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CHAPTER 2

DESCRIBING AND VISUALIZING SEQUENCES

Before turning to numerical and graphical sequence description, this chap-
ter introduces some basic concepts and definitions that are widely used in 
the sequence analysis (SA) literature and throughout this book. Note that 
this overview is selective in that it only covers concepts that are deemed 
relevant for the SA tools considered in later chapters. We will not, for 
instance, introduce the terminology of Markov models. Yet we will discuss 
most concepts and definitions that are pertinent to methods often applied in 
tandem with SA (e.g., cluster analysis, multinomial logistic regression, and 
event history analysis) in the respective chapters.

2.1 Basic Concepts and Terminology

Sequences are ordered lists of a discrete set of elements. In most social sci-
ence applications, sequences are temporally ordered, but SA can also be 
applied to “timeless” sequences such as preference orders, cognitive sche-
mas, or spatial orders (Cornwell, 2015). The set of elements constituting a 
sequence is called a state space or alphabet A. Following the notation of 
Elzinga and Liefbroer (2007), we can define a sequence x of length k as 
x= x1, x2,…xk  with x Ai Î  and i indicating the position of a state within 
the sequence x.

2.1.1 Sequences With Recurrent States

Most social science applications relate to recurrent sequences, where the 
elements of the alphabet can occur repeatedly in each sequence. Table 2.1 
illustrates such sequences by presenting partnership trajectories of length 
k = 6 . In our illustrative example of partnership biographies, the alphabet 
consists of the following states: single (S), living apart together (LAT), 
cohabiting (COH), and married (MAR).

x1 x2 x3 x4 x5 x6

Sequence A S S LAT COH COH MAR

Sequence B COH MAR MAR MAR COH COH

Table 2.1 Example of two sequences 
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2.1.2 Episodes and Transitions

In both sequences shown in Table 2.1, certain states appear multiple 
times. A series of consecutively repeated states, such as (S, S) and (MAR, 
MAR, MAR), is called an episode or spell. Note that even states that appear 
only once constitute episodes. According to this definition, Sequence 
A consists of four and Sequence B of three episodes.

Given the short length of the two example sequences, it is easy to recog-
nize the episodes at a glance and it is possible to display the sequences in a 
table. Longer sequences call for more condensed notation. Our pairfam 
example data are particularly suitable to illustrate this point. The data pro-
vide monthly accounts of family formation and labor market participation 
biographies covering ages 18 to 40 years. The following example uses 
information on the respondents’ partnership biographies applying the 
alphabet introduced earlier. This gives us recurrent sequences with a maxi-
mum of four different states and a length of k = 22×12= 264 months. 
A typical sequence can be written as follows:

LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-S-S-S-S-
S-S-LAT-LAT-LAT-LATLAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-
LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-
LAT-LAT-LAT-LAT-LAT-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-
S-S-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-
LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-
LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-S-
S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-
S-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-LAT-COH-COH-COH-
COH-COH-COH-COH-COH-COH-COH-COH-COH-COH-COH-
MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-
MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-
MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-
MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-
MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-
MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-
MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-
MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR-MAR

It is immediately evident that this notation, which is termed the state-
sequence (STS) format, makes it difficult to identify episodes within sequences. 
This can be easily solved by listing only one distinct state for every episode:

LAT-S-LAT-S-LAT-S-LAT-COH-MAR
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According to Gabadinho, Ritschard, Müller, and Studer (2011), this 
type of sequence representation is called distinct-successive-states 
(DSS) sequence format. It is an accessible account of the episodes and 
maintains the order of the original state sequence, but it lacks any infor-
mation on the duration of the observed episodes. If the researcher’s 
interest is only in the order of states, analyzing DSS sequences alone 
will suffice. In most applications, however, researchers are interested in 
the duration of episodes and the timing of events, and therefore want to 
utilize the full information stored in their data. Hence, avoiding the 
somewhat lengthy STS format, Aassve and colleagues (2007) have sug-
gested the much more parsimonious state-permanence-sequence (SPS) 
notation, which is similar to the DSS format but also provides informa-
tion about the length of a sequence’s episodes by simply adding the 
duration of each episode. Thus, our example sequence would be as 
follows:

(LAT,13)-(S,6)-(LAT,33)-(S,24)-(LAT,41)-(S,35)-(LAT,10)-(COH,14)-
(MAR,88)

As in DSS notation, here, it is easy to recognize the distinct episodes. 
Further, this notation shows that this 22-year-long sequence is clearly 
dominated by a marriage spell that lasted more than 7 years (88 months). 
The sequence also comprises two rather long LAT spells in the respondent’s 
early and mid-twenties, each lasting roughly 3 years.

In addition to showing the episodes—which can be understood as build-
ing blocks of sequences—DSS and SPS notation also refer to another 
important concept in SA, namely, transitions. The example sequence com-
prises nine episodes; this implies that it includes eight transitions. The 
transitions from being single to LAT and from LAT to single occur three 
times each, while we observe only one transition to cohabitation and mar-
riage. It is plausible to assume that the other sequences in the data show a 
similar pattern—that is, that “single” or “LAT” constitute origin or destina-
tion states of transitions considerably more often than “cohabitation” or 
“marriage.” Likewise, we can expect similarities in terms of transition tim-
ing, with transitions in and out of LAT relationships mainly occurring in the 
early and mid-twenties and transitions to marriage coming in the late twen-
ties or early thirties. The frequency and timing of transitions are not only 
interesting for deriving substantive insights into the process under study 
(see Section 2.3) but also relevant for data-driven approaches of measuring 
the similarity of sequences (see Chapter 3, Section 3.3) or assessing 
sequence complexity (see Section 2.5).
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2.1.3 Subsequences

In addition to episodes and transitions, subsequences are another impor-
tant component of sequences. According to Elzinga and Liefbroer (2007), 
a subsequence u  of sequence x is defined as an ordered list in which the 
elements of alphabet A , that is, the set of categorical states constituting the 
sequence, appear in the same order as in sequence x  (i.e., u xÍ ). All 
sequences share two specific subsequences: the empty subsequence l  and 
the original sequence x . As a result, sequence x = A, B, C already has eight 
distinct subsequences (l; ; ; ; ; ; ; )A B C AB AC BC ABC , which can be written 
as φ x( )= 8.

Within the SA toolkit, subsequences are used to measure the degree of 
sequence turbulence (see Section 2.5) and for pairwise sequence compari-
sons (see Chapter 3, Section 3.4). Generally speaking, the more subse-
quences a sequence has, the more complex it is, and the more subsequences 
two sequences share, the more similar they are.

Sequence data come in a variety of formats. The most common ones—the wide, 
long, and spell data format—are depicted in the following table. Software pack-
ages for analyzing social science sequence data differ in their ability to work with 
different data formats. TraMineR is the most versatile package and is well suited 
for working with sequence data stored in the episode, long, or wide format. 
Stata’s SQ (Brzinsky-Fay et al., 2006) requires the data to be stored in the long 
format, and SADI (Halpin, 2017) only works for sequence data stored in the 
wide format. Both R and Stata allow the data to be reshaped if it is not in the 
desired format (see companion webpage material for Chapter 2).

