffi
1− hi
p

, but now viðxiÞ=wi (see Chave and Thomson 2003).

Although the breakdown point for Schweppe’s estimators is better than for

regular M-estimators that don’t consider leverage, Maronna, Butos, and

Yohai (1979) show that it is never higher than 1=ðpþ 1Þ, where p is the

number of parameters estimated by the model. In other words, as dimen-

sionality increases, the breakdown point gets closer to BDP ¼ 0. This is

especially problematic because as the number of variables in the model

increases, detection of influential cases also becomes increasingly more dif-

ficult. Moreover, because they down-weight according to x values without

considering how the corresponding y values fit with the pattern of the bulk

of the data, efficiency is still hindered (see Krasker and Welsch 1982).

Other evidence also suggests that the Schweppe estimator is not consistent

when the errors are asymmetric (Carroll and Welsh 1988), meaning that

they are ineffective for the more common problem of outliers in one of the

tails, the main concern of the present book.

In an attempt to overcome these problems, other GM-estimation pro-

cedures completely remove severe outliers and then use M-estimation on

the remaining ‘‘good’’ observations (Coakley and Hettmansperger 1993;

Chave and Thomson 2003). Perhaps the most notable of these is Coakley

and Hettmansperger’s (1993) Schweppe one-step estimator (S1S), which

extends from the original Schweppe estimator. The advantage of this esti-

mator over the original is that the leverage weights consider where obser-

vations fit with the bulk of the data. In other words, it considers whether

the observations are ‘‘good’’ or ‘‘bad’’ leverage points, giving less weight

to the latter. This results in 95% efficiency relative to OLS estimators under

the Gauss-Markov assumptions.

The S1S estimator takes initial estimates of the residuals and the scale

of the residuals from a regression with a high breakdown point rather than

from an OLS regression, as is the case with the GM-estimators developed

before it. Using Rousseeuw’s LTS estimator for the initial estimates gives a

breakdown point of BDP= 0.5. The method is also different from the Mal-

lows and Schweppe estimations in that once the initial estimates from the

LTS regression are included, final M-estimates are calculated in a single

step (hence the name ‘‘one-step’’) rather than iteratively. Although S1S

estimators are more efficient than other GS-estimators, and in fact quite
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comparable to OLS estimators under normality and large sample sizes,

simulation studies suggest that their efficiency is very low when n is small

(see Wilcox 2005:438-440).

S-Estimators

In response to the low breakdown point of M-estimators, Hampel (1975)

suggested considering the scale of the residuals. Following this idea, Rous-

seeuw and Yohai (1984; see also Rousseeuw and Leroy 1987) proposed

S-estimates. S-estimates are the solution that finds the smallest possible

dispersion of the residuals

min σ̂ e1ðβ̂Þ; . . . enðβ̂Þ
� �

: ½4:18�

The parallel with OLS, which minimizes the variance of the residuals,

should be obvious. Hence, OLS can be seen as a special, less robust case of

S-estimation. Rather than minimize the variance of the residuals, robust

S-estimation minimizes a robust M-estimate of the residual scale

1

n

Xn

i=1

ρ
ei

σ̂e

	 


= b, ½4:19�

where b is a constant defined as b=E� ρ eð Þ½ � and � represents the standard

normal distribution. Differentiating Equation 4.19 and solving results in

1

n

Xn

i=1

�
ei

σ̂e

	 


= b, ½4:20�

where � is replaced with an appropriate weight function. As with most

M-estimation procedures, either the Huber weight function or the biweight

function is usually employed. Although S-estimates have a breakdown

point of BDP= 0.5, it comes at the cost of very low efficiency (approxi-

mately 30%) relative to OLS (Croux, Rousseeuw, and Hossjer 1994).

Generalized S-Estimators

Croux et al. (1994) propose Generalized S-estimates (GS-estimates) in an

attempt to overcome the low efficiency of the original S-estimators. These

estimators are computed by finding a GM-estimator of the scale of the

residuals. A special case of the GS-estimator is the least quartile difference
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estimator (LQD), the parallel of which is using the interquartile range to

estimate the scale of a variable. The LQD estimator is defined by

min Qn e1, . . . , enð Þ; ½4:21�

where

Qn = ei − ej





; i< j

� �

hp

2

	 


:
n

2

	 
 ½4:22�

and

hp = n+ p+ 1

2
½4:23�

and p is the number of parameters in the model. Put more simply, this

means that Qn is the
hp

2

	 


th order statistic among the
n

2

	 


elements of

the set ei − ej; i< j






� �
. Although these estimators are more efficient than

S-estimators, they have a ‘‘slightly increased worst-case bias’’ (Croux et al.

