
23  

OVERVIEW
Chapter 1 provided a broad introduction to database
usage in organizations and database technology. You
learned about the characteristics of business databases,
essential features of database management systems
(DBMSs), architectures for deploying databases, and
organizational roles interacting with databases. This
chapter continues your introduction to database man-
agement with a broad focus on database development.
You will learn about the context, goals, phases, and tools
of database development to facilitate the acquisition of
specific knowledge and skills in Parts 3 and 4.

Before you can learn specific skills, you need to
understand the broad context for database develop-
ment. This chapter presents a context for databases
as part of an information system. You will learn about
components of information systems, the life cycle of
information systems, and the role of database develop-
ment as part of information systems development. This
information systems context provides a background for
database development. You will learn the phases of da-
tabase development, the skills used in database devel-
opment, and software tools that can help you develop
databases.

Learning Objectives
This chapter provides an overview of the database development
process. After this chapter, the student should have acquired the
following knowledge and skills.
• Explain the steps in the information systems life cycle
• Describe the role of databases in an information system

• Explain the goals of database development
• Understand the relationships among phases in the database

development process
• Describe features typically provided by CASE tools for database

development

Introduction
to Database
Development

2
chapter

Mannino_Ch02.indd 23 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

24  Part 1 Introduction to Database Environments

2.1 INFORMATION SYSTEMS

FIGURE 2.1
Overview of Student Loan
Processing System

Student Loan
Processing

System

Loan Applications

Payments Statements

Status
Changes

Cash
Disbursements

DATABASE

Delinquency
Notices

INPUTS OUTPUTS

PROCESSES

ENVIRONMENT
ENVIRONMENT

Databases exist as part of an information system. Before you can understand database
development, you must understand the larger environment that surrounds a database.
This section describes the components of an information system and several method-
ologies to develop information systems.

2.1.1 Components of Information Systems
A system is a set of related components that work together to accomplish defined
objectives. A system interacts with its environment and performs functions to accom-
plish objectives. For example, the human circulatory system, consisting of blood, blood
vessels, and the heart, makes blood flow to various parts of the body. The circulatory
system interacts with other systems of the body to ensure that the right quantity and
composition of blood arrives in a timely manner to various body parts.

An information system is like a physical system (such as the circulatory system)
except that an information system manipulates data rather than a physical object like
blood. An information system accepts data from its environment, processes data, and
produces information for decision making. For example, an information system for
processing student loans (Figure 2.1) helps a service provider track loans for lend-
ing institutions. This system’s environment consists of lenders, students, and govern-
ment agencies. Lenders send approved loan applications, and students receive cash
for school expenses. After graduation, students receive monthly statements and remit
payments to retire their loans. If a student defaults, a government agency receives a
delinquency notice.

Databases provide long-term memory for information systems, an essential role.
The long-term memory contains entities and relationships. The database in Figure 2.1
contains data about students, loans, and payments to generate statements, cash dis-
bursements, and delinquency notices. Information systems without permanent mem-
ory or with only a few variables in permanent memory are typically embedded in a
device to provide a limited range of functions rather than an open range of functions
as business information systems provide.

Databases are not the only components of information systems. Information sys-
tems also contain people, procedures, input data, output data, software, and hardware.
Thus, developing an information system involves more than developing a database, as
discussed in the next subsection.

2.1.2 Information Systems Development Process
Figure 2.2 shows the phases of the traditional systems development life cycle. The
phases of the life cycle are not standard. Different authors and organizations have

Mannino_Ch02.indd 24 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 2 Introduction to Database Development  25

proposed from 3 to 20 phases. The traditional life cycle, known as the waterfall model,
contains sequential flow in which the result of each phase flows to the next phase. The
traditional life cycle is mostly a reference framework. For most systems, the boundary
between phases overlaps with considerable backtracking among phases. However,
the traditional life cycle is still useful because it describes the activities and shows the
addition of detail until an operational system emerges. The following items describe
the activities in each phase.

• Preliminary Investigation Phase: Produces a problem statement and feasibility
study. The problem statement contains the objectives, constraints, and scope of
the system. The feasibility study identifies the costs and benefits of the system. If
the system is feasible, systems analysis begins with approval.

• Systems Analysis Phase: Produces requirements describing processes, data,
and environment interactions. This phase uses diagramming techniques
to document processes, data, and environment interactions. To produce
requirements, analysts study the current system and interview users of the
proposed system.

• Systems Design Phase: Produces a plan to implement the requirements
efficiently. Analysts produce design specifications for processes, data, and
environment interaction. The design specifications focus on choices to optimize
resources given constraints.

• Systems Implementation Phase: Produces executable code, databases, and
user documentation. To implement the system, developers generate code to
implement design specifications. Before making the new system operational,
project managers devise a transition plan from the old system to the
new system. To gain confidence and experience with the new system, an
organization may run the old system in parallel to the new system for a period.