A Note on Data Formats

(a) Long format (b) Wide format (c) Episode/spell format

id obs. x id x1 x2 x3 id episode x start end

1 1 A 1 A A B 1 1 A 1 2

1 2 A 2 B C C 1 2 B 3 3

1 3 B 2 1 B 1 1

2 1 B 2 2 C 2 3

2 2 C

2 3 C
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2.2 Defining Sequences

As with all methods, the results of SA depend heavily on the researcher’s 
analytical decisions. Being a rather new method, SA—and optimal match-
ing in particular—has faced a lot of criticism since it was first introduced 
to the social sciences. Aisenbrey and Fasang (2010) have provided an 
excellent overview of the initial critique and subsequent methodological 
advances. Much of the early criticism was concerned with measuring simi-
larity between sequences. Although this is indeed a critical step in many SA 
applications, the first analytical choices must already have been made when 
the data are actually being defined as sequences. More specifically, the 
researcher has to decide on the states that should be included in the alpha-
bet, the point at which the sequences should begin and end, and the inter-
vals at which the states should be measured; it is also necessary to 
determine how to deal with gaps, missing data, and sequences of unequal 
length. Unfortunately, there are no recipes for all of these analytical steps. 
Instead, the process is iterative and should be mainly guided by theoretical 
and substantive considerations. As a general heuristic, however, we recom-
mend starting with a fine-grained analysis before turning to techniques that 
reduce the complexity in the data, such as collapsing rare states of the 
alphabet or aggregating monthly data into yearly data. In the following 
subsections, we discuss each of these analytical choices.

2.2.1 The Alphabet

The first analytical choice virtually always entails defining the alphabet 
(a.k.a. state space), that is, the set of categorical states that constitute 
the sequences. This step is largely determined by the data available to 
the researcher. In our example data on partnership biographies, for 
instance, the coding scheme allows us to distinguish between persons with-
out a partner and persons who are in a partnership but are not cohabiting 
(LAT). Depending on the research question, this might be an important dis-
tinction, but it can rarely be made because many data sources only provide 
information on coresidential partnerships (Raab & Struffolino, 2019). Our 
data would have allowed for an even more extended alphabet that not only 
distinguished between different partnership states but also considered the 
partner with whom each state was experienced. Depending on the number of 
considered partnerships—the maximum number of partners p observed in 
pairfam is 14—this would result in a very extended alphabet (S, LATp1, 
LATp2, . . ., LATp14, COHp1, . . ., COHp14, MARp1, . . ., MARp14) with 
sparsely occupied cells and arguably little potential for producing additional 
insights. This illustrates that a more nuanced alphabet is not necessarily 
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conducive to a better analysis unless the research question calls for such a 
fine-grained specification.

Therefore, the main goal of the alphabet specification stage is to properly 
balance parsimony and detail. Many applications achieve this goal by col-
lapsing categories if they occur rarely in the data or if they are considered 
irrelevant for theoretical reasons. In general, we consider this a reasonable 
strategy, because one of SA’s main goals is to reduce complexity in order 
to enable the identification of relevant empirical regularities. Further, this 
strategy also acknowledges the limited capacity of human working mem-
ory, which makes it demanding and tedious to cognitively process large 
alphabets. Finally, the emphasis in SA on data visualization also favors 
small alphabets, because it becomes very difficult to come up with print-
friendly qualitative color palettes that comprise more than nine states.

That said, we call for caution when lumping states together. While col-
lapsing states ensures that the analyst does not lose sight of the most salient 
patterns hidden in complex data, it may obscure meaningful regularities 
that point to important minorities or deviant subgroups that warrant further 
consideration. We therefore recommend starting with a comprehensive 
state space and then testing whether this can be sensibly reduced based on 
substantive considerations regarding similarities between states. This 
implies an iterative process of sequence definition and further analysis, 
such as optimal matching and cluster analysis. Of course, this procedure 
should be guided by theoretical and substantive considerations.

If SA is applied to secondary data, the researcher’s freedom to choose 
between different alphabet specifications is often extremely restricted and 
the differences in the results derived from diverse alphabets tend to be 
rather modest. The surprisingly weak impact of alphabet specification has 
even been shown with anthropological sequence data on figures in ritual 
dances, which leaves room for very divergent definitions of the coding 
scheme (Forrest & Abbott, 1990). The robustness of the results to changes 
in the alphabet can be assessed by inspecting the degree of resemblance of 
the dissimilarity matrices obtained by analyzing differently defined 
sequences. This can be achieved by inspecting the correlation of the matri-
ces by calculating the Mantel coefficient or applying permutation tests for 
the similarity of matrices (Forrest & Abbott, 1990; Piccarreta, 2017; 
 Piccarreta & Elzinga, 2013). We will illustrate these techniques in Chapter 5.

2.2.2 Sequence Length and Granularity

In previous sections, we broadly introduced sequences as ordered lists of 
(categorical) elements. In most applications, these lists are temporally 
ordered, which implies that sequences are defined with reference to some 
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sort of time axis. Building on a classification suggested in the literature on 
event history analysis (Blossfeld & Rohwer, 2001), we distinguish between 
a calendar time axis or a process time axis. In the first setting, the beginning 
and end of the sequences are defined by a fixed time point, such as a specific 
year, chosen by the researcher. In the second scenario, the start of the 
sequence is defined by the occurrence of a specific event, such as a transi-
tion like leaving school or a specific birthday. Employment trajectories, for 
instance, are often set to begin once the respondents leave the school 
(Brzinsky-Fay, 2007; Struffolino, 2019). According to this definition, the 
sequences for some respondents might start at age 16 while for others they 
may begin 2 or 3 years later. This, of course, has important repercussions for 
any subsequent analysis and requires a constant awareness on the part of the 
analyst of the age differences of the analyzed sample. In many applications, 
the process time is defined by referring to a transition that marks the begin-
ning of the observation period. In the second step, the analyst decides on the 
length of the respective observation period, such as the first 10 years after 
leaving school. Of course, sequences can also be defined with reference to 
their end date, such as entry into retirement or death (Raab et al., 2018).

The definition of the start and end dates and the granularity (measure-
ment accuracy of the process time; e.g., measured in years, months, weeks, 
or days) of the available data determine the length of the sequences. For 
instance, the example sequences used in this book cover a period of 22 
years (process time from age 18 to 40). Given that our data provide monthly 
information on status changes during this observation period, our sequences 
are of length k = 22×12= 264. Compared to most published social science 
studies using SA, these are rather long sequences. Even with our small 
alphabet of four different states, the data would allow for an overwhelming 
number of possible sequence realizations (i.e., 4 8.79 10264 185≈ × ). Although 
researchers will observe only a fraction of this sequence universe, this data 
setting means they are very unlikely to observe the same sequence multiple 
times. Indeed, our example data of 1,866 cases contains 1,834 unique 
sequence realizations for partnership biographies.

This illustrates nicely how long sequences allow for extensive heteroge-
neity. As was also true when specifying large alphabets, the heterogeneity 
of long sequences is neither bad nor good when seeking to conduct a sound 
analysis. It is rather a question of what the analyst is interested in. Most SA 
applications aim at reducing complexity by searching for patterns. Accord-
ingly, any analytical decisions made when specifying the sequences should 
be evaluated in light of this goal and the substantive question at hand. Some 
research questions call for nuance in order to identify rare regularities. In 
most applications, however, the goal is to uncover the most salient patterns 
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hidden in the data. If this applies, the researcher should consider reducing 
the complexity when defining the sequences.

Turning back to our example, one could argue that it is not relevant to 
capture every single fleeting affair and that researchers should instead focus 
on serious relationships that last longer than a couple of months. In general, 
there are two approaches to reducing complexity in such a scenario:

1. Data manipulation by recoding sequence states. This data manipula-
tion procedure should be based on a set of rules that is clearly com-
municated by the researcher. In our example, this strategy could be 
enacted by imposing a threshold rule that defines a minimum length 
for partnership spells. If a spell falls below this threshold value, it is 
discounted and the respective states coded as being single rather than 
in a relationship. Applying a threshold of 12 months as a minimum 
relationship duration only slightly reduces the number of distinct 
sequences from 1,834 to 1,787, but still leads to somewhat less com-
plex sequences. Note that this recoding strategy is different from the 
one discussed in the previous section insofar as it does not alter the 
size of the alphabet.

