
leaves Economic outputt and flows through the parameter c before reentering

the system at the front end of the feedback loop where the circle with the plus

sign is located. This does not mean that something is being subtracted from

the value of Economic outputt for it to be reentered at the plus sign. Thus, the

arrow leaving Economic outputt and pointing to the parameter c is not redu-

cing the value of Economic outputt. Rather, a measure of Economic outputt is

being taken where the feedback loop begins, and some proportion (c) of this

is being reinvested in the economy. Again, restated differently, the beginning

of a feedback loop does not ‘‘pull’’ something out of the forward path. It

merely takes a measure of the value of the forward path at that point in the

system so that part of that measure can be reentered elsewhere in the system.

Also note that the parameter c instantaneously summarizes a set of dimin-

ishing feedback cycles, as is the case with all static and simultaneous sys-

tems. This is the same as was described previously with respect to Figure 2.4

and parameter m. In Chapter 3, we learn how to structure the feedback pro-

cess using time operators, thereby keeping track of when an output actually

feeds back into the system relative to other parts of the system.

3. GRAPH ALGEBRA AND DISCRETE-TIME
LINEAR OPERATORS

So far time has not played a significant role in our discussions. Structuring

the relationships between the variables with respect to time within the con-

text of a system is one of the great strengths of graph algebra. All the mod-

els that are discussed throughout the remainder of this book use graph

algebra to do this. This discussion begins with explaining how graph alge-

bra is integrated with discrete-time applications. Discrete time implies the

use of difference equations, and difference equations are often appropriate

for the social sciences since a great deal of social scientific data are col-

lected in discrete intervals. Examples of this are census data, economic

data, election data, and polling data (which often correspond with an elec-

toral calendar). Differential equations are used to model continuous-time

processes and are discussed later. Models can also be built using graph

algebra that have both continuous and discrete parts. These are called

‘‘metered’’ differential equations, and they are also discussed later in this

book in the context of differential equations with embedded time lags.

All the operators used in this book are linear operators (see especially

Allen 1963, p. 725; see also Goldberg, 1958). This is true of the discrete-time

operators as well as the continuous-time operators. What do we mean by
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saying that these operators are linear? The condition of linearity requires that

an operation satisfy two principles (see Cortés et al., 1974, pp. 293–294).

The first is the principle of homogeneity. This states that if one multiplies a

constant times a variable, and then applies an operator to this product, the

answer will be the same if one first applies the operator to the variable and

then multiplies this result by the constant. Symbolically, this is written as

Homogeneity: Operator[(Constant)(Variable)]=
Constant(Operator [Variable]).

In the case of an operator of proportional transformation, we are simply

multiplying by another constant. Thus, it is clear that abYt = baYt, where a

and b are constants. We will want to show that the principle of homogeneity

applies to the other operators presented in this book, and this is done later as

those operators are introduced.

The second condition of linearity is the principle of superposition. The

superposition principle is important to the study of difference and differen-

tial equations, and it is fundamental to many dynamic processes, including

the superposition of states as encountered in quantum mechanics (see, e.g.,

Aczel, 2003, p. 85). In general, the superposition principle states that the sum

or linear combination of two or more solutions to an equation is also a solu-

tion to the equation (Zill, 2005, p. 130). In the context of linear operators,

applying an operator to the sum of two variables is equal to applying the

operator separately to the two variables and then summing these two results.

This symbolically resembles the distributive law of multiplication, in the

sense that a½Xt +Yt�= aXt + aYt: Thus, in terms of operators, we can write

Superposition: Operator[Variable 1+Variable 2]=
Operator[Variable 1]+ Operator[Variable 2].

As with the principle of homogeneity, we will want to demonstrate that the

superposition principle applies to the various operators presented in this book.

Again, any operator is linear if it satisfies both these principles. Moreover,

since the inverse of a linear operator reverses the functioning of that linear

operator such that a variable to which the linear operator is applied is returned

to its original state, inverses of linear operators are also linear operators.

Delay and Advance Operators for Discrete Time

Many social phenomena occur after some delay. That is, when a stimulus is

applied, a reaction transpires at a later time. To incorporate a delay in graph
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algebra, a delay operator is needed. This operator is written as E−1, and it

is read as ‘‘E inverse.’’ Yet other social phenomena happen in anticipation

of something else that either will occur in the future or is expected to occur

in the future. Thus, something happens before something else takes place.

This is the opposite of a delay, and an advance operator is needed in such a

situation. E1 is the advance operator. E−1 is the inverse of E1. E−1 changes

the variable Yt to Yt−1. The advance operator (E1Þ changes Yt to Yt+1. For

convenience, it is conventional to write E1 as simply E without the super-

script, noting that if an advance operation is required that places a system

state more than one time period into the future, then the appropriate super-

script will be used, the value of which will depend on the number of time

periods in question. As with delays, advance operations are a commonly

encountered feature of many social phenomena. For example, when people

purchase stocks on the stock market in anticipation of a future rise in the

value of that stock, they are acting in advance of that expected occurrence.

In a different example from the sociological literature (see Mare &

Winship, 1984), some young people drop out of school in anticipation of

gaining employment, while others stay in school or join the military

because they anticipate a difficult time obtaining a satisfactory job. Still

others may drop out of school anticipating poor employment opportunities

despite a greater level of education. This can produce a self-fulfilling pro-

phecy, a problem that may disproportionately strike young and discouraged

racial minorities.