• Maintenance Phase: Produces corrections, changes, and enhancements to an
operating information system. The maintenance phase commences when
an information system becomes operational. The maintenance phase is
fundamentally different from other phases because it comprises activities
from all the other phases. The maintenance phase ends after deploying a
replacement system and retiring the current system. Due to the high fixed costs
of developing new systems, the maintenance phase can last decades.

Preliminary
Investigation

Systems
Analysis

Systems
Design

Systems
Implementation

Operational
System

Feedback

Feedback

Problem Statement,
Feasibility Study

System Requirements

Design Specifications

Maintenance
Feedback

FIGURE 2.2
Traditional Systems
Development Life Cycle

Mannino_Ch02.indd 25 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

26  Part 1 Introduction to Database Environments

The traditional life cycle has been criticized for several reasons. First, an opera-
tional system is not produced until late in the process. When a system finally becomes
operational, the requirements may have already changed. Second, there is often a rush
to begin implementation so that a product is visible. In this rush, appropriate time may
not be devoted to analysis and design.

Several alternative methodologies have been proposed to alleviate these diffi-
culties. Spiral development methodologies perform life cycle phases for subsets of a
system, progressively producing a larger system until the complete system emerges.
Rapid application development methodologies delay producing design documents
until requirements are clear. Scaled-down versions of a system, known as prototypes,
clarify requirements. Prototypes can be implemented rapidly using graphical develop-
ment tools for generating menus, forms, reports, and other code. Implementing a pro-
totype allows users to provide meaningful feedback to developers. Often, users may
not understand the requirements unless they experience a prototype. Thus, prototyp-
ing can reduce the risk of developing an information system because it allows earlier
and more direct feedback about the system.

Agile development methodologies are another variation to traditional information
systems development. To mitigate rapidly changing software requirements and risks
caused by long development cycles, agile development methodologies promote active
user involvement and team empowerment, viewing software development as an empiri-
cal process. Requirements evolve in agile development, but the timescale of development
is fixed. Agile development involves iteration through small incremental releases with
testing integrated throughout the project lifecycle. Extreme programming, a prominent
agile development approach, features a set of primary technical practices and a set of
corollary technical practices. Scrum, a subset of agile, provides a set of concepts and prac-
tices for reducing software development overhead and maximizing productive work.

All development methodologies produce graphical models of the data, processes,
and environment interactions. The data model describes the entity types and relation-
ships. The process model describes relationships among processes. A process can pro-
vide input data used by other processes and use the output data of other processes.
The environment interaction model describes relationships between events and pro-
cesses. An event such as the passage of time or an action from the environment can
trigger a process to start or stop. The systems analysis phase produces an initial ver-
sion of these models. The systems design phase adds more details for the efficient
implementation of the models.

Even though models of data, processes, and environment interactions are neces-
sary to develop an information system, this book emphasizes data models only. In
many information systems development efforts, the data model is the most important.
For business information systems, development processes usually produce the process
and environment interaction models after the data model. Rather than present notation
for the process and environment interaction models, this book emphasizes form and
report development to depict connections among data, processes, and the environment.

2.2 GOALS OF DATABASE DEVELOPMENT
Broadly, the goal of database development involves the creation of a database that
provides an important resource for an organization. To fulfill this broad goal, the data-
base should serve a large community of users, support organizational policies, contain
high-quality data, and provide efficient access. The remainder of this section describes
the goals of database development in more detail.

2.2.1 Develop a Common Vocabulary
A database provides a common vocabulary for an organization. Before implementing a
common database, different parts of an organization may have different terminology.

Mannino_Ch02.indd 26 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 2 Introduction to Database Development  27

For example, there may be multiple formats for addresses, multiple ways to identify
customers, and different ways to calculate interest rates. After implementing a data-
base, communication can improve among different parts of an organization. Thus, a
database can unify an organization by establishing a common vocabulary.

Achieving a common vocabulary is not easy. Developing a database requires com-
promise to satisfy a large community of users. In some sense, a good database designer
shares some characteristics with a good politician. A good politician often finds com-
promise solutions with a level of approval and disapproval. In establishing a common
vocabulary, a good database designer also finds similar imperfect solutions. Forging
compromises can be difficult, but the results can improve productivity, customer sat-
isfaction, and other organizational performance measures.

2.2.2 Define Business Rules
A database contains business rules to support organizational policies. Defining busi-
ness rules is the essence of defining the semantics or meaning of a database. For exam-
ple, in an order entry system, an order must precede a shipment, a fundamental rule
of order processing. A database can contain integrity constraints to support this rule.
Defining business rules enables a database to support organizational policies actively.
This active role contrasts with the more passive role that databases have in establish-
ing a common vocabulary.