1994:1271).

Yohai and Zamar’s (1988) τ estimates are also defined by the minimiza-

tion of an estimate for the scale of the residuals, but the weights are adaptive

depending on the underlying error distribution. This results in a high break-

down point and a high efficiency estimate of the scale of the errors. Never-

theless, points with high leverage are not considered, so the estimator’s

efficiency is still hindered. Ferretti et al. (1999) tried to overcome this lim-

itation with generalized τ estimates, which use weights that consider obser-

vations with high leverage in much the same way as GM-estimates extend

from M-estimates. The method achieves a high breakdown point (as high

as 0.5) and higher efficiency (though still only about 75%) than other GS-

estimates. Still, 75% efficiency is low compared to many other estimators,

limiting the use of S-estimators as stand-alone estimators. On the other

hand, because they are highly resistant to outliers, S-estimators play an

important role in calculating MM-estimates, which are far more efficient.

MM-Estimators

First proposed by Yohai (1987), MM-estimators have become increasingly

popular and are perhaps now the most commonly employed robust regres-

sion technique. They combine a high breakdown point (50%) with good

efficiency (approximately 95% relative to OLS under the Gauss-Markov
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assumptions). The ‘‘MM’’ in the name refers to the fact that more than one

M-estimation procedure is used to calculate the final estimates. Following

from the M-estimation case, iteratively reweighted least squares (IRLS) is

employed to find estimates. The procedure is as follows:

1. Initial estimates of the coefficients β̂ð1Þ and corresponding residuals

e
ð1Þ
i are taken from a highly resistant regression (i.e., a regression

with a breakdown point of 50%). Although the estimator must be con-

sistent, it is not necessary that it be efficient. As a result, S-estimation

with Huber or bisquare weights (which can be seen as a form of

M-estimation) is typically employed at this stage.7

2. The residuals e
ð1Þ
i from the initial estimation at Stage 1 are used to

compute an M-estimation of the scale of the residuals, σ̂e.

3. The initial estimates of the residuals e
ð1Þ
i from Stage 1 and of the resi-

dual scale σ̂e from Stage 2 are used in the first iteration of weighted least

squares to determine the M-estimates of the regression coefficients

Xn

i=1

wi e
ð1Þ
i

.
σ̂e

� �
xi= 0, ½4:24�

where the wi are typically Huber or bisquare weights.

4. New weights are calculated, w
ð2Þ
i , using the residuals from the initial

WLS (Step 3).

5. Keeping constant the measure of the scale of the residuals from Step

2, Steps 3 and 4 are continually reiterated until convergence.

Comparing the Various Estimators

Table 4.1 summarizes some of the robustness attributes of most of the estima-

tors we have discussed. Reported are the breakdown point, whether or not the

estimator has a bounded influence function, and the approximate asymptotic

efficiency of the estimator relative to the OLS estimator. Immediately

obvious is the comparatively low breakdown point for the LAV and M-esti-

mators, which, depending on how the data are configured, can sometimes

perform no better than OLS estimators. A single discrepant observation can

render these estimates useless. The bounded influence R-estimators don’t

do much better, having a breakdown point of less than BDP= 0.2. These

methods, at least on their own, should be ignored in favor of others.
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We should also be cautious of estimators with low efficiency, such as the

LMS, LTS, LTM, and S-estimates. If the goal is only to ensure resistance,

and not to make inferences about a population, then these estimates may be

appropriate. On the other hand, one should not use them without good

knowledge of the nature of the unusual observations. Using them blindly

could result in less efficient estimates than otherwise possible. For exam-

ple, if the errors are normally distributed, it would be better to use OLS

estimators.

Despite its low breakdown point, the efficiency of the M-estimates is a

favorable attribute. When used in combination with more resistant esti-

mators, new estimators result that are both highly resistant to outliers and

highly efficient. M-estimation using the residuals from an initial highly

resistant LTS fit, for example, leads to the S1S GM-estimator, which is

highly resistant to both residual outliers and high leverage observations,

and yet maintains an efficiency of about 95% relative to the OLS estimator.

Computing M-estimates from the residuals from an LMS or S-estimation

leads to the similarly efficient and robust MM-estimators.