2. Reduction of the sequence length by aggregation. Unlike the first 
approach, this strategy entails both a substantive and a structural 
change in the sequence data, because it reduces sequence length. 
Executing this technique requires a rule specifying how the data 
should be aggregated. A predefined number of adjacent states (e.g., 
12 months) can be summarized according to the first, the last, or the 
most frequently observed state. In the SA literature, the process of 
aggregating successive positions is sometimes referred to as chang-
ing the time granularity of sequences. Applying this strategy to our 
example data, we aggregated monthly to yearly data using each 
year’s modal value. This reduced the sequence length from 264 to 22 
and the number of distinct sequences from 1,834 to 1,432, although 
the observation window still covered the same time period as before.

In simplifying the original data, neither approach fully utilizes the avail-
able information; they should thus be applied with some caution. In gen-
eral, the second strategy is more invasive and has a greater impact on 
further analysis. It also reduces the computing load and is therefore particu-
larly suitable for large data sets and lengthy sequences with complex alpha-
bets. Table 2.2 illustrates how the two approaches modify the original data 
for a subset of our partnership sequences.
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Because it changes the granularity of the data, the second approach has 
greater potential to reduce the complexity of the original data. Apart from 
the sequence depicted in the last row of Table 2.2, however, the results 
obtained by the two strategies are surprisingly similar, although the 
sequence data structure of the approaches varies considerably ( k = 264 vs. 
k = 22). Both approaches tend to reduce the number of LAT spells, because 
these relationships are characterized by short durations. Otherwise, the 
manipulated data are pretty similar to the original data and the changes are 
much less severe than might be expected. To give a comparison, changing 
the alphabet by recoding LAT relationships to being single would affect the 
sequences much more. 

2.2.3 Sequences of Unequal Length: Censoring and Missing Data

The examples considered up to this point only include sequences of equal 
length. In a few cases, the fact that some realizations of the same process are of 
different durations is an empirical finding that can be relevant to specific 
research questions: For example, when looking at the timing of democratization, 

Initial sequence
(states affected by the data 
reduction techniques 
printed in boldface) 

Strategy 1: recode
(only considers 
partnerships lasting 
at least 1 year)

Strategy 2: aggregate
(monthly to yearly data 
using modal values)

(S,89)-(LAT,26)-(COH,14)-
(LAT,6)-(S,34)-(LAT,4)-
(MAR,91)

(S,89)-(LAT,26)-
(COH,14)-(S,44)-
(MAR,91) 

(S,7)-(LAT,3)-(COH,1)-
(S,3)-(MAR,8) 

(LAT,13)-(S,6)-(LAT,33)-
(S,24)-(LAT,41)-(S,35)-
(LAT,10)-(COH,14)-
(MAR,88)

(LAT,13)-(S,6)-
(LAT,33)-(S,24)-
(LAT,41)-(S,45)-
(COH,14)-(MAR,88)

 (LAT,1)-(S,1)-(LAT,2)-
(S,2)-(LAT,4)-(S,3)-
(LAT,1)-(COH,1)-
(MAR,7)

(S,56)-(LAT,69)-(COH,47)-
(MAR,92)

(S,56)-(LAT,69)-
(COH,47)-
(MAR,92) 

 (S,5)-(LAT,5)-(COH,4)-
(MAR,8) 

(LAT,4)-(S,134)-(LAT,9)-
(COH,3)-(MAR,52)-
(LAT,5)-(COH,25)-
(MAR,32)

(S,150)-(MAR,52)-
(S,5)-(COH,25)-
(MAR,32) 

 (S,12)-(MAR,5)-
(COH,2)-(MAR,3)

Table 2.2  Comparison of different approaches toward defining sequence 
data 
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and accounting for prior political regimes’ histories, one of the outcomes of 
interest may be the very fact that countries differ with regard to the length of the 
democratization process (Wilson, 2014). Another example is coming from the 
survey methodology literature, which is increasingly analyzing paradata captur-
ing information about field processes. These data comprise information on 
contact histories of unequal length summarizing the number, timing, and out-
come of contact attempts. Recent applications have analyzed these process data 
using SA to gain valuable insight for improving survey monitoring and survey 
management (Kreuter & Kohler, 2009).

In the vast majority of the cases, however, the SA literature consists of 
studies that use data in which each unit of analysis is observed for the same 
period and the sequences do not have any missing value. This is not 
because the data are free of missing values; rather, it points to the absence 
of well-established ways of working with missing or censored data in SA 
(Cornwell, 2015; Piccarreta & Studer, 2018). For this reason, most studies 
do one of the following: They replace gaps with valid values using some 
sort of imputation, add an additional missing state to the alphabet, or delete 
cases with missing data.

In general, there are two sources of missing values in sequences: censor-
ing and gaps. Sequences are censored if not every unit of analysis was 
observed for the same time period. This is a typical scenario for panel stud-
ies, in which respondents often enter and leave the survey at different time 
points. While censoring pertains to the boundaries of sequences, missing 
values also manifest as gaps surrounded by valid information. In surveys, 
this is usually the result of temporary item or unit nonresponse. Simply 
abandoning the missing states would result in sequences of unequal length. 
Although the SA toolkit provides techniques for normalizing sequence 
distances, this is not a viable strategy for dealing with sequences of unequal 
length (Elzinga & Studer, 2019). A strategy of replacing missing values 
with a dedicated missing state in the alphabet also cannot be recommended. 
Although this produces sequences of equal length, it hampers subsequent 
analysis. In pairwise sequence comparisons, for instance, sequences shar-
ing many missing states would be considered similar, although the missing 
category is only a placeholder for all states of the alphabet (Piccarreta & 
Studer, 2018).

Halpin (2016a) has proposed a technical solution to this problem. Instead 
of treating missing states as identical, he introduced the notion of “non-self-
identical” missing values. According to this approach, sequences that share 
many missing values are regarded as being dissimilar to each other, which 
is much more plausible in most applications than the assumption that they 
are similar.
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Imputation techniques are another promising approach to handling miss-
ing values. One common method for dealing with gaps can be applied in the 
data manipulation stage of the analysis. Here, the researcher simply defines 
a set of rules to close gaps in the data. In our partnership biographies, for 
instance, if there was a gap of 5 months surrounded by two single episodes, 
it could be closed by imputing the state single. If there was a gap surrounded 
by different states, both states could be used to close the gap in a symmetric 
fashion. Yet, this strategy might result in underestimating the true volatility 
of sequences by simply replacing the missing states with the surrounding 
states, although the gap could actually point to one or multiple episodes spent 
in a different state. From a statistical point of view, this kind of data imputa-
tion is based on strong assumptions as it does not reflect the uncertainty 
about the imputed values. It simply assumes that the real values are known.

A statistically correct alternative requires multiple imputations for each 
missing observation. Multiple imputation techniques are widely available 
in the most commonly used statistical software packages but mainly refer 
to the imputation of cross-sectional data. Halpin (2016b) has proposed a 
tweaked imputation procedure specifically tailored for use with categorical 
time series data. The algorithm fills the elements of the gap successively by 
using the first valid values surrounding a missing state. In this stepwise 
procedure, the technique uses values that have already been imputed to 
predict the remaining missing values. Halpin has provided a dedicated 
software package for Stata, named MICT, that facilitates the application of 
his ideas. He has also tested how his imputation procedure compares to the 
alternative imputation procedures in a simulation scenario with a random 
missing pattern (missing at random = MAR). The results obtained by MICT 
tend to perform better in retaining the “longitudinal consistency” of the 
sequence data than traditional multiple imputation, multiple imputation by 
chained equations, or the more recently proposed two-fold fully conditional 
specification (Nevalainen et al., 2009) for imputing missing values in lon-
gitudinal data. MICT, however, is currently unable to include additional 
variables with missing values in the imputation model. This is a major 
drawback because standard imputation techniques call for a joint imputa-
tion of all missing values of the variables used in the analysis. Given that 
SA is virtually always applied in tandem with other multivariable methods, 
the occurrence of additional missing values is very likely, and analysts must 
rely on more established imputation procedures, despite the fact that MICT 
is arguably better suited for sequence data.