In defining business rules, a database designer must choose constraint levels to
balance the competing needs of different groups. Overly strict constraints may force
workaround solutions to handle exceptions. In contrast, loose constraints may allow
incorrect data in a database. For example, in a university database, a designer must
decide if a course offering can be stored without knowing the instructor. Some user
groups may want the initial entry of the instructor to ensure that course commitments
can be met. Other user groups may want more flexibility to be able to release course
schedules early. Forcing an entry of the instructor name at the time a course offering
is stored may be too strict. If a database contains this constraint, users may use work-
arounds by using a default value such as TBA (to be announced). The appropriate con-
straint (forcing an entry of the instructor name or allowing later entry) depends on the
importance of the needs of the user groups compared to the goals of the organization.

2.2.3 Ensure Data Quality
The importance of data quality is analogous to the importance of product quality in
manufacturing. Poor product quality can lead to loss of sales, litigation, and customer
dissatisfaction. Because data are the product of an information system, data quality
is equally important. Poor data quality can lead to poor decision-making about com-
municating with customers, identifying repeat customers, tracking sales, and resolv-
ing customer problems. For example, communicating with customers can be difficult
if addresses are outdated or customer names are inconsistently spelled on different
orders.

Data quality has many dimensions or characteristics, as depicted in Table 2-1. The
importance of data quality characteristics can depend on the part of the database in
which they are applied. For example, in the product part of a retail grocery database,
important characteristics of data quality may be the timeliness and consistency of
prices. For other parts of the database, other characteristics may be more important.

A database design should help achieve adequate data quality. When evaluating
alternatives, a database designer should consider data quality characteristics. For
example, in a customer database, a database designer should consider the possibility
that some customers may not have U.S. addresses. Therefore, the database design may
be incomplete if it fails to support non-U.S. addresses.

Achieving adequate data quality may require a cost-benefit trade-off. For example,
in a grocery store database, the benefits of timely price updates are reduced consumer
complaints and less loss in fines from government agencies. Achieving data quality

Mannino_Ch02.indd 27 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

28  Part 1 Introduction to Database Environments

can be costly both in preventative and monitoring activities. For example, to improve
the timeliness and accuracy of price updates, automated data entry may be used (pre-
ventative activity) as well as sampling the accuracy of the prices charged to consumers
(monitoring activity).

The cost-benefit trade-off for data quality should consider long-term and short-
term costs and benefits. Often the benefits of data quality are long-term, especially data
quality issues that cross individual databases. For example, consistency of customer
identification across databases can be a crucial issue for strategic decision-making. The
issue may not be important for individual databases. Chapter 14 on data integration
addresses issues of data quality related to strategic decision-making.

Organizations increasingly recognize that poor data quality can bring extra risks
to an organization especially related to litigation and government regulations. Many
businesses and government agencies have data governance organizations that deal
with data quality, privacy, and security issues in a broad context. For data quality
improvements, data governance initiatives typically focus on the development of data
quality measures, reporting the status of data quality, and establishing decision rights
and accountabilities. Chapter 16 provides details about data governance processes and
tools covering data quality issues.

2.2.4 Find an Efficient Implementation
Even if the other design goals are met, a slow-performing database will not be used.
Thus, finding an efficient implementation is paramount. However, an efficient imple-
mentation should respect the other goals as much as possible. An efficient imple-
mentation that compromises the meaning of the database or database quality may be
rejected by database users.

Finding an efficient implementation is an optimization problem with an objec-
tive and constraints. Informally, the objective is to maximize performance subject to
constraints about resource usage, data quality, and data meaning. Finding an efficient
implementation can be difficult because of the number of choices available, the inter-
action among choices, and the difficulty of describing inputs. In addition, finding an
efficient implementation is a continuing effort. Performance should be monitored and
design changes should be made if warranted.

TABLE 2-1
Common Characteristics of
Data Quality

Characteristic Meaning

Completeness Database represents all important parts of the information system.

Lack of ambiguity Each part of the database has only one meaning.

Correctness Database contains values perceived by the user.

Timeliness Business changes are posted to the database without excessive delays.

Reliability Failures or interference do not corrupt database.

Consistency Different parts of the database do not conflict.

2.3 DATABASE DEVELOPMENT PROCESS
This section describes the phases of the database development process and discusses
relationships to the information systems development process. The chapters in Parts 3
and 4 elaborate on the framework provided here.

2.3.1 Phases of Database Development
The goal of the database development process is to produce an operational database
for an information system. To produce an operational database, you need to define the

Mannino_Ch02.indd 28 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 2 Introduction to Database Development  29

three schemas (external, conceptual, and internal) and populate (supply with data) the
database. To create these schemas, you can follow the process depicted in Figure 2.3.
The first two phases are concerned with the information content of the database while
the last two phases are concerned with efficient implementation. These phases are
described in more detail in the remainder of this section.