Both E and E−1 are linear operators. Applying the principle of homo-

geneity, E½aXt�= aðE½Xt�Þ= aXt+1. From the principle of superposition,

we have E½Xt +Yt�=EXt +EYt =Xt+1 + Yt+1. Similarly, with respect

to E−1, E−1½aXt�= aðE−1½Xt�Þ= aXt−1 and E−1½Xt + Yt�=E−1Xt +
E−1Yt =Xt−1 + Yt−1.

Returning to the earlier example in which campaign workers are canvas-

sing for support by knocking on doors in a neighborhood, let us consider

the campaign that occurred in Baghdad, Iraq, in January 2005. During that

month, Iraqi and American officials were planning to hold elections for a

new Iraqi government, and parties and politicians were actively attempting

to attract support from the populace. But insurgents opposed to the Ameri-

can presence in Iraq were warning people not to participate in the elections

(see Filkins, 2005). In this situation, the attempts of the insurgents to

impose their norms on the Iraqi people would occur after a delay. First,

campaign workers would interact with a potential voter. The potential voter

may be influenced by this and consider supporting the candidate or party. A

certain proportion of these campaign contacts would be observed by infor-

mants cooperating with the insurgents. These informants would look for
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evidence that the person contacted by the campaign workers might be lean-

ing toward participating in the elections. If they suspect this to be the case,

the informants would report their suspicions to the insurgents, who in turn

would act to intimidate the potential voter, possibly by threatening to kill

the voter and/or his or her family members. Again, this intimidation would

occur after a delay, since it would take time for the informants to observe

the reaction of the potential voter to the campaign stimulus and then to

report this reaction to the insurgents. From a system’s perspective, this is a

situation that can be described in the classic terms of regulation and control

associated with a delayed feedback process.

Using graph algebra, this scenario can be depicted as in Figure 3.1. Here,

the input of the system is Ct; which represents the canvassing contacts that

the campaign workers have with the populace, whereas the system’s output

is the variable Vt; which represents the result of those contacts in producing

voters. In Figure 3.1, the forward path is essentially the same as it was in

Figure 2.1, in the sense that the input is processed by the parameter of pro-

portional transformation, p: However, first the input is added to a feedback

path to become X1, the first state of the system. This feedback path is called

a ‘‘negative feedback loop’’ because of the sign of the parameter m: This

parameter acts proportionally to negatively transform the output of the sys-

tem (X2Þ before it reenters the system. Note that the delay operator (E−1Þ is

also on the feedback path. This acts to delay the action of the feedback path

by one time period.

The social interpretation of the negative feedback loop presented in

Figure 3.1 is straightforward. The insurgents in Iraq calibrate their intimida-

tion activities based on the success of the campaign workers in mobilizing

new voters. As the campaign workers mobilize new voters (X2Þ, the insur-

gents will increase their intimidation. The more successful the mobilization

efforts of the campaign workers, the more profound the impact of the inti-

midation, which algebraically means that the state of the system, X3, will be

a negative number of large magnitude. This is the classic operation of most

regulation and control phenomena.

In this instance, it is heuristically useful to obtain the algebraic equation

for the graph algebra diagram in Figure 3.1 both by using Mason’s Rule as

well as by solving for the states of the system. Beginning with the states of

the system,

X1 =Ct +X3;

X2 = pX1;

X3 = −mE−1X2:
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As before, noting that X2 also equals Vt;we can substitute and eliminate the

states of the system. After the first substitution we have X2 = pðCt +X3Þ,
which allows us to then write this as Equation 3.1:

X2 = pðCt −mE−1X2Þ ½3:1�

Substituting for X2, we have,

Vt = p½Ct −mE−1Vt�;

or, after rearranging and operationalizing the E−1, we have Equation 3.2:

Vt = pCt − pmVt−1 ½3:2�

Since it is conventional in most of the social sciences (with the exception of

economics) to write difference equations such that the lowest time script is

t and the higher time scripts are t+_, we can multiply both sides of Equation

3.2 by the advance operator (E) and obtain Equation 3.3:

Vt+1 = pCt+1 − pmVt ½3:3�

Equation 3.3 is a first-order linear difference equation with constant coef-

ficients. The theory of such equations is complete (Goldberg, 1958). In eco-

nomics, the convention is to write difference equations such that the highest

time script is t and all lower time subscripts are t−_. If this convention was

followed here, the model would have been left in the form found in Equa-

tion 3.2. Regardless, both Equations 3.2 and 3.3 are equivalent, and one can

move from one to the other by multiplying through by either the advance

operator, E, or the delay operator, E−1, as needed. Both these operators are

linear operators that obey the normal rules of algebra. Since they only work

on time-dependent variables, they have no effect on constants.