An additional problem arises if the dissimilarity matrices retrieved by 
analyzing multiple imputed sequence data should be examined further by 
some sort of cluster analysis. Contrary to regression analysis, multiple 



20   

imputation is rarely applied in the context of cluster analysis, and the litera-
ture still lacks well-established guidelines on how to proceed in such a case 
(see Basagaña et al., 2013, for some recommendations). In sum, the han-
dling of missing data in SA remains a problem that warrants further 
research. Given the lack of clear guidelines, most SA applications still 
pertain to the analysis of completely observed sequences and try to close 
gaps in the data manipulation stage of the project rather than in the context 
of a statistically sound imputation procedure.

2.3 Description of Sequence Data I: The Basics

A sound sequence analysis is based on a good descriptive understanding of 
the analyzed data. The basic description of sequence data does not require 
specific techniques as it mainly provides counts and averages of different 
sequence properties.

2.3.1 Time Spent In Different States and Occurrence of Episodes

An overview of the average time spent in the different states of the alpha-
bet as well as the average number of state-specific episodes is a good start-
ing point for describing the data. Using the monthly example data on 
partnership trajectories, Table 2.3 shows that the respondents in the sample 
spend 36% of the time in marriages (95 of 264 months), while the corre-
sponding figures for time spent in LAT relationships or coresidential unions 
are only half as high. Time spent outside relationships ranks between these 
two extremes. Although the respondents spent the shortest amount of time 
in LAT relationships, the corresponding number of episodes is (slightly) 
higher than for the other states. People experience more than twice as many 
LAT spells than marriage episodes (1.8 vs. 0.8) but spend only half the time 
in these partnerships, suggesting comparatively short average durations of 
approximately 2 years per LAT relationship.

2.3.2 Transition Rates

Once the average number of distinct episodes is known, the obvious next 
step is the examination of transitions between episodes and states. In the 
monthly sequence data, the average number of transitions is 4.3, whereas 
the same figure for the yearly data equals 3.3.

Moving beyond simple averages, transition rates between consecutive 
time points can provide even more insight into how the sequences unfold. 
In most social science applications, however, sequences are characterized 
by a considerable amount of stability. This means that most individuals do 
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not change their status between two observations of a categorical time 
series. Using sequence data of a finer granularity, such as monthly versus 
yearly data, further contributes to a low share of transitions between states. 
As a result, transition matrices for sequence data with recurrent states often 
are not very informative apart from demonstrating the salience of the con-
cept of path dependency.

For instance, the transition rates of both the monthly and yearly sequence 
data depicted in Table 2.4 show that only a (small) minority of people 
change their partnership status between two consecutive observations. That 
being said, the table also illustrates that coding the sequences with a yearly 
granularity produces slightly more interesting results. While for the 
monthly data, virtually all transitions are recorded on the main diagonal—
indicating stability in partnership status from one month to the next—the 
yearly data reveal more transitions between consecutive observations. Par-
ticularly in the case of LAT relationships, the transition matrix corroborates 
earlier findings on the rather temporary nature of this type of partnership by 
demonstrating that 32% of persons in LAT relationships are observed in a 
different status 1 year later. While 12% of these LAT relationships end in 
separation, 20% are further institutionalized, either as coresidential unions 
(16%) or marriages (4%).

Examining the transition rates of sequences stored in the DSS format can 
provide further insights by removing recurrent appearances of the same 
state in consecutive positions of the sequence. A transition matrix based on 
this format provides transition rates between episodes of distinct states. 
Accordingly, the cells on the diagonal equal zero. By definition, this 
approach yields higher transition rates between different states compared to 
the previous procedure, even with data of fine granularity.

The transition matrix for the monthly DSS sequence data shown in Table 2.5 
illustrates this point well. Interestingly, this matrix shows that more than half 

Table 2.3 Average time spent in different states and number of spells

State Time spent in state x in months Number of episodes

Mean SD Rel. freq. Mean SD

S 72.5 69.8 0.27 1.6 1.2

LAT 48.0 43.9 0.18 1.8 1.3

COH 48.6 53.3 0.18 1.0 0.8

MAR 95.0 78.9 0.36 0.8 0.5
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(57%) of those whose marriages ended swiftly moved on to the next relation-
ship without an intermediate single episode. When interpreting these results, 
one should be aware that the analysis of DSS transition matrices only examines 
movers, because all stayers are removed from the data.

2.3.3 State Distribution and Shannon Entropy At Different Positions

Although the tools introduced earlier build a strong descriptive founda-
tion, they are limited in the sense that they only produce aggregate indica-
tors summarizing entire sequences without providing information on how 
these sequences develop across time.1 The inspection of the state 

1 Although it would be possible to calculate transition matrices or other measures at different 
positions of the sequences, we do not consider this a very promising approach. The transition 
rates at different positions, for instance, are usually very low if the sequence length is not 
very small. In addition, and particularly in the case of long sequences, the transition rates 
at a specific position—such as from month 126 to 127—are not very meaningful from a 
substantive point of view.

State at t State at t + 1

Monthly granularity Yearly granularity

S LAT COH MAR S LAT COH MAR

S 0.98 0.02 0.00 0.00 0.81 0.14 0.04 0.01

LAT 0.02 0.96 0.02 0.00 0.12 0.68 0.16 0.04

COH 0.00 0.00 0.98 0.01 0.04 0.02 0.80 0.14

MAR 0.00 0.00 0.00 1.00 0.01 0.01 0.00 0.98

Table 2.4 Transition matrix of sequences stored in STS format

State at t State at t + 1

S LAT COH MAR

S 0.00 0.91 0.07 0.02

LAT 0.42 0.00 0.50 0.08

COH 0.20 0.12 0.00 0.68

MAR 0.44 0.46 0.11 0.00

Table 2.5 Transition matrix of sequences stored in DSS format
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distribution at different positions of the sequence addresses this limitation. 
Table 2.6 displays the distribution of partnership states at ages 18, 20, 24, 
28, 32, 36, and 40.

The table reveals that until their late 20s, most respondents report that 
they are currently without a partner. While singles remain a notable minor-
ity until the end of the sequences, marriage becomes the modal, or most 
prevalent, state at this age, and two thirds of the respondents indicate that 
they are married at age 40.

Table 2.7 complements these figures by describing the heterogeneity of 
the respective distributions using Shannon entropy. The entropy index S  is 
defined as

S p plog
i

a

i i
1
∑ ( )=− ×
=

where pi † denotes the proportion of cases in state i  and a  is the size of the 
alphabet (Gabadinho, Ritschard, Müller, & Studer, 2011). At a given posi-
tion of the sequence, S  equals 1 when each state of the alphabet is 
observed equally often and 0 when only one state is observed.