Conceptual Data Modeling The conceptual data modeling phase uses data require-
ments and produces entity relationship diagrams (ERDs) for the conceptual schema and
each external schema. Data requirements can have many formats such as interviews
with users, documentation of existing systems, and proposed forms and reports. The
conceptual schema should represent all the requirements and formats. In contrast, the
external schemas (or views) represent the requirements of a particular usage of the
database such as a form or report, rather than all requirements. Thus, external sche-
mas are generally much smaller than the conceptual schema.

The conceptual and external schemas follow the rules of the Entity Relationship
Model, a graphical representation that depicts things of interest (entities) and rela-
tionships among entities. Figure 2.4 depicts an entity relationship diagram (ERD)
for part of a student loan system. The rectangles (Student and Loan) represent entity
types, and labeled lines (Receives) represent relationships. Attributes or properties
of entities are listed inside the rectangle. The underlined attribute, known as the
primary key, provides a unique identification for the entity type. Chapter 3 pro-
vides a precise definition of primary keys. Chapters 5 and 6 present more details
about the Entity Relationship Model. Because the Entity Relationship Model is not
fully supported by any DBMS, the conceptual schema is not biased toward any
specific DBMS.

Logical Database Design The logical database design phase transforms
the conceptual data model into a format understandable by a commercial DBMS.
The logical design phase is not concerned with efficient implementation. Rather,
the logical design phase is concerned with refining the conceptual data model. The refine-
ments preserve the information content of the conceptual data model while enabling
implementation on a commercial DBMS. Because most business databases are imple-
mented on relational DBMSs, the logical design phase usually produces a table design
compliant with the SQL standard.

The logical database design phase consists of two refinement activities: conver-
sion and normalization. The conversion activity transforms ERDs into table designs
using conversion rules. As you will learn in Chapter 3, a table design includes tables,
columns, primary keys, foreign keys (links to other related tables), and other con-
straints. For example, the ERD in Figure 2.4 is converted into two tables, as depicted in
Figure 2.5. The normalization activity removes redundancies in a table design using
constraints or dependencies among columns. Chapter 6 presents conversion rules,
while Chapter 7 presents normalization techniques.

Distributed Database Design The distributed database design phase marks a depar-
ture from the first two phases. The distributed database design and physical database
design phases are both concerned with an efficient implementation. In contrast, the first
two phases (conceptual data modeling and logical database design) are concerned with the
information content of the database.

Conceptual Data
Modeling

Logical Database
Design

Physical
Database Design

Distributed
Database Design

Entity Relationship Diagrams
(Conceptual and External)

Relational Database Tables

Distribution Schema

Internal Schema, Populated Database

Data Requirements

FIGURE 2.3
Phases of Database
Development

StdNo
StdName

Student

LoanNo
LoanAmt

Loan

Receives

FIGURE 2.4
Partial ERD for the Student
Loan System

Mannino_Ch02.indd 29 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

30  Part 1 Introduction to Database Environments

Distributed database design involves choices about the location of data and pro-
cesses to improve performance and provide local control of data. Performance can be
measured in many ways, such as reduced response time, improved data availability,
and improved control. For data location decisions, the database can be split in many
ways to distribute it among computer sites. For example, a loan table can be distrib-
uted according to the location of the bank granting the loan. Another technique to
improve performance is to replicate or make copies of parts of the database. Repli-
cation improves the availability of the database but makes updating more difficult
because multiple copies must be kept consistent.

Data location decisions should respect data ownership. An organization that con-
trols some part of a database should control access to its data. For example, a franchise
store should have control over access to its locally generated data. Distributed data-
base technology presented in Chapter 18 enables an organization to align data location
with data control.

For process location decisions, some of the work is typically performed on a server
and some of the work is performed by a client. For example, the server often retrieves
data and sends them to the client. The client displays the results in an appealing man-
ner. There are many other options about the location of data and processing that are
explored in Chapter 18.

Physical Database Design The physical database design phase, like the distributed
database design phase, is concerned with an efficient implementation. Unlike distributed
database design, physical database design involves performance at one computer location
only. If a database is distributed, physical design decisions must be made for each location.
An efficient implementation minimizes response time without using excessive resources
such as disk space and main memory. Because response time is difficult to directly mea-
sure, other measures such as the amount of disk input-output activity are often used as a
substitute.

In the physical database design phase, two important choices involve indexes and
data placement. An index is an auxiliary file that can improve performance. For each
table column, the designer decides whether an index can improve performance. An
index can improve performance on retrievals but reduce performance on updates. For
example, indexes on the primary keys (StdNo and LoanNo in Figure 2.5) can usually
improve performance. For data placement, a designer makes decisions about cluster-
ing to locate data close together on a disk. For example, performance might improve
by placing student rows near the rows of associated loans. Chapter 8 describes details
of physical database design, including index selection and data placement.