We can also obtain Equation 3.3 from Figure 3.1 using Mason’s Rule. This

avoids having to work with the states of the system, and this is sometimes

+ p
X2X1

X3

−m E −1

Vt Ct 

Figure 3.1 Campaign Interactions With a Negative and Delayed

Feedback Loop
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more convenient. Directly applying Mason’s Rule to the graph algebra

diagram in Figure 3.1, we have

Vt =Ct½p=ð1+ pmE−1Þ�:

Rearranging yields

Vtð1+ pmE−1Þ= pCt;

and then

Vt + pmVtE
−1 = pCt:

Now we operationalize the delay operator, E−1, to produce

Vt + pmVt−1 = pCt:

We then multiply throughout by E and obtain

EVt + pmEVt−1 = pECt:

Our final form of the model is obtained after operationalizing E and rearran-

ging to produce Vt+1 = pCt+1 − pmVt, which is identical to Equation 3.3.

Including an Additive Constant With Graph Algebra

Some social scientists might want to include an additive constant with the

above model that would not get involved with the feedback loop, since

such an additive constant would typically be employed when estimating the

model using regression. There are a number of ways that this can be accom-

plished using graph algebra (see, e.g., Przeworski, 1975). Two different

approaches to this are discussed below, the first of which is shown in Figure

3.2. The second way is easier and is discussed later. In practice, if the sec-

ond way is followed, an additive constant is sometimes omitted from the

graph algebraic analysis until the model is evaluated with respect to a body

of data. Both these approaches can also be used to include more than just an

additive constant to the model. For example, if a researcher wishes to

include a function comprising a variety of control variables, linearly com-

bined with slopes and an intercept, this can be done as well. Again, there

are other ways to include functions and additive constants to a model. The

two approaches described below are simply examples of how this is

commonly accomplished.

In Figure 3.2, the additive constant is inserted into the model after the feed-

back loop. The placement of the additive constant after the feedback loop is

both substantively interesting and algebraically a bit more challenging. From
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a substantive point of view (continuing with the electoral campaign in Iraq

example), it may be that the insurgents are responding only to personal inter-

actions between campaign workers and the populace. That is, if the additive

constant represents some additional voter mobilization process that does not

originate from personal campaign interactions, then the insurgents may not

react to that component of the mobilization effort. For example, the extra

voter support may arise from news media broadcasts. The insurgents may not

be able to monitor who is listening to the broadcasts, and therefore they may

not be able to intimidate those potential voters. Thus, the feedback loop

begins before the additive constant is included in the model. The algebraic

complexities that result from doing this can be seen when examining the

reduced-form version of the model that would ultimately be estimated using

regression.

The estimated version of Equation 3.3 combined with an additive con-

stant (omitting the error term for simplicity) is presented in Equation 3.4:

Vt+1 = β0 + β1Ct+1 + β2Vt ½3:4�
Using this form with the model shown in Figure 3.2, we have

β0 = kðpm+ 1Þ, β1 = p, and β2 = −pm. The formula for β0 may at first

seem strange, but it follows from the graph algebra. Return to Equation 3.1.

We can no longer simply substitute Vt for X2 since Vt now includes an addi-

tive constant that is not part of X2. But we note that Vt =X2 + k, and thus

X2 =Vt − k, which we can substitute into Equation 3.1. We then obtain

Equation 3.5:

Vt − k = p½Ct −mE−1ðVt − kÞ� ½3:5�

Multiplying through all the brackets, we now have Equation 3.6:

Vt − k = pCt − pmE−1Vt + pmkE−1 ½3:6�

+ +p
X2X1

X3

−m E −1

Vt 

k

Ct 

Figure 3.2 An Additive Constant Included After the Feedback Loop
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Since m; p, and k are all constants, E−1 has no effect on them, and thus the

delay operator can be eliminated from the last term of Equation 3.6. Rear-

ranging, operationalizing the remaining E−1 with respect to Vt, and finally

multiplying through by E to advance all the time scripts such that t+ 1 is

the highest scripted value yields Equation 3.7:

Vt + 1 = pCt+1 − pmVt + kðpm+ 1Þ ½3:7�

It is clear now that the term kðpm+ 1Þ is simply a constant that equals β0 in

Equation 3.4. Thus, Equation 3.7 is identical to Equation 3.3, except that

Equation 3.7 includes an additive constant.

After obtaining the values of β0, β1, and β2, one needs to calculate the

values of the parameters p;m, and k: This is a straightforward problem

of normal algebra since there are three equations and three unknowns [i.e.,

β0 = kðpm+ 1Þ, β1 = p, and β2 = −pm�. However, the estimated para-

meters β0, β1, and β2 are useful to us in other ways. The dynamic behavior

of the model as depicted in Figure 3.2 can be determined directly through

its reduced-form version, Equation 3.4. Thus, if the estimated parameter

β2 has a value between −1 and 0, then this model will display convergent

oscillatory behavior over time. If the value of β2 is less than −1, then the

model will predict unstable oscillatory behavior for this system, a highly

volatile outcome given the nature of the electoral dynamics modeled in

this example. Other values of this estimated parameter may produce different

dynamical behaviors. Readers can find complete descriptions of the

dynamics of first-order linear difference equations with constant coefficients

in any number of texts on finite mathematics. My personal suggestions are

Goldberg (1958), Goldstein, Schneider, and Siegel (1988, chap. 11), and

Baumol (1970).