State Age

18 20 24 28 32 36 40

S 0.65 0.52 0.36 0.25 0.18 0.15 0.14

LAT 0.31 0.32 0.25 0.17 0.12 0.10 0.05

COH 0.03 0.11 0.23 0.25 0.22 0.15 0.13

MAR 0.01 0.05 0.17 0.33 0.48 0.60 0.68

Table 2.6 State distribution at selected positions

Age

18 20 24 28 32 36 40

Entropy 0.58 0.78 0.97 0.98 0.9 0.8 0.69

Table 2.7 Shannon entropy at selected positions

For our example data, the inversely u-shaped pattern of the entropy val-
ues substantiates the results reported in Table 2.7. The heterogeneity in the 
state distribution is lowest at age 18 and increases until the respondents are 
in their late 20s before it decreases again.
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Before turning to the visualization of sequences, a word of caution 
regarding the interpretation of state distributions is in order. State distribu-
tions depict aggregated cross-sectional snapshots at different positions of 
the sequence. They do not convey any direct information on how individual 
sequences unfold across time. In the monthly partnership sequences, for 
instance, an inspection of the state distributions across all positions of the 
sequence indicates that the share of singles never falls below 13%. A thor-
ough longitudinal inspection of the individual biographies, however, 
reveals that the share of persons who never experienced a partnership epi-
sode is less than 1%.

2.3.4 Modal and Representative Sequences

Some SA applications draw on the state distribution to report the modal 
sequence, that is, a sequence composed of the most prevalent states at each 
position of the sequence. In accordance with the results reported earlier, 
this sequence comprises only two of the four partnership states. Written in 
SPS notation, the sequence of modal states derived from the monthly state 
distributions is (S,102)-(MAR,162). Note that the modal sequence is of 
limited use because it is virtually always a hypothetical sequence based on 
aggregated cross-sectional state distributions that is not actually observed 
in the data.

Therefore, we recommend other approaches for identifying those 
sequences that best represent the data. These techniques are based on a 
matrix measuring the pairwise dissimilarities between sequences. Chapter 
3 introduces several different approaches for computing such dissimilarity 
matrices. Since there are a number of different takes on measuring sequence 
dissimilarities, the identification of a set of representative sequences hinges 
on the chosen dissimilarity measure. For now, however, it suffices to under-
stand that a dissimilarity matrix allows differentiating sequences that are 
(very) dissimilar to the remaining sequences in the data from those that are 
more central, that is, less dissimilar to the other sequences.

After obtaining the dissimilarity matrix, the identification of a set of 
representative sequences requires additional analytical choices. The analyst 
has to decide how many representative sequences should be extracted from 
the universe of observed sequences as well as which representativeness 
criterion should be used for the extraction. Based on these decisions, the 
algorithm identifies a subset of nonredundant sequences in an iterative 
procedure.

Table 2.8 displays a set of representative sequences using the example 
data on yearly partnership biographies. These sequences were extracted by 
applying the neighborhood density criterion. According to this criterion, 
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sequences are considered neighbors if their pairwise dissimilarity falls 
below a predefined threshold value—in this case, 10% of the maximum 
possible distance value. The share of neighboring sequences indicates the 
coverage of a sequence. We aimed at identifying a subset of nonredundant 
representative sequences with a total coverage of at least 25%. This crite-
rion was met after the extraction of eight sequences.2 The coverage of the 
first sequence depicted in Table 2.6 amounts to 5.7%. This means that every 
20th person in our data set is described accurately by a sequence compris-
ing a very short period without a partner (S,1) followed by a short LAT spell 
(LAT,2), which is converted into a stable marriage (MAR,19) already in the 
early 20s. Given that marriage was the modal state in the second half of the 
sequences, it comes as no surprise that all representative sequences end in 
marriages. That said, the table reveals a considerable level of variability in 
the pathways leading to this predominant destination state. Contrary to the 
first sequence, for instance, the second representative sequence is charac-
terized by a very long single spell (S,20).

2 Note that the representative sequences in Table 2.8 are sorted by coverage, whereas the 
algorithm extracted the sequences in a different order. As a result, the representative 
extracted last had a coverage of 2.7%, leading to a total coverage exceeding the threshold of 
25% by 2.7 percentage points.

Sequence Coverage Assigned

(S,1)-(LAT,2)-(MAR,19) 5.7 6.5

(S,20)-(MAR,2) 4.4 25.2

(S,4)-(LAT,1)-(COH,1)-(MAR,16) 3.8 5.3

(LAT,3)-(COH,2)-(MAR,17) 3.1 11.4

(S,2)-(LAT,2)-(COH,3)-(MAR,15) 2.7 17.1

(S,5)-(LAT,2)-(COH,2)-(MAR,13) 2.7 23.5

(COH,2)-(MAR,20) 2.6 3.0

(S,1)-(LAT,5)-(MAR,16) 2.3 8.0

Total Coverage 27.5 100.0

Table 2.8 Set of representative sequences
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Note that the algorithm assigns every sequence in the data set to its clos-
est representative even if the respective sequence does not meet the prede-
fined representativeness criterion. As a result, the share of sequences 
assigned to a specific representative usually exceeds the share of sequences 
that are covered by it (see Table 2.8). High discrepancies between the two 
values often suggest that many of the assigned sequences are not character-
ized that well by their representative. TraMineR provides more sophisti-
cated quality measurements than this simple visual inspection. For a 
detailed discussion of the identification and assessment of representative 
sequences, see the comprehensive introduction by Gabadinho, Ritschard, 
Studer, and Müller (2011).

This section clearly demonstrated that representative sequences are a more 
complex but also a much more useful tool for exploring and summarizing a 
large body of sequences compared to presenting a simple sequence of modal 
states. While we used this tool for tabular description, most applications use 
it to graphically illustrate sequence data—particularly if the data comprise 
too many cases to plot all sequences without visual artifacts (see Fasang & 
Liao, 2014, and Section 2.4.2 on relative frequency sequence plots in this 
chapter). Moreover, representative sequences are not usually extracted for the 
full data set but only for different subgroups, for instance, groups obtained 
after OM and cluster analysis or substantively interesting subpopulations, 
such as persons with different educational attainment or ethnic origin.

In doing so, many applications report only one single representative per 
group, the so-called medoid sequence. The medoid is defined as the most 
central object of a given subset of sequences, that is, it has the lowest sum 
of dissimilarities to all other sequences. Comparing the medoid partnership 
trajectory of women—(S,3)-(LAT,2)-(COH,4)-(MAR,13); coverage = 3.4—
to men’s medoid sequences—(S,7)-(LAT,4)-(COH,3)-(MAR,8); coverage = 
1—shows that the most notable differences occur at the beginning and the 
end of the observational window. Compared to the “medoid woman,” the 
“medoid man” remains single for 4 additional years during early adulthood 
and marries 5 years later.

2.4 Visualization of Sequences

The tabular inspection of sequences conveys a lot of information that can 
easily become hard to interpret for both the analyst and the recipients. This 
is due to the high level of complexity of sequence data, which arises from the 
categorical level of the measurement of sequences and from repeated meas-
urements per unit of analysis. Contrary to cross-sectional numerical data, 
sequences cannot be satisfactorily summarized by presenting the mean or the 
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standard deviation of a single numerical indicator such as income. Instead, a 
thorough description requires the exploration of the distribution of multiple 
categorical states at different positions of the sequence (see Tables 2.6 and 
2.7) as well as the inspection of sequence-specific composite measures. As a 
result, the tabular description of sequence data runs the risk of producing an 
overwhelming number of figures that, despite their accuracy, hamper the 
recognition of regularities in which the researcher is actually interested.