Splitting Conceptual Design for Large Projects The database development pro-
cess shown in Figure 2.3 works well for moderate-size databases. For large databases,
the conceptual modeling phase is usually modified. Designing large databases is a time-
consuming and labor-intensive process often involving a team of designers. The develop-

FIGURE 2.5
Conversion of Figure 2.4

CREATE TABLE Student
(StdNo INTEGER NOT NULL,

StdName CHAR(50),
…

PRIMARY KEY (StdNo));
CREATE TABLE Loan
(LoanNo INTEGER NOT NULL,

LoanAmt DECIMAL(10,2),
StdNo INTEGER NOT NULL,
…

PRIMARY KEY (LoanNo),
FOREIGN KEY (StdNo) REFERENCES Student);

Mannino_Ch02.indd 30 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 2 Introduction to Database Development  31

ment effort can involve requirements from many different groups of users. To manage
complexity, a divide and conquer strategy is used in many areas of computing. Dividing
a large problem into smaller problems allows the smaller problems to be solved indepen-
dently. The solutions to the smaller problems are then combined into a solution for the
entire problem.

View design and integration (Figure 2.6) is an approach to managing the complex-
ity of large database development efforts. In view design, an ERD is constructed for
each group of users. A view is typically small enough for a single person to design.
Multiple designers can work on views covering different parts of the database. The
view integration process merges the views into a complete and consistent conceptual
schema. Integration involves recognizing and resolving conflicts. To resolve conflicts,
it is sometimes necessary to revise the conflicting views. Compromise is an important
part of conflict resolution in the view integration process.

Cross-Checking with Application Development The database development pro-
cess does not exist in isolation. Database development sometimes occurs concurrently with
activities in the systems analysis, systems design, and systems implementation phases. The
conceptual data modeling phase is part of the systems analysis phase. The logical database
design phase is performed during systems design. The distributed database design and
physical database design phases are usually divided between systems design and systems
implementation. Most of the preliminary decisions for the last two phases can be made in
systems design. However, many physical design and distributed design decisions must
be tested on a populated database. Thus, some activities in the last two phases occur in
systems implementation.

To fulfill the goals of database development, the database development process
must be tightly integrated with other parts of information systems development.
To produce data, process, and interaction models that are consistent and complete,
cross-checking can be performed, as depicted in Figure 2.7. The information systems
development process can be split between database development and applications
development. The database development process produces ERDs, table designs, and
so on as described in this section. The applications development process produces pro-
cess models, interaction models, and prototypes. Prototypes are especially important
for cross-checking. A database has no value unless it supports intended applications
such as forms and reports. Prototypes can help reveal mismatches between the data-
base and applications using the database.

View Design

View Integration

Data Requirements

View ERDs

Entity Relationship Diagrams

Conceptual Data Modeling
FIGURE 2.6
Splitting of Conceptual Data
Modeling into View Design
and View Integration

Mannino_Ch02.indd 31 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

32  Part 1 Introduction to Database Environments

2.3.2 Skills in Database Development
As a database designer, you need two different kinds of skills, as depicted in Figure 2.8.
The conceptual data modeling and logical database design phases involve mostly soft
skills. Soft skills are qualitative, subjective, and people-oriented. Qualitative skills
emphasize the generation of feasible alternatives rather than the best alternatives. As
a database designer, you want to generate a range of feasible alternatives. The choice
among feasible alternatives can be subjective. You should note the assumptions in

FIGURE 2.7
Interaction between
Database and Application
Development

Database
Development

ERDs, Table Design,
...

Application
Development
Process Models,

Interaction Models,
Prototypes

System
Requirements

Data Requirements Application Requirements

Operational
System

Operational Database Operational Applications

Cross Checking

Conceptual Data
Modeling

Logical Database
Design

Physical
Database Design

Distributed
Database Design

Entity Relationship Diagrams

Relational Database Tables

Distribution Schema

Internal Schema, Populated Database

Soft

Hard

Design SkillsData Requirements

FIGURE 2.8
Design Skills Used in
Database Development

Mannino_Ch02.indd 32 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 2 Introduction to Database Development  33

which each feasible alternative is preferred. The alternative chosen is often subjective
based on the designer’s assessment of the most reasonable assumptions. Conceptual
data modeling is especially people-oriented. In performing data modeling, you need
to obtain requirements from diverse groups of users. Compromise and effective listen-
ing are essential skills in data modeling.