Also, the equilibrium value for this model can be found by setting

Vt+1 =Vt =V∗, and then substituting V∗ into Equation 3.4. After solving

for V∗, one obtains

V∗= ½β0 + β1Ct�=ð1− β2Þ;

which is constant only if Ct remains stationary. Otherwise, this is a ‘‘mov-

ing equilibrium value’’ that is driven by the value of the system’s input. For

this reason, a system input is often referenced as a ‘‘driver to the system.’’

A wider discussion of difference equation models with such characteristics

can be found in Huckfeldt, Kohfeld, and Likens (1982).

Now we turn to a second approach commonly used to include an additive

constant in a graph algebra model. This is shown in Figure 3.3. In this figure,

the additive constant is included in the model at the beginning of the feed-

back loop, not after the feedback loop as in Figure 3.2. From a substantive
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perspective while continuing with the example of Iraqi electioneering, we

may theorize that the Iraqi insurgents are keeping track of the entire vote-

mobilization campaign, not just the interactions between campaign workers

and potential voters. If the insurgents sense that the vote-mobilization cam-

paign is threatening their cause through a variety of means (e.g., media

broadcasts, interpersonal contacts), then they might try to suppress partici-

pation in the elections by intimidating the entire potential voting populace

rather than just those interacting with campaign workers. Their strategies to

broadly intimidate a populace might include more widely targeted assassina-

tions and bombings.

Following this scenario, the repressive feedback of the Iraqi insurgents

would be in response to the value of the forward path of the model plus

the additive input k: This changes and simplifies the algebra when com-

pared with the approach used in Figure 3.2. For Figure 3.3, note that

X2 = pX1 + k =Vt:We begin with the statements,

X1 =Ct +X3;

X2 = pX1 + k;

X3 = −mE−1X2:

Substituting gives us Equation 3.8, which in turn can be simplified as

Equation 3.9:

Vt = p½Ct −mE−1Vt�+ k ½3:8�
Vt+1 = pCt+1 − pmVt + k ½3:9�

Applying Equation 3.4 as the reduced-form version of this model, we have

β0 = k, β1 = p, and β2 = −pm, which again gives us three equations and

three unknowns.

+ +p
X2X1

X3

−m E −1

Vt 

k

Ct 

Figure 3.3 An Additive Constant Included at the Beginning of the

Feedback Loop
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Again, there are other ways of including an additive constant component

into a graph algebra model. The first applied graph algebra model published

in the American Political Science Review was developed by Przeworski

(1975), and this model inserted the additive constant at the end of the feed-

back loop. That would be comparable to placing it at the summation point

before X1 in Figure 3.3. In one of my own published examples of a graph

algebra model, an additive constant was employed following the summation

of multiple forward paths (Brown, 1991, p. 191). In general, the placement

of all graph algebra components depends solely on the social theory being

addressed, and so specification variety across models will be the norm.

Difference and Summation Operators for Discrete Time

Up to this point, we have used only delay and advance operators to structure

a model with respect to time. But some phenomena require models that take

the difference of variables between two time points, accumulate values

of variables across many time points, or both. The operators that do this are

difference and summation operators. We treat these two operations together

since they are the inverse of one another.

The difference operator is written as �. As with all time-structuring

operators, � works only on time-scripted variables. By definition, �Xt =
Xt+1 −Xt: To show that � is a linear operator, we need to apply the

principles of homogeneity and superposition. Beginning with the principle

of homogeneity, we note that �½aXt�= aXt+1 − aXt = a½Xt+1 −Xt�=
að�½Xt�Þ. Now with respect to the principle of superposition, we need

to show that �½Xt +Yt�=�Xt +�Yt: Note that �½Xt + Yt�= ½Xt+1 +
Yt+1�− ½Xt +Yt�= ½Xt+1 −Xt�+ ½Yt+1 −Yt�=�Xt +�Yt: Thus, the opera-

tor, �, satisfies the two conditions of linearity required of all linear

operators.

It is quite common to model social processes that respond not to the value

of a variable but rather to the change in that variable from one time point to

the next. Let us return to our Iraqi elections example and say that the num-

ber of people deciding to participate in the elections from day to day is

dependent not on the level of campaign contacts, Ct, but rather the change

in campaign activity. The reason for this could be that voters will see the

elections as a battle between those who want the elections to succeed and

those who want them to fail. Seeing an increase in campaign activity may

convince potential voters that those wanting the elections to succeed are

prevailing in the campaign. This would embolden voters to participate on

election day. On the other hand, if the level of campaign activity only stays

the same or decreases, then voters may think that those who oppose the
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elections are gaining the upper hand, dampening any sense of pro-elections

momentum.

We can include the idea of change in the variable Ct in a model of the

elections process as shown in Figure 3.4. In this figure, the additive constant

and the delay operator have been removed to simplify the presentation. The

summation operator and the delay operator will be added to the model later

to show how these elements change the model’s functioning.

We can use Mason’s Rule to obtain the algebraic model that corresponds

to the graph algebra diagram in Figure 3.4. This is shown here as Equation

3.10:

Vt =�Ct½p=ð1+ pmÞ� ½3:10�

Note that in Equation 3.10 the parameters p and m are both involved non-

linearly with �Ct: When estimated, this model would produce an over-

determined system of equations, since one slope estimate, say β1, would

equal p=ð1+ pmÞ. Thus, we would be trying to get two parameter values

out of one estimated number, which we cannot do. This problem is not

caused by the inclusion of the difference operator in the model. The prob-

lem is caused by the fact that the structure of the model does not separate

the parameters p and m by time, as was done by including a delay operator

in the feedback loop of Figure 3.3.