In view of this limitation, this chapter explores how graphical tools can 
complement the tabular description and demonstrates that they are fre-
quently capable of communicating the same level of information in a more 
efficient and effective manner (Healy & Moody, 2014; Tufte, 1983). Visu-
alization has played a prominent role in the SA literature since the prolif-
eration of dedicated software packages for Stata and R, and recent 
contributions constitute notable additions to the visualization toolkit 
(Bürgin & Ritschard, 2014; Fasang & Liao, 2014; Piccarreta, 2012). This 
section presents a small selection of those tools that we consider most use-
ful and that figure most prominently in the applied SA literature. We 
mainly draw on the excellent overviews provided by Brzinsky-Fay (2014) 
and Fasang and Liao (2014), to which we also refer for more detailed 
 coverage of sequence visualization.

Following Fasang and Liao (2014), we distinguish two groups of graphs 
for sequence visualization. Data summarization graphs (Section 2.4.1) 
aggregate and summarize the information stored in the sequences. These 
graphs visualize one or two dimensions of information stored in sequence 
data (Brzinsky-Fay, 2014) by presenting the different categories of the 
alphabet and providing some information on the (temporal) order of the 
observed states. Data representation graphs (Section 2.4.2) add a third 
layer of information by plotting individual sequences rather than only 
aggregated summary measures. As a result, they are richer in information 
but also more demanding for the viewer.

Using colors to depict the different states of the alphabet can simplify 
the interpretation of complex sequence graphs considerably. Although the 
increase in electronic publishing in recent years has contributed to the 
widespread use of colored figures, printing costs sometimes still prohibit 
the use of color in print outlets. Due to this common restriction, we illus-
trate how one might visualize sequence data in grayscale. While it is pos-
sible to produce most of the figures in grayscale, we recommend using 
color figures whenever possible. For guidance on choosing appropriate 
colors, see the contributions by Zeileis and colleagues (Zeileis et al., 2009; 
Zeileis et al., 2019). The companion website at https://sa-book.github.io 
provides further details on using predefined and optimized color palettes 
for visualizing sequences using HCL color palettes.
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Visualizing sequences in grayscale rather than in different colors restricts the 
options available to the analyst. Palettes of gray—like the one depicted in the 
following figure—are sequential palettes. 

That is, they suggest that the data convey some sort of ordinal information. 
SA applications, however, often work with categorical alphabets, and the 
notion of a hierarchy between states might result in distorted visualizations. 

Although the alphabet of partnership states analyzed in this book is also 
categorical, one could impose a hierarchy reflecting the partnership’s degree 
of institutionalization (Single < LAT < Cohabitation < Marriage). Accord-
ingly, the usage of a sequential palette of grays does not present much of a 
problem for this specific application. This is also true because the alphabet 
comprises only four different states. If the number of categories exceeds this 
level, gray palettes run the risk of becoming unsuitable for printing. Yet in 
some applications, the addition of shading lines might be a viable option for 
producing high-quality grayscale visualizations when facing larger alpha-
bets. The following example and figure are a good illustration of this 
approach. The initial alphabet of four partnership states is extended by add-
ing information on the parental status of the respondents. For each partner-
ship state, we distinguish between childless persons and parents. For married 
persons, we add even more nuance by differentiating parents with one child 
from parents with multiple children. This results in an alphabet of nine dif-
ferent states, which can be visualized by four “colors” (white and three 
shades of gray) depicting the partnership states and by shading lines indicat-
ing the parental status.

The companion website features detailed instructions on how to produce 
such a grayscale color palette in R. 

A Note on Grayscale Figures 

Single, no child

Single, child(ren)

LAT, no child

LAT, child(ren)

Cohabiting, no 
child
Cohabiting, 
child(ren)

Married, no child

Married, 1 child

Married, 2+ 
children
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The following sections complement Section 2.3 by presenting graphs cor-
responding to the tables presented earlier. If not indicated differently, the 
plots are based on the monthly partnership data. Except for the transition plot, 
which was made using the ggplot2 package (Wickham, 2016), all figures 
were generated with the TraMineR package’s visualization functions.

2.4.1 Data Summarization Graphs

Transition Plot

The transition plots in Figure 2.1 are based on transition matrices of yearly 
partnership data (see Table 2.4) using sequences stored in two different for-
mats. The left panel is based on STS sequence data and therefore is domi-
nated by high values on the main diagonal that indicate that even in modern 
societies, people rarely change their partnership status on a monthly basis. 
The right panel is based on DSS sequence data that do not allow for subse-
quent repetitions of the same state. Accordingly, the plot visualizes how the 
outflow transitions are distributed among the four partnership states.

Figure 2.1 Two transition plots of yearly partnership sequences
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The size of the circles and the intensity of the gray shading increase with 
the prevalence of transitions between the two depicted states. If the share 
of outflow transitions in a given row reaches a threshold of 10%, the circles 
are labeled accordingly. Compared to the tabular presentation, this kind of 
plot emphasizes the most prevalent transitions. Note, however, that neither 
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the transition matrices nor the transition plots provide any information on 
how many persons experience each transition. Similarly, it remains unclear 
when the transitions are taking place because the reported transition rates 
are averaged across all positions of the sequences. Screen presentations 
allow the researcher to address this issue by rendering transition plots at 
different positions of the sequences and displaying them sequentially, for 
example, as an animated GIF file (see companion website for an 
illustration).

Modal State Plot

In Section 2.3, we identified the modal sequence (S,102)-(MAR,162) for 
the entire sample of the example data. Without further information, the 
modal sequence contributes little to the understanding of the underlying 
data. Therefore, we strongly recommend adding a graphical depiction of 
the relative frequencies of the modal states at each position of the sequence.

Figure 2.2 demonstrates the added value of such an illustration. The 
figure not only displays the modal sequences for men and women, it also 
shows how the numerical dominance of the modal state(s) varies across 
sequence positions. For instance, in addition to showing that marriage is the 
modal state for women and men in their 30s, the figure also reveals that the 
dominance of this modal state is much more pronounced for women. Two 
thirds of the women are already married in their mid-30s, whereas the cor-
responding numbers for men never reach such a high level. Moreover, the 
plots show that the modal states at the beginning and the end of the 
sequences are more dominant, whereas the phase in between is character-
ized by more volatility—particularly for women.

State Distribution Plot

The state distribution plot (for an early application, see Blossfeld, 1987) 
represents the natural extension of the modal state plot. Technically speak-
ing, it visualizes the distribution of all states by plotting a series of stacked 
bar charts at each position of the sequence. Figure 2.3 represents two state 
distribution plots using sequence data on family formation with yearly and 
monthly granularity ( k 22=  vs. k = 264 ). Compared to the modal plot, 
Figure 2.3 provides additional insights by also displaying the distribution 
of the nonmodal states and using an enlarged alphabet that incorporates 
information on the parenthood status. At age 40, for instance, roughly half 
of the nonmarrieds are already parents.
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Although the aggregated yearly data are less accurate, they do not 
change the interpretation of the results. Based on the similarity of results 
and the fact that the yearly data are less demanding from a computational 
point of view, this figure can be interpreted to support using the yearly data 
for further analyses. That said, we recommend such an approach without 
reservations only if hardware restrictions make this necessary.

Concluding the section on summarization graphs, Figure 2.4 shows a 
slightly enhanced version of the standard state distribution plot that also 
includes information on the state entropy at the different positions of the 
sequences. Note, however, that we only recommend this type of visualiza-
tion for displaying sequences with small alphabets; hence, the figure is 
focusing on the partnership trajectories and neglects the information on 
parenthood status. The gender-specific entropy distributions point to nota-
ble differences. While the general pattern is the same for men and women, 
the plots reveal differences in the temporal shape and the level of entropy. 
Among males, for example, the entropy at the end of the observation period 
exceeds the initial entropy at age 18. By contrast, the entry and exit levels 
of entropy among women seem to be very similar.