EXAMPLE 4.1: Simulated Data

We now return to the simulated data first introduced in Chapter 3 that

include various types of outliers. We explore six different regression esti-

mates for each of the three ‘‘contaminated’’ data sets: an OLS estimate,

an LAV estimate, an M-estimate (using Huber weights), a GM-estimate

TABLE 4.1

Robustness Attributes of Various Regression Estimators

Estimator

Breakdown

Point

Bounded

Influence

Asymptotic

Efficiency

OLS 0 No 100

LAV 0 Yes 64

LMS .5 Yes 37

LTS .5 Yes 8

LTM .5 Yes 66

Bounded R-estimates < .2 Yes 90

M-estimates (Huber, biweight) 0 No 95

GM-estimates (Mallows, Schweppe) 1=ðp+ 1Þ Yes 95

GM-estimates (S1S) .5 Yes 95

S-estimates .5 Yes 33

GS-estimates .5 Yes 67

Generalized estimates .5 Yes 75

MM-estimates .5 Yes 95
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(specifically a Coakley-Hettmansperger estimator), an S-estimate, and an

MM-estimate. The fitted lines for the estimates for each of the data sets are

shown in Figure 4.1, with the ‘‘contaminating’’ observation identified.

Starting with the vertical outlier scenario, the substantive conclusions, at

least in terms of the slope coefficients, are nearly identical regardless of

which regression method is employed. In fact, aside from the OLS line,

which stands apart only slightly in terms of its intercept, it is impossible to

distinguish the lines for the other methods from each other. Moreover,

although the OLS intercept is slightly smaller than the intercept for the

others—indicating that the line is pulled toward the outlier—it is not so dis-

similar from the others that it is problematic. The estimates for the ‘‘good’’

leverage point (B) are even more similar to each other. Aside from the LAV

line, which falls just slightly above the others, all of the other regression

lines are directly on top of each other. For the case of the ‘‘bad’’ leverage

point (C), the various estimates differ to a greater degree, although the most

marked differences are with respect to contrast between the OLS estimate

and the others. As we saw in Chapter 3, the OLS regression line has been

pulled toward the influential observation. None of the robust regression

estimates is substantially influenced by the outlier, however. It is clear,

then, that a more robust method should be favored in this last scenario. But

what about the other two scenarios, for which very little difference was

found between the estimates?

To answer this question, we turn to the distribution of the residuals to see

whether the precision of the OLS estimates might be hindered. Recall that

standard errors for the OLS estimates are smallest when there is less spread

in the residuals. Figure 4.2, which shows the distribution of the residuals,

suggests that the vertical outlier causes problems for the standard errors

of the OLS estimators (see plot A). On the other hand, the residuals are very

well behaved despite the addition of the ‘‘good’’ leverage point (plot B).

The information in Figures 4.1 and 4.2 taken together suggest that OLS is

only suitable for the data with the good leverage point. Given that all of the

robust estimators tell the same general story, an efficient estimator like the

MM-estimator would be a good choice for the other scenarios.

EXAMPLE 4.2: Multiple Regression Predicting Public Opinion

We now return to the cross-national public opinion data, continuing to

focus on only the new democracies. Earlier, we used OLS to fit a model pre-

dicting public opinion from per capita GDP and the Gini coefficient. Diag-

nostics and preliminary analyses suggested that the model performed better

if the Czech Republic and Slovakia were omitted (see Table 3.2). Recall

that the OLS, including all observations, showed a statistically significant
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positive effect of per capita GDP (β̂= 0:0175) and a statistically insignifi-

cant effect for the Gini coefficient (β̂= 0:00074). After the two outliers

were removed, the coefficient for per capita GDP fell to about one third the

size and was no longer statistically significant (β̂= 0:0063), whereas the

slope for the Gini coefficient became more than seven times as large and

statistically significant (β̂= :00527).

Table 4.2 gives the estimates from several robust regressions fitted to

the same data. Although there are small differences between them, the

M-estimators, MM-estimator, and GM-estimator tell a similar story regard-

ing the effects of per capita GDP and the Gini coefficient. All of these meth-

ods give results similar to the OLS regression that omits the two outliers.

The LAV regression also does a good job uncovering the relationship

between the Gini coefficient and public opinion but gives a much smaller

estimate for the effect of per capita GDP, which, in any event, does not have

a statistically significant effect for the OLS regression without outliers. In

summary, the robust regression methods did a much better job of handling

the influential cases than did the ordinary least squares regression.

Diagnostics Revisited: Robust Regression-Related
Methods for Detecting Outliers

The discussion above shows the merit of robust regression in limiting the

impact of unusual observations. Although it is certainly sensible to see it as

the final method to report, it can also be used in a preliminary manner as a

diagnostic tool (see Atkinson and Riani 2000). In this respect, it can be a

good complement to the traditional methods for detecting unusual cases

that were discussed in Chapter 3.