Distributed database design and physical database design involve mostly hard
skills. Hard skills are quantitative, objective, and data-intensive. A background in
quantitative disciplines such as statistics and operations management can be useful to
understand mathematical models used in these phases. Many of the decisions in these
phases can be modeled mathematically using an objective function and constraints.
For example, the objective function for index selection is to minimize disk reads and
writes with constraints about the amount of disk space and response time limitations.
Many decisions cannot be based on objective criteria alone because of uncertainty
about database usage. To resolve uncertainty, intensive data analysis can be useful.
The database designer should collect and analyze data to understand patterns of data-
base usage and database performance.

Because of the diverse skills and background knowledge required in different
phases of database development, role specialization can occur. Large organizations
typically provide specialization in database design roles between data modelers and
database performance experts. Data modelers perform conceptual data modeling and
logical database design phases. Database performance experts mostly perform tasks
in the distributed and physical database design phases. Because the skills are differ-
ent in these roles, the same person will not perform both roles in large organizations.
Small organizations typically lack role diversification with the same person fulfilling
multiple roles.

2.4 TOOLS FOR DATABASE DEVELOPMENT
To improve productivity in developing information systems, computer-aided soft-
ware engineering (CASE) tools have been created. CASE tools can help improve the
productivity of information systems professionals working on large projects as well
as end users working on small projects. Several studies have provided evidence that
CASE tools facilitate improvements in the early phases of systems development, lead-
ing to lower cost, higher quality, and faster implementations.

Most CASE tools support the database development process. Some CASE tools
support database development as a part of information systems development. Other
CASE tools target various phases of database development without supporting other
aspects of information systems development.

CASE tools can be classified as front-end or back-end tools. Front-end CASE tools
help designers diagram, analyze, and document models used in the database develop-
ment process. Back-end CASE tools create prototypes and generate code that can be
used to cross-check a database with other components of an information system. This
section presents features of CASE tools for database development and demonstrates
a commercial CASE tool, Aqua Data Studio, with a focus on database development.

2.4.1 Diagramming
Diagramming is the most important and widely used function in CASE tools. Most
CASE tools provide predefined shapes and connections among the shapes. The con-
nection tools typically allow shapes to be moved while remaining connected as though
glued. This glue feature provides important flexibility because symbols on a diagram
typically are rearranged many times.

For large drawings, CASE tools provide several features. Most CASE tools allow
diagrams to span multiple pages. Multiple-page drawings can be printed so that the
pages can be pasted together to make a wall display. Layout can be difficult for large

Mannino_Ch02.indd 33 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

34  Part 1 Introduction to Database Environments

drawings. Some CASE tools try to improve the visual appeal of a diagram by perform-
ing an automatic layout. The automatic layout feature may minimize the number of
crossing connections in a diagram. Although the automated layout is not typically
sufficient by itself, a designer can use it as a first step to improve the visual appearance
of a large diagram.

2.4.2 Documentation
Documentation is one of the oldest and most valuable functions of CASE tools. CASE
tools store various properties of a data model and link the properties to symbols on
the diagram. Example properties stored in a CASE tool include alias names, integrity
rules, data types, and owners. In addition to properties, CASE tools store text describ-
ing assumptions, alternatives, and notes. Both the properties and text are stored in the
data dictionary, the database of the CASE tool. The data dictionary is also known as
the repository or encyclopedia.

To support system evolution, many CASE tools can document versions. A version
is a group of changes and enhancements to a system that is released together. Because
of the volume of changes, groups of changes rather than individual changes are typi-
cally released together. In the life of an information system, many versions can be
made. To aid in understanding relationships among versions, many CASE tools sup-
port documentation for individual changes and entire versions.

2.4.3 Analysis
CASE tools can provide active assistance to database designers through analysis
functions. In documentation and diagramming, CASE tools help designers become
more proficient. In analysis functions, CASE tools can perform the work of a database
designer. An analysis function is any form of reasoning applied to specifications pro-
duced in the database development process. For example, an important analysis func-
tion is to convert between an ERD and a table design. Converting from an ERD to a
table design is known as forward engineering and converting in the reverse direction
is known as reverse engineering.

Analysis functions can be provided in each phase of database development. In the
conceptual data modeling phase, analysis functions can reveal conflicts in an ERD. In
the logical database design phase, conversion and normalization are common analysis
functions. Conversion produces a table design from an ERD. Normalization removes
redundancy in a table design. In the distributed database design and physical data-
base design phases, analysis functions can suggest decisions about data location and
index selection. In addition, analysis functions for version control can cross database
development phases. Analysis functions can convert between versions and show a list
of differences between versions.