2.4.2 Data Representation Graphs

The previous section illustrated a variety of approaches toward visual-
izing summary statistics of sequence data. Although the presented figures 
provide valuable information in an accessible fashion, they lose sight of 
how individual sequences unfold and thus are not well suited for uncover-
ing and visualizing groups of similar sequences. Moreover, figures and 
tables of aggregated data must be interpreted with caution in order to avoid 
the risk of committing the ecological fallacy. This is nicely illustrated in 
Figure 2.5, which shows three visualizations based on two constructed data 
sets, each comprising 10 sequences of length k = 5.

Next to a state distribution plot, the figure displays two sequence index 
plots. In the latter, each horizontally stacked bar represents one individual 
sequence. Although the sequences are sorted by the first occurrence of the 
partnership status “married,” the index plots are visually less structured 
than the state distribution plot in the left panel of the figure. Communicat-
ing a higher amount of information (i.e., actual individual sequences) 
comes at the price of more visual complexity. The two index plots literally 
represent the full data, while the distribution plot summarizes them. The 
left panel of Figure 2.5 shows that the two very different samples of 
sequences can be summarized by one single state distribution plot. If the 
distribution plot is accurately interpreted, this does not pose a problem. For 
instance, the distribution plot shows neither that 20% of the observed 
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persons are permanently single nor that 60% never marry. Instead, it depicts 
that at every position of the sequences at least 20% currently do not have a 
partner and that 40% of the sample is married at the sequences’ two final 
positions. The two index plots demonstrate that this aggregate picture can 
be brought about by two distinct populations. In the first sample, 80% of 
the individuals are married at some point. In the second sample, not a single 
case stays without a partner throughout the entire observation period.

By fully displaying the sequences, index plots are a valuable explorative 
visual tool for detecting structure in sequence data (Brzinsky-Fay, 2014). 
The accuracy and usefulness of index plots, however, hinge on the com-
plexity of the visualized data. If the alphabet becomes too large, the result-
ing graph is difficult to decipher, particularly if the use of color is not an 
option. Keeping an eye on the number of plotted observations is an even 
more significant issue than the size of the alphabet. If too many sequences 
are displayed in one index plot, the issue of overplotting arises. That is, due 
to a lack of space in the plot region the stacked bars (or lines) depicting the 
individual sequences are partly plotted on top of each other and thus pro-
duce an inaccurate representation of the data. Depending on the plot size, 
overplotting arises if more than 300 to 400 sequences are displayed in one 
plot (Brzinsky-Fay, 2014).

The problem can be alleviated slightly by sorting the sequences such that 
similar sequences are plotted next to (and partly on top of) each other, 
rather than in the order they appear in the data set. This is not a satisfactory 
solution, though, because overplotting of (similar) sequences still occurs. 
Thus, reducing the number of plotted sequences is a more promising 
approach. This can be achieved by applying different strategies such as 
plotting (a) the most frequent sequences, (b) a random sample of sequences, 
or (c) a sample of representative sequences.

The first strategy is viable only if a few sequences represent a large share 
of the data, which is rarely the case in social science applications. Even our 
yearly sequence data of 1,866 partnership trajectories with a moderate 
sequence length of k = 22  and an alphabet with only four different states 
already comprises 1,432 unique sequences. Therefore, the second strategy, 
plotting a random selection of sequences, usually produces a more repre-
sentative visualization of the sequences. The sampling, however, might 
distort the visualization slightly. Therefore, sampling and plotting should be 
applied repeatedly to estimate the extent of potential misrepresentation 
(Brzinsky-Fay, 2014).

Instead of visualizing random samples of the data, more sophisticated 
strategies aim at extracting and plotting only those sequences that represent 
the data best. According to Fasang and Liao (2014), some of these 
approaches, such as representative sequence plots (Gabadinho, Ritschard, 
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Studer, & Müller, 2011) or the smoothing techniques suggested by 
 Piccarreta (2012) try to improve the visualization of sequences by either 
removing redundant information or plotting only the most relevant 
sequences. Taking a different approach, relative frequency sequence plots, 
developed by Fasang and Liao (2014), aim at reducing visual complexity 
and the problem of overplotting while maintaining an accurate representa-
tion of the data across the full spectrum of observed sequences. This goal 
is achieved by the following procedure.

First, the sequences are sorted according to a substantively meaningful 
principle such as the timing of a specific transition (e.g., age at first marriage) 
or the score on the first factor obtained by multidimensional scaling (MDS) 
of a dissimilarity matrix (Piccarreta & Lior, 2010). In our experience, the 
latter sorting strategy often produces better results, although the quality heav-
ily depends on the chosen dissimilarity measure (see Chapter 3).

Although regular index plots are considerably improved by sorting the 
sequences, the order of sequences is even more critical in the context of 
sequence frequency plots. In regular sequence index plots, initially intro-
duced by Scherer (2001), sorting eases the recognition of patterns without 
changing what is displayed. That is, irrespective of the sorting order, all 
sequences are rendered. In relative frequency index plots, however, the 
rendered medoids and the goodness of fit of the plot differ depending on 
the sorting order (see companion page for an example).

Once the data are sorted, they are divided into k  similarly sized fre-
quency groups. The next step extracts the medoid sequence for each of 
these groups. The resulting sample of k  medoid sequences is rendered in 
an index plot. The index plot can be complemented by box-and-whisker 
plots, which visualize the distribution of the dissimilarities to the medoids 
in the k  frequency groups. Finally, an R2 statistic and an F test can be cal-
culated to assess the goodness of fit of the relative frequency sequence plot. 
As the quality of the results is affected by several analytical choices (sort-
ing criterion, chosen dissimilarity measure, number of frequency groups), 
we recommend evaluating and comparing different solutions.

When dealing with large amounts of sequences, relative frequency 
sequence plots are a very powerful visualization tool ensuring readability 
and visual appeal by rendering a representative selection of medoids 
instead of all sequences, as would be the case in a regular index plot. As 
general heuristic, Fasang and Liao (2014) recommend dividing the sample 
into approximately 100 frequency groups. If colored figures are not an 
option, it is reasonable to reduce the number of rendered medoid sequences 
further, particularly if the alphabet comprises more than four states. How-
ever, this is a feasible strategy only if the resulting plot still accurately 
represents the data. Figure 2.6 presents such a parsimonious version of a 
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relative frequency sequence plot, which renders only 37 medoid sequences, 
each representing approximately 50 sequences. On the companion page, we 
present alternative specifications with more frequency groups that produce 
results very similar to those presented here.

Unlike the state distribution plots presented earlier, the relative fre-
quency sequence plot in the left panel of Figure 2.6 provides information 
on the temporal order of states. The plot indicates, for instance, that the 
family trajectories in the pairfam sample are characterized by a close link 
between marriage and the transition to parenthood, which typically is 
observed within the first 3 years of marriage. The figure also shows that 
marriage usually is preceded by a cohabitation spell, which tends to be 
longer among those who marry later.

The box-and-whisker plot on the right panel of Figure 2.6 shows how well 
the 37 medoids represent their respective frequency groups. The medoids are 
most similar to the other sequences in their frequency group among those 
who marry before they turn 30 and have two or more children within these 
marriages, and among those who neither marry nor become parents and 
instead remain single most of the time. The more turbulent medoid sequences 
in between show higher distances to the sequences they ought to represent.