Rather than reintroduce the delay operator in the feedback loop, let us

place a summation operator along the forward path of the model. For sim-

plicity, let us also go back to the version in which the input is the number of

daily or weekly campaign contacts, Ct, not change in those contacts. This

is shown in Figure 3.5. The �−1 operator is a summation operator, and it

is read as ‘‘delta inverse.’’ It is located on the forward path of the model

depicted in this figure and acts to accumulate or sum up the new voters who

are being mobilized by the activities of the campaign workers, and a sub-

stantive reason for wanting to do this in a model is suggested below. But

before diving into the substantive interpretation of the model, it is worth

making a few observations regarding the functioning of the �−1 operator.

p

−m

∆Ct +
X2X1

Vt 

X3

Figure 3.4 A Difference Operator in the Input to the Forward Path

30



The two operators, � and �−1, are inverse operations, in the sense that

their interaction, ��−1, yields the identity operation (the operator for

which is IÞ. In practice, this means that

��−1Yt = IYt = Yt

(see Goldberg, 1958, pp. 41–44). Whereas � is an operator that requires

that we difference a variable to yield some specified value, �−1 is an

operator that requires us to find a function that will result in that same value

when we difference it. Thus, if �Yt = yt, where yt is the difference and can

be anything, including a constant, then Yt =�−1yt: The operator �−1 is

the finite analog to integration with respect to the calculus. Just as integra-

tion is more challenging than differentiation in calculus, similarly perform-

ing the �−1 operation is more challenging than finding a difference using

�. Fortunately, the property of inverse operations allows us easily to elimi-

nate the �−1 operation in practice when using graph algebra for nearly all

settings, as is explained through example below.

It is helpful to show why the operator �−1 actually accumulates over

time. Let us say that �−1 transforms an input Ct into an output Vt: This can

be stated as in Equation 3.11:

�−1Ct =Vt ½3:11�

Since �−1 is the inverse of �, we can say that �Vt =Ct, which is the same

as Vt+1 −Vt =Ct. This can be rewritten as Equation 3.12:

Vt+1 =Ct +Vt ½3:12�

Now multiply both sides of Equation 3.12 by E−1 to obtain Equation 3.13:

Vt =Ct−1 +Vt−1 ½3:13�

Substitute Equation 3.13 for Vt in Equation 3.11, and you have

�−1Ct =Ct−1 +Vt−1: ½3:14�

+ p ∆−1
X2X1

X3

−m

Vt Ct 

Figure 3.5 A Discrete-Time Summation Operator in the Forward Path
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Thus, Equation 3.14 demonstrates that the �−1 operator yields a mapping

of an indefinite sum that results from having our current output (Vt; or

equivalently, �−1CtÞ equal to the addition of the input for the last time

period (Ct−1Þ and the output for the last time period (Vt−1Þ. Thus, we are

taking the previous input and adding it to the previous output to get the new

output. With each new iteration, we are adding one more input (from one

time period only) to the previous output (which has been accumulating

across all iterations), which is simply the accumulation of the input over

time (see also Cortés et al., 1974, pp. 299–300).

There are many substantive reasons why we might want to model social

processes using a summation operator as in Figure 3.5. Before returning to

our electoral example, consider the situation of China with respect to the gen-

der imbalance that is causing considerable stress within the population (see

Yardley, 2005). There has long been a social bias favoring male children in

China, which has resulted in the widespread practice of mothers opting for an

abortion if the fetus is a girl. The problem is compounded by strict regulations

placed on families by the Chinese government aimed at limiting population

growth by reducing the number of births per couple to one. By 2005, all of

this resulted in a significant imbalance between the genders, with boys out-

numbering girls in some areas 134 to 100. There are long-term economic

implications to this as well. The growing Chinese economy will require a

stable labor force for years to come. But the reduction in Chinese fertility

(defined as births per female), plus the reduced number of women available

to give birth, could cause an eventual steep drop in the youthful working-age

population. This gender imbalance had been slowly accumulating since the

Chinese government enacted their population-control measures in the 1970s,

and the government eventually reacted to the accumulated imbalance, fearing

an eventual ‘‘baby bust.’’ This is a classic situation of a feedback process that

is responding not to the incremental inputs of more boys being born than

girls, but to the accumulated result of these incremental inputs summed up

over many years. One can use the �−1 operator to model such processes.