TABLE 4.2

Robust Regression Models Fitted to the Public

Opinion Data, New Democracies

LAV

Regression

M-Estimation

(Huber)

M-Estimation

(Biweight) MM-Estimation

Generalized

M-Estimation

(Coakley-

Hettmansperger)

Intercept –0.079 –0.063 –0.091 –0.097 0.939

Gini 0.0045 0.0039 0.0049 0.0051 0.0041

Per Capita

GDP/1000

0.0059 0.0089 0.0052 0.0057 0.0065

n 26 26 26 26 26
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A criticism of common measures of influence, such as Cook’s D, is that

they are not robust. Their calculation is based on the sample mean and cov-

ariance matrix, meaning that they can often miss outliers (see Rousseeuw

and van Zomeren 1990). More specifically, Cook’s D is prone to a ‘‘mask-

ing effect,’’ where a group of influential points can mask the impact of each

other. We have already seen that partial regression plots can be helpful

for overcoming the masking effect with respect to individual coefficients.

Information from the weights and residuals from robust regression can

help combat the masking problem when assessing overall influence on the

regression.

Index Plots of the Weights From the Final IWLS Fit

A straightforward way to use robust regression as a diagnostic tool

involves the weights from the final IWLS fit. It is important to remember,

however, that the meaning of the weights differs according to the model.

Different methods could give quite different weights to observations

depending on the type of unusualness. For M-estimation, the only thing that

we can say about the weights is that they indicate the size of the residuals in

an OLS fit, and thus whether or not the observation is a vertical outlier.

Examined alone, they tell us nothing about leverage, and thus influence,

because M-estimates do not take these into account when assigning the

weights. GM-estimation, on the other hand, down-weights observations

according to both the size of their residual in an OLS fit and their leverage,

although an examination of the weights will not allow us to distinguish

between the two aspects. Weights from the MM-estimate can provide a good

indication of overall influence because of their highly resistant initial step.

To evaluate how the weights from various robust regressions perform, it

is instructive to compare them to the Cook’s distances and other outlier

detection measures from an OLS regression fitted to the same data. Table

4.3 contains this information. We found in Chapter 3 that Cook’s distances

identified the Czech Republic and Slovakia as influential observations. All

of the robust regression also detected the two discrepant observations, giv-

ing them comparatively low weight. In other words, the weights indicate

the level of unusualness—the smaller the weight, the more unusual is the

observation.

The evidence from Table 4.3 motivates the idea of plotting robust reg-

ression weights in an index plot in the same manner as is typically done

with Cook’s D. This has been done in Figure 4.3. Although all three robust

regression methods identified the two most problematic observations, the

GM-estimation gave nine other observations a weight less than .5, whereas

neither of the other methods gave any other observation a weight less
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than .7. As said above, the uniqueness of the GM-estimate results because it

considers the size of the residual and leverage.

RR-Plots (‘‘Residual-Residual’’ Plots)

According to Rousseeuw and van Zomeren (1990:637), robust regres-

sion residuals are much better than OLS residuals for diagnosing outliers

because the OLS regression ‘‘tries to produce normal-looking residuals

even when the data themselves are not normal.’’ With this in mind, Tukey

(1991) proposed the RR-plot (‘‘residual-residual’’ plot), which calls for

a scatterplot matrix that includes plots of the residuals from an OLS fit

against the residuals from several different robust regressions. If the OLS

assumptions hold perfectly, there will be a perfect positive relationship,

with a slope equal to 1 (called the ‘‘identity line’’), between the OLS resi-

duals and the residuals from any robust regression. Let the ith residual from

the jth regression fit β̂j be eij = yi − xT
t β̂j, then

ei β̂1

� �− ei β̂2

� ��
�

�
�= ŷi β̂1

� �− ŷi β̂2

� ��
�

�
�= xT

i β̂1 − β̂2

� ��
�

�
�

≤ xik k β̂1 − β
�
�

�
�+ β̂2 − β

�
�

�
�

� �
: ½4:25�

This implies that as n approaches ∞, the scatter around the identity line will

get tighter and tighter if the regression assumptions are met. If there are out-

liers, the slope will be a value other than 1 because the OLS regression does

not resist them whereas the robust regression does.