Because analysis functions are advanced features in CASE tools, the availability of
analysis functions varies widely. Some CASE tools support little or no analysis func-
tions, while others support extensive analysis functions. Because analysis functions
can be useful in each phase of database development, no single CASE tool provides a
complete range of analysis functions. CASE tools tend to specialize by the phases sup-
ported. CASE tools independent of a DBMS typically specialize in analysis functions
in the conceptual data modeling phase. In contrast, CASE tools offered by a DBMS
vendor often specialize in physical database design phases.

2.4.4 Prototyping Tools
Prototyping tools provide a link between database development and application devel-
opment. Prototyping tools can be used to create forms and reports that use a database.
Because prototyping tools may generate code (SQL statements and programming lan-
guage code), they are sometimes known as code generation tools. Prototyping tools
are often provided as part of a DBMS. The prototyping tools may provide wizards to

Mannino_Ch02.indd 34 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 2 Introduction to Database Development  35

aid a developer in quickly creating applications that can be tested by users. Prototyp-
ing tools can also create an initial database design by retrieving existing designs from
a library of designs. This kind of prototyping tool can be very useful to end users and
novice database designers.

2.4.5 Commercial CASE Tools
Table 2-2 summarizes major CASE tools that provide extensive features for database
development. Each product in Table 2-2 supports multiple steps in database devel-
opment, although the quality, depth, and breadth of features vary across products.
In addition, most of the products in Table 2-2 provide several versions that vary in
price and features. All of the products are relatively neutral to a particular DBMS even
though two products are offered by organizations with major DBMS products. Besides
the full-featured products listed in Table 2-2, other companies offer drawing tools for
database diagrams.

ER Modeler in Aqua Data Studio To depict features of commercial CASE tools, this
section concludes with an overview of the ER Modeler component of Aqua Data Studio.
The ER Modeler provides excellent drawing capabilities, forward and reverse engineering

TABLE 2-2
Prominent CASE Tools for
Database Development

Tool Vendor Innovative Features

SAP PowerDesigner SAP Forward and reverse engineering for relational databases and
many programming languages; model management support for
comparing and merging models; application code generation;
UML support; business process modeling; XML code genera-
tion; version control; data integration support; physical design
support; support for industry-standard enterprise architecture
frameworks

Oracle SQL Developer
Data Modeler

Oracle Forward and reverse engineering for relational databases; data
warehouse modeling; code generation for other DBMSs; com-
pare and merge models; version control; name standardization;
design rules; impact analysis; wizards for view creation, view
discovery, and foreign key discovery

ERWin Data Modeler ERWin Forward and reverse engineering for relational databases;
model reuse tools; bi-directional compare; model change
impact analysis; schema and design analysis; version control;
sub modeling support; workgroup support

ER/Studio Data Archi-
tect

IDERA Forward and reverse engineering for relational databases;
automated diagram layout; visual data lineage; model man-
agement support for comparing and merging models; UML
support; version control; schema patterns for model reuse;
workgroup support; data integration support

Visible Analyst Visible Systems Forward and reverse engineering for relational databases and
XML; model management support for comparing and merging
models; version control; database view design; data ware-
house design diagrams; business requirements traceability;
process integration with data; Enterprise Edition supports
Zachman Framework for enterprise architecture design

Aqua Data Studio AquaFold Forward and reverse engineering, schema comparison, version
control, DBA tools, query builder, schema object management

Visual Paradigm Visual Paradigm Forward and reverse engineering, editors for tables and
views, generation of database patch scripts, trigger and stored
procedure support, support for project management, enter-
prise architecture, system modeling, business modeling, user
interface requirements, and software requirements in Visual
Paradigm tool

Mannino_Ch02.indd 35 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

36  Part 1 Introduction to Database Environments

tools, and schema comparison tools. In addition to the ER Modeler component, Aqua Data
Studio provides DBA tools for managing databases in a variety of DBMSs, a query builder,
and code generation. Thus, Aqua Data Studio supports traditional CASE tool features as
well as features to manage operations of databases.

The ER Modeler window contains panes for a drawing area, model objects, a pal-
ette of diagram shapes, an overview pane for managing large drawings, and an object
summary as shown in Figure 2.9. The drawing pane contains a number of drawing
sheets, each containing a database diagram. In Figure 2.9, the drawing pane contains
one sheet showing a database diagram for an order entry database. The Palette pane
shows entities (table, view, note, and region) and relationships (One to Many, One to
Many (NI), and Subcategory) that can be placed in a drawing sheet. The Overview
pane compresses the entire diagram with a red rectangle surrounding the visible part
of the diagram. The Model pane displays the objects in a diagram (tables and relation-
ships) with expansion to display details. In Figure 2.9, the Model pane expands tables
and relationships to show the objects in the diagram. The Object Properties pane lists
properties of the object selected in the drawing sheet. In Figure 2.9, the Object Prop-
erties pane lists properties of the entire diagram because no object in the diagram is
selected.