Returning now to an electoral example as depicted in Figure 3.5, we can

say that the feedback process is responding not to the daily acts of the cam-

paign workers interacting with potential voters, but rather the accumulated

success of these contacts. This can be a general electoral process and not

one relating only to the Iraqi election example used earlier. Feedback that

occurs to enforce the community norms in response to a political campaign

can be based on how many new voters are formed by the campaign activity

over a long period of time. When the accumulated new voting support

grows in the population, the community responds to repress this growth, as

operationalized by the parameter −m, which appears in the feedback loop.
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The system defined in Figure 3.5 can be expressed algebraically using

Mason’s Rule, as is shown in Equation 3.15:

Vt =Ct½ðp�−1=ð1+ pm�−1Þ� ½3:15�

Rearranging Equation 3.15 yields Vtð1+ pm�−1Þ=Ctp�
−1, which then

simplifies to Vt + pm�−1Vt =Ctp�
−1. Rearranging this gives us Equa-

tion 3.16:

Vt =Ctp�
−1 − pm�−1Vt ½3:16�

At this point, we want to eliminate the �−1 in Equation 3.16. We do so

by multiplying both sides of the equation by �, which gives us �Vt =
Ctp��−1 − pm��−1Vt: Since � and �−1 are inverse operations, they

cancel each other, leaving us with the algebraically tractable statement

found in Equation 3.17:

�Vt =Ctp− pmVt ½3:17�

Operationalizing the � operator as �Vt =Vt+1 −Vt and then rearranging

Equation 3.17 gives us our final form of the model, stated here as Equation

3.18:

Vt+1 = pCt +Vt½1− pm�; ½3:18�

a first-order linear difference equation with constant coefficients.

It is useful to compare Equation 3.18 with Equation 3.3 (from Figure

3.1), which is repeated for convenience below:

Vt+1 = pCt+1 − pmVt ½3:3�

Note that both the summation operator and the delay operator placed

somewhere within a system containing feedback produce a first-order time-

structured system. The placement of the variables in Equations 3.18 and 3.3

is the same, in the sense that both Ct and Vt appear on the right-hand sides

of both equations (although note the difference in time scripts for the vari-

able Ct in both equations). But the arrangement of the parameters is dif-

ferent for both equations, and this reflects differences in the social theory

underlying the separate models.

It is now especially useful to see what happens if one places both a sum-

mation operator and a delay operator in the system at the same time. This

could easily be justified from a substantive point of view. If the feedback

reacts to the accumulation along the forward path, and if there is a delay in

the activity of the feedback, we could specify our model as in Figure 3.6. In

our campaign example, this might mean that the norms of the neighborhood

would act to repress the success of the campaign activity after a delay. In
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practical terms, neighborhood organizations would respond with their own

campaign activities that would be aimed at counteracting the original vote-

mobilization campaign, but these response activities would occur only after

the accumulated successes of the original campaign are noted by neighbor-

hood leaders. There would be a delay in the response since it would take the

neighborhood leaders time to organize their response efforts.

Figure 3.6 can be phrased algebraically as Equation 3.19 using Mason’s

Rule:

Vt =Ct½p�−1=ð1+ pmE−1�−1Þ� ½3:19�

Working through the algebra of Equation 3.19 is a process similar to that

used for Equation 3.15, with the exception of the inclusion of the E−1 oper-

ator. Rearranging Equation 3.19 yields Equation 3.20:

Vt + pmE−1�−1Vt =Ctp�
−1 ½3:20�

Rearranging, multiplying through by �, and then operationalizing the E−1

results in Equation 3.21:

�Vt = pCt − pmVt−1 ½3:21�

Now we operationalize the � on the left-hand side, rearrange, and then

finally multiply through by E to advance all the time scripts to obtain our

final version of the model, shown as Equation 3.22:

Vt + 2 = pCt+1 +Vt+1 − pmVt ½3:22�

Equation 3.22 is a second-order linear difference equation with constant

coefficients. Thus, by placing both a summation operator and a delay opera-

tor within the same system loop, we increased the order of the model by one.

In Equation 3.22, the term pCt+1 acts to drive the second-order system in

Vt: If the campaign activity stops such that Ct goes to zero, then the output

will begin to decay gradually, as is determined by the second-order system

+ p ∆−1
X2X1

X3

E −1−m

Vt Ct 

Figure 3.6 A Discrete-Time Summation Operator in the Forward Path

Combined With a Delay Operator on the Feedback Path
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Vt+2 =Vt+1 − pmVt: This is an aspect of system response (see, in par-

ticular, Cortés et al., 1974, Part 3).

A Note Regarding Additive Constants

In the previous section, I introduced the idea of including an additive con-

stant in a model using graph algebra. Since it is possible to write a model such

that an isolated constant may interact with a time operator, it is worth summar-

izing the observations made earlier regarding how some common time opera-

tors affect isolated constants. For example, when a delay or advance operator

(E or E−1Þ combines with an isolated constant (i.e., without the multiplicative

presence of a time-dependent variable), then the isolated constant is not

affected by the time operator. In such a situation, the time operator can be

ignored. For example, E−1r = r, where r is a constant. On the other hand, the

difference operator, �, yields a zero when it interacts with an isolated

constant, since constants do not change with respect to time. Thus, �r = 0.

An Estimated Example: Labor Union Membership

It is natural to ask how one would estimate complex models that are devel-

oped using graph algebra. As can be seen with the simple examples in this

chapter, the use of graph algebra can very quickly lead to models with non-

linearities in the parameters, in the sense that parameters often get multi-

plied by (or are otherwise combined with) other parameters. More complex

graph algebra models than those shown in this chapter are also easily de-

rived, and it should be clear that the standard approach to the linear regres-

sion model where one separable parameter exists for each independent

variable in a list often will not work.

There are, indeed, a number of ways to estimate such complex models.