RR-plots for the public opinion data are shown in Figure 4.4. The broken

line is the identity line; the solid line shows the regression of the residuals

from the method on the vertical axis on the residuals from the method on

the horizontal axis. The plots in the first column are of most interest because

they show the regression of the OLS residuals on the residuals from various

robust regression methods. The fact that the two lines are far apart from

each other in all of these plots indicates that the OLS estimates were highly

influenced by the outliers; the Czech Republic and Slovakia have much

smaller residuals for the OLS regression, indicating that they are quite influ-

ential. Turning to the other plots, we notice that the residuals from the var-

ious robust regressions are very similar to each other, especially with

respect to the MM-estimates and GM-estimates, which are nearly identical.

Robust Distances

We can also consider diagnostic methods that pertain only to a robust

regression. For example, Rousseeuw and van Zomeren (1990) claim that a

plot of the robust residuals against robust distances, the latter being based

on the Mahalanobis distance but defined by a robust covariance matrix, is
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able to detect multiple outliers better than traditional methods (see also

Cook and Hawkins 1990; Ruppert and Simpson 1990; and Kempthorne and

Mendel 1990 for debate about this topic). Efficiency is not a concern for

these diagnostics, so the residuals from the highly resistant LMS or LTS

regressions are often employed.

The Mahalanobis distance measures how far an observation xi is from the

center of the cloud of points defined by the data set X. It is defined by

MDi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi − �xÞcov Xð Þ−1 xi − �xð ÞT ,
�r

½4:26�

where �x is the centroid of X and covðXÞ is the sample covariance matrix.

Outliers can influence the mean and covariance matrix, and thus they will not

necessarily be detected by the MDi. As a result, Rousseeuw and van Zome-

ren’s (1990) robust distances RDi are defined by replacing covðXÞ and �x with
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the more robust center and covariance matrix from the minimum volume

ellipsoid estimator (see Rousseeuw 1985 for more details). Usual practice is

to identify standardized robust residuals as problematic if they are e0 ≥ 2:5j j.
Similarly, robust distances are identified as having high leverage if

RDi > 0:975 percent point of the chi-squared distribution with degrees of

freedom equal to the number of parameters estimated in the model.

Rousseeuw and van Zomeren’s regression diagnostic plot for the public

opinion data is shown in Figure 4.5. Plotted against the robust distances are

the standardized residuals from a LTS regression. Although the robust dis-

tances indicate that no cases have unusually high leverage, the robust resi-

duals suggest that three cases are outliers. Following in line with the rest

of the analyses that we have done so far, Slovakia and the Czech Republic

are two of these. The third observation, which is just barely past the rule of

thumb cutoff, is Chile.

As well as the methods discussed above, the traditional diagnostic plots

for identifying outliers (discussed in Chapter 3) can be extended to robust

regression models. Given that they are generally interpreted in the same
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way as for the OLS fit, they’re not discussed here. For more information

on these diagnostics, see McKean and Sheather (2000). Other techniques

related to robust regression can also be seen in Fung (1999) and Pena and

Yohai (1999).

Notes

1. Other names for LAV regression are least absolute deviations (LAD) regres-

sion and minimum sum of absolute errors (MSAE) regression (Birkes and Dodge

1993).

2. Related methods not discussed in this book because of their limited use are the

least-trimmed median estimators and the least-trimmed difference estimators. Both

of these have breakdown points of BDP= 0.5, but their relative efficiency is less than

67%. For more information, see Croux et al. (1994) and Stromberg et al. (2000).

3. These estimators are sometimes referred to as trimmed-mean estimators. They

can also be modified so that they have a bounded influence function (see De Jongh,

De Wet, and Welsh 1988).

4. The LMS estimator should not be confused with Siegel’s (1982) repeated med-

ian (RM). Although proposed as a robust estimator quite early, the RM estimator has

the severe limitation of not being affine-regression equivariant (i.e., coefficient esti-

mates do not behave as expected when the predictors are rescaled or combined in

linear ways) for high-dimensional problems. It will not be discussed any further

because of this limitation.

5. IRLS is also often referred to as iterative weighted least squares (IWLS).

6. This assumes tuning constants of c= 1.345 for Huber weights and c= 4.685

for biweights. See the earlier discussion of M-estimation of location for more

details.

7. Other methods, such as LMS estimation (Rousseeuw 1984) and RM estimation

(Siegel 1982), have also been proposed for the initial stage.

5. STANDARD ERRORS FOR ROBUST REGRESSION

Analytical standard errors are easily calculated for some, but not all, types

of robust regression.1 Nonetheless, even when analytical standard errors

can be calculated, they are not reliable for small samples. As a result, it is

often desirable to use bootstrapping to calculate standard errors. As a result,

this chapter starts with a brief discussion of asymptotic standard errors, and

then continues by exploring various types of bootstrapped standard errors

and confidence intervals.
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