FIGURE 2.9
ER Modeler Window

Mannino_Ch02.indd 36 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 2 Introduction to Database Development  37

The ER Modeler provides multiple levels of detail in the drawing pane. Figure 2.9
shows the attribute level with table and column names. Relationship names can be
added to the attribute level display, as shown in Figure 2.9. The ER Modeler supports
less detail with the primary key level (table and primary key names) and the entity
level (just table names) and more detail with the physical schema level (data types
added to the attribute level), nullable columns (attribute level and null constraints),
and the comment level (attribute level and comments).

The ER Modeler provides a data dictionary with details of each object in a dia-
gram. To edit properties in the data dictionary, you use the properties window for a
specified object. Figure 2.10 displays the properties window for the Product table with
tabs separating different collections of properties. The General tab shows the column
names, data types, lengths and nulls allowed values for each column. Figure 2.11 dis-
plays properties for the PurchasedIn relationship with tabs for several collections of
properties. The General tab contains the most prominent properties, including cardi-
nality, type, and nulls.

FIGURE 2.10
Table Properties Window for
the Product Table

Mannino_Ch02.indd 37 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

38  Part 1 Introduction to Database Environments

This chapter initially described the role of databases in information systems and the
nature of the database development process. Information systems are collections of
related components that produce data for decision-making. A database provides the
permanent memory for an information system. Development of an information sys-
tem involves a repetitive process of analysis, design, and implementation. Database
development occurs in all phases of systems development. Because a database is often
a crucial part of an information system, database development can be the dominant
part of information systems development. Development of the processing and envi-
ronment interaction components are often performed after the database development.
Cross-checking between a database and applications connects the database develop-
ment process to the information systems development process.

After presenting the role of databases and the nature of database development,
this chapter described the goals, phases, and tools of database development. The goals
emphasize both the information content of the database and efficient implementa-
tion. The phases of database development first establish the information content of
the database and then find an efficient implementation. The conceptual data model-
ing and logical database design phases involve the information content of the data-
base. The distributed database design and physical database design phases involve

FIGURE 2.11
Relationships Properties
Window for the PurchasedIn
Relationship

CLOSING THOUGHTS

Mannino_Ch02.indd 38 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

Chapter 2 Introduction to Database Development  39

• System: related components that work together to accomplish objectives
• Information system: a system that accepts, processes, and produces data
• Waterfall model of information systems development: reference framework for

activities in the information systems development process
• Spiral development methodologies, rapid application development

methodologies, and Agile development methodologies to alleviate the problems
in the traditional waterfall development approach

• Role of databases in information systems: provide permanent memory
• Define a common vocabulary to unify an organization
• Define business rules to support organizational processes
• Ensure data quality to improve the quality of decision making
• Evaluate investment in data quality using a cost-benefit approach
• Find an efficient implementation to ensure adequate performance while not

compromising other design goals
• Conceptual data modeling to represent the information content independent of

a target DBMS
• View design and view integration to manage the complexity of large data

modeling efforts
• Logical database design to refine a conceptual data model to a target DBMS
• Distributed database design to determine locations of data and processing to

achieve an efficient and reliable implementation
• Physical database design to achieve efficient implementations on each computer

site
• Develop prototype forms and reports to cross-check among the database and

applications using the database
• Soft skills for conceptual data modeling: qualitative, subjective, and people-

oriented
• Hard skills for finding an efficient implementation: quantitative, objective, and

data-intensive
• Computer-aided software engineering (CASE) tools to improve productivity in

the database development process
• Fundamental assistance of CASE tools: drawing and documenting
• Active assistance of CASE tools: analysis and prototyping

efficient implementation. Because developing databases can be a challenging process,
computer-aided software engineering (CASE) tools have been created to improve
productivity. CASE tools can be essential in helping the database designer to draw,
document, and prototype the database. In addition, some CASE tools provide active
assistance with analyzing a database design.

This chapter provides a context for the chapters in Parts 3 and 4 and you might
want to reread this chapter after completing those parts of the book. The chapters in
Parts 3 and 4 provide details about the phases of database development. Chapters 5
and 6 present details of the Entity Relationship Model, data modeling practice using
the Entity Relationship Model, and conversion from the Entity Relationship Model
to the Relational Model. Chapter 7 presents normalization techniques for relational
tables. Chapter 8 presents physical database design techniques.

REVIEW CONCEPTS

Mannino_Ch02.indd 39 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

40  Part 1 Introduction to Database Environments

Because of the introductory nature of this chapter, there are no problems in this
chapter. Problems appear at the end of chapters in Parts 3 and 4.

PROBLEMS

Mannino_Ch02.indd 40 06/06/22 5:54 PM

Copyright (c)2024 by Sage Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

DO N
OT C

OPY, P
OST, O

R D
ISTRIBUTE