The approaches vary in difficulty from extremely simple to quite challeng-

ing. The approach that is best for any given situation depends on the com-

plexity of the model and, to some extent, the researcher’s commitment to

finding estimates for the model’s parameters. If the model is highly non-

linear and complex, but it has the potential to make a big impact on a given

audience, then a researcher will want to invest more effort in estimating the

parameters. Sometimes this will require significant programming, and some

readers may want to examine some of my own efforts in this regard (Brown,

1991, 1995a). However, very often the matter of estimating graph algebra

models can be handled with little more effort than with ordinary linear

regression. I work through one such example here using two separate ap-

proaches to ordinary least squares.
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Let us say that we are interested in the campaign to recruit new members

to labor unions that occurred in the United States from 1930 through 1970,

which covers the most significant period of labor union growth in the 20th

century. The data for this period are shown in Table 3.1 and are obtained

from the Historical Statistics of the United States (Millennial Edition). In

the example worked out here, the output is labor union membership, and

the input is the number of workers involved in work stoppages as a percent-

age of the total labor force. I explain the rationale behind using these vari-

ables in the model below. I do not use the variable for the number of work

stoppages in the model, although I include it in Table 3.1 so that readers can

see how the number of stoppages corresponds with the number of workers

involved in the stoppages.

If one is interested in arguing that growth in labor union membership is

a first-order process, where new growth comes from an expansion of the

existing pool of unionized workers, then one might begin with a statistical

model of an autoregressive process. This can be accomplished as with

Equation 3.23. The error term is omitted for simplicity.

Labort+1 = β0 +β1Labort ½3:23�

The graph algebra representation of this model is shown as Figure 3.7.

Note that there are no variable inputs to the left of the system in Figure 3.7.

That is, nothing outside of Labort is driving it. The output is simply respon-

ding to itself over time via a feedback process.

We can see how well this model fits the data using a simple bivariate

regression. The scatterplot of labor union membership on the lag of labor

union membership is shown in Figure 3.8. For this plot, R2 is 0.9,

β0 = 1:55, and β1 = 0:94. Using these values and a reasonable initial con-

dition, we can ‘‘shoot’’ a difference equation through the data, as is shown

in Figure 3.9.

But now let us model this as a system with an input. Let us say that the

growth of the labor union movement was a direct response to the activity of

union members who were activists. One measure of the number of union

members who are the most active in union functions is the working popula-

tion that is involved in work stoppages, here measured as a percentage of

the total work force. These people will be located in picket lines, for exam-

ple, and many of them will be active in trying to encourage other workers to

support their cause. We can think of these people as similar to the campaign

activists in our previous voter-mobilization model. Using a standard sta-

tistical approach, we can incorporate this input into the graph algebra as in

Figure 3.10. Our model now becomes

Labort+1 = β0 + β1 Labort +β2 Activistst+1: ½3:24�
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TABLE 3.1

Labor Union Membership in the United States From 1930 Through 1970

Year Labor Union Membersa Work Stoppagesb Activitistsc

1930 6.8 183 0.8

1931 6.5 342 1.6

1932 6.0 324 1.8

1933 5.2 1,170 6.3

1934 5.9 1,470 7.2

1935 6.7 1,120 5.2

1936 7.4 789 3.1

1937 12.9 1,860 7.2

1938 14.6 688 2.8

1939 15.8 1,170 3.5

1940 15.5 577 1.7

1941 17.7 2,360 6.1

1942 17.2 840 2.0

1943 20.5 1,980 4.6

1944 21.4 2,120 4.8

1945 21.9 3,470 8.2

1946 23.6 4,600 10.5

1947 23.9 2,170 4.7

1948 23.1 1,960 4.2

1949 22.7 3,030 6.7

1950 22.3 2,410 5.1

1951 24.5 2,220 4.5

1952 24.2 3,540 7.3

1953 25.5 2,400 4.7

1954 25.4 1,530 3.1

1955 24.7 2,650 5.2

1956 25.2 1,900 3.6

1957 24.9 1,390 2.6

1958 24.2 2,060 3.9

1959 24.1 1,880 3.3

1960 23.6 1,320 2.4

1961 22.3 1,450 2.6

1962 22.6 1,230 2.2

1963 22.2 941 1.1

1964 22.2 1,640 2.7

1965 22.4 1,550 2.5

1966 22.7 1,960 3.0

1967 22.7 2,870 4.3

1968 23.0 2,649 3.8

1969 22.6 2,481 3.5

1970 22.6 3,305 4.7

a. Labor union membership as a proportion of total labor force.

b. Number of work stoppages.

c. Number of workers involved in work stoppages as a percentage of total labor force.
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Let us now model this process as we did in the voter-mobilization example

developed earlier, but with a different twist in the feedback path. Borrowing

from the earlier discussion, we can say that the success of the labor union

E −1

Labort 

β1

β0

+

Figure 3.7 Graph Algebra of a Simple Autoregressive Process
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organizing efforts will depend on the number of activists that are out there

on the street trying to gain the attention of other workers. Thus, the activists

themselves will be a true input that will be transformed proportionally (with

respect to their own numbers) into new labor union members. But as labor

union organizing efforts continue to make inroads, some proportion of those

newly activated will join with the other activists to encourage workers to

mobilize as well. Some of this will happen simply by the fact that the workers

not yet mobilized will see the ranks of the mobilized workers growing, and

they will want to join the mobilized ranks because of this. Thus, we will have

a positive feedback loop, which is different from what we had in, say, Figure

3.3. This can now be depicted using graph algebra as in Figure 3.11.

The graph algebra for this model yields Equation 3.25:

Labort+1 = β0 + pmLabort + pActivistst+1 ½3:25�

The reduced-form version of Equation 3.25 is still Equation 3.24, but

now we need to determine the values of parameters p and m. By comparing
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Figure 3.9 Union Membership in the U.S. Labor Force
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Equations 3.24 and 3.25, we note that β1 = pm and β2 = p. If we run Equa-

tion 3.24 in a multiple regression, we find that β1 = 0:944 and β2 = 0:227.

Thus, we can now solve for the parameter on our feedback loop by dividing

0.944 by 0.227, and m= 4:159. The fit for this model is 0.97.

Our remaining problem is that while we do have the point estimates for

our parameters, we do not yet have standard errors for those point estimates.

It is important to include statistical tests for the estimated parameter values

in nearly all situations. Thus, we have to use an estimation program that is

different from a normal linear regression program to get the parameter esti-

mates as well as their standard errors (and the associated P values). In many

situations such as this, one can use PROC MODEL in SAS to perform this

analysis easily using ordinary least squares. The exact statements that would

give all the relevant statistical outputs using PROC MODEL would be as

follows:

E −1

Labort Activistst 

β1

β2

β0

+

Figure 3.10 Graph Algebra of a Simple Reduced-Form

Autoregressive Process

+ +p

m E −1

Labort Activistst 

β0

Figure 3.11 Graph Algebra of a Simple Autoregressive Process

40



In the above code, LABOR is the data set that contains the variables shown

in Table 3.1, LABORUN is the unionized work force as a proportion of the

total work force, LLABORUN is the lag of LABORUN, and STOPPC is the

number of workers involved in work stoppages as a percentage of the total

labor force. This model produces a predicted path as shown in Figure 3.12.

This example is quite simple, and researchers would normally want to

specify a model of union membership growth more fully. But the basics of

how to estimate many such models (or at least one approach to this) should

now be clear. Another aspect that is worth mentioning is that researchers

will want to check for (at least) first-order autocorrelation within the error

term of the model. If this is discovered, there are different philosophies of

what to do about it. One approach is to deal with it statistically (see, e.g.,

Ostrom, 1990). Such approaches often involve transforming the variables

such that the autocorrelation is eliminated, and there are some situations

in which this may be an appropriate plan of attack. But some view this

approach as potentially comparable to eliminating the evidence at the scene

of a crime (see Brown, 1991, pp. 203–205). If autocorrelation is present in

the error term, then something systematic is escaping the model. Another

way of looking at this is that autocorrelation is a sign of specification error.

In situations in which one has tried all reasonable specification possibilities,

then correcting the autocorrelation problem with a statistical approach may

be the only option. But since graph algebra offers so much flexibility in

terms of coming up with new and innovative algebraic formulations for a

model, some theorists who work with graph algebra prefer to go back to the

drawing board, so to speak, when faced with autocorrelation in the error

term. In such situations, statistical approaches to dealing with autocorrela-

tion are avoided, and new model specifications are derived that more effec-

tively capture all of the systematic components that exist in the data.

With respect to working with reduced-form models, not all graph algebra

models can be boiled down to a reduced-form version suitable for relatively

easy estimation. But when this does happen, and if one estimates a reduced-

form version of a model and then uses the parameter values for that reduced-

form version (e.g., the βs in Equation 3.24) to derive the model’s true

parameters that are embedded within the reduced-form parameters (as with

PROC MODEL DATA=LABOR;

ENDOGENOUS LABORUN;

EXOGENOUS LLABORUN STOPPC YEAR;

PARMS P M B;

LABORUN= (P∗STOPPC)+ (P∗M∗LLABORUN)+B;

FIT LABORUN/OLS OUT=LABOROUT OUTPREDICT;
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Equation 3.25), it may be that more than one graph algebra specification can

be reduced to the given reduced form. In fact, we have already seen this hap-

pen more than once in this chapter. For example, the graph algebra of Figure

3.10 produces the same reduced-form model as the one shown in Figure

3.11. Compare also Equations 3.7 and 3.9. Which one is correct when the

reduced form is the same?

This is impossible to determine statistically. The correct model in this

instance needs to come from social and political theory, not numbers. One

works with graph algebra to translate the best theory possible into a mathe-

matical form. After this is done, the model is sometimes reducible to a form

that can be estimated using a commonly available statistical package. But as

with all such models, it is the original model that is isomorphic to the theory

that is being tested, and it is with the defense of that original model that a

researcher would normally place his or her efforts. In a situation in which the

graph algebra model stands on its own and is not reducible, the problem of

competing interpretations vanishes. We will return to this issue when we

examine multiple equation systems, such as Richardson’s arms race model.

1950 1960 197019401930

0

10

20

30

Year

L
ab

o
r 

u
n

io
n

 m
em

b
er

sh
ip

Figure 3.12 Union Membership Driven by Activists
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