Comparing the state distribution plot (Figure 2.3) with the relative 
frequency sequence plot (Figure 2.6) reveals marked differences in the 
distribution of states at different positions of the sequences. At age 40, for 
instance, the proportion of unmarried persons in the distribution plot is 
approximately twice as high, while at age 18, the share of singles among 
the medoids is much higher than the corresponding proportion in the dis-
tribution plot. These differences call for caution when interpreting (the 
prevalence of states in) relative frequency plots. The frequency groups 
with higher distances to their medoid most likely comprise a notable 
share of sequences that are characterized by states that are not identical 
to the respective medoid states. As a result, the distribution of states 
derived from a relative frequency plot should be considered reliable only 
if the plot has a high goodness of fit and if it corresponds with the actual 
distribution in the full data. Note, however, that the observed discrepancy 
of the state distribution does not indicate that the relative frequency 
sequence plot is wrong. It merely reminds us of the fact that this plot is a 
technique that is reducing the complexity of sequence data by plotting 
only a selection of representative sequences. According to Fasang and 
Liao (2014, p. 658), it performs best “when there is strong but fuzzy pat-
terning in the data, that is, when there is patterning into similar sequences 
but there are few identical sequences.” In most applications, the degree of 
fuzzy patterning and thus the quality of the plot can and should be 
increased by plotting more homogeneous subgroups rather than the full 
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sample. Rendering relative frequency plots of family trajectories by the 
level of education or gender, for instance, would produce more accurate 
and insightful representations of the data.

2.5  Description of Sequences II: Assessing Sequence  
Complexity and Quality

Except for representative sequences, the descriptive tools introduced in Section 
2.3 are providing aggregated summary measures or cross-sectional snapshots 
of sequence data. In contrast, this section explores indicators for summarizing 
the longitudinal characteristics of individual sequences. The discussed indica-
tors differ in their capabilities of accounting for the order of states (sequencing), 
the duration of states, and the quality of the states that constitute a sequence.

2.5.1 Unidimensional Measures

Sequencing—counting Transitions and Subsequences

Unidimensional indicators focus on describing one aspect of a sequence. 
The sequencing of states, for instance, could be captured by counting either 
the number of transitions or the number of subsequences of a given DSS 
sequence, with the latter being the more nuanced measure. That is because 
the number of transitions is not affected by the states between which the 
transitions occur, while the number of subsequences increases if more dis-
tinct states are involved; every additional distinct state adds one extra sub-
sequence of length k =1. The two sequences x S LAT COH MAR= ( , , , ) 
and y S LAT COH S=( ), , , , for example, both contain four out of four 
possible transitions, but they differ in their number of subsequences with 
f x( )=16—the maximum for a sequence of length k = 4  and an equally 
sized alphabet—and f y( )=15  (see Table 2.9). Given that sequence x 
contains every state only once, whereas S  appears twice in sequence y, the 
subsequence indicator is performing better than the number of transitions 
in retaining the visual impression that x  is more complex than y.

That said, the SA literature rarely reports the raw subsequence indicator 
because an increasing length of the examined sequences leads to a rapid 
inflation of the number of subsequences. For this reason, Elzinga (2010) 
proposed to use log2 f x( )  rather than a raw count of subsequences to 
measure the degree of sequencing.3

3 Elzinga named this index turbulence. He used the same term for a second index that also 
accounts for the time spent in each state. In accordance with the literature, and in order to 
avoid confusion, we reserve the term turbulence exclusively for the second index. 
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Table 2.9 The subsequences of sequences x and y

Sequence x = (S,LAT,COH,MAR); ϕ(x)=16

k = 0 k = 1 k = 2 k = 3 k = 4

l S S, LAT S, LAT, COH S, LAT, COH, MAR

LAT S, COH S, LAT, MAR

COH S, MAR S, COH, MAR

MAR LAT, COH LAT, COH, MAR

LAT, MAR

COH, MAR

Sequence y = (S,LAT,COH,MAR); ϕ(y)=15

k = 0 k = 1 k = 2 k = 3 k = 4

l S S, LAT S, LAT, COH S, LAT, COH, S

LAT S, COH S, LAT, S

COH S, S S, COH, S

LAT, COH LAT, COH, S

LAT, S

COH, S

Both the number of transitions and the logarithmic subsequence indica-
tor can be normalized to have values between 0 and 1 by dividing them by 
their theoretical maximum. In the case of transitions, the maximum equals 
k -1. The theoretical maximum of subsequences is obtained by counting 
the number of subsequences of a sequence that is constructed by repeating 
the elements of the alphabet until the length of the examined sequence is 
reached. Accordingly, the normalized subsequence measure for x  equals 1, 
while it is log2 15−1

log2 16 −1
= 0.97 for sequence y. Note that 1 is subtracted from the 

logarithmic number of subsequences in the numerator and denominator to 
ensure a minimum of 0 for the normalized index. Otherwise, only an empty 
sequence could reach the minimum.
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Duration—Longitudinal Shannon Entropy

Earlier, we introduced entropy as an aggregate measure of the dispersion 
of states at different positions of the sequences. However, the entropy index 
can also describe how the duration of the time spent in each state of the 
alphabet is distributed within individual sequences. The normalized longi-
tudinal entropy is defined as

S =
−

i=1

a

∑ πi×log πi( )
loga

with pi  depicting the relative frequency of time spent in state i  and a 
indicating the size of the alphabet A . The maximum entropy value of a 
sequence is reached only if the same amount of time is spent in each state 
of the alphabet. In our earlier toy example, the entropy value for sequence  
x  is identical with the two normalized sequencing indicators. The differ-
ences between the measures, however, become evident if we expand 
sequence x  by attaching the same states once again—
x S LAT COH MAR S LAT COH MAR2 =( ), , , , , , , —and compare it with the 
sequence y S S LAT LAT COH COH MAR MAR2 =( ), , , , , , , . In this exam-
ple, we still obtain a Shannon entropy of 1 for both sequences, whereas 
only sequence x2 reaches the maximum number of subsequences  
((f= 224) and transitions (k−1= 7 ). Sequence y2  comprises only three 
transitions and 16 distinct subsequences, which translates into a normalized 
subsequence index of 0 and a normalized index of 

log
2 16 −1

log2 224 −1
= 0.44 transitions 

of 3 7= 0.43.

2.5.2 Composite Indices

In what follows, we introduce well-established measures that consider 
sequencing and duration simultaneously. These indices are complemented 
by more recent approaches that factor in a feature that is even more difficult 
to measure, sequence quality. Table 2.10 provides a comparison of the dif-
ferent indices for a set of constructed partnership sequences using the same 
alphabet as for our pairfam partnership sequences.

The table illustrates how the description and comparison of sequences 
hinge on the chosen indicator. Sequences 5 and 6, for instance, are identical 
in terms of sequencing. However, they obviously differ in terms of the 
distribution of times spent in different states (see entropy values). In con-
trast, the distribution of state durations is identical in sequences 11 and 12 
(resulting in the same entropy of 0.68) while the sequences differ with 
regard to sequencing, with one additional transition observed in sequence 
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12. Often, researchers are interested in both aspects and want to consider 
duration and sequencing at the same time. This can be achieved by the 
turbulence and complexity indices.

Turbulence

The turbulence index proposed by Elzinga (2010) combines the number 
of subsequences with the variation in the time spent in each episode of the 
sequence, whereas the entropy index considers only the total time spent in 
each state. Turbulence is defined as

T x( )= log2 φ x( )
st ,max

2 x( )+1
st

2 x( )+1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

with s xt
2 ( )  denoting the sequence’s x  variance of the state durations t  

and

s x k x tt max,
2 21 1( )= ( )−( ) −( )

indicating the maximum of that variance given the total duration of the 
sequence, with k x( ) denoting the length of the DSS sequence and t  the 
average of state durations. The obtained index can be normalized by 
T x( )−1 Tmax x( )−1 , where Tmax  is defined as the turbulence value of a 
sequence, which is as long as the longest sequence (STS format) in the 
examined set of sequences and constructed by repeating the states of the 
alphabet until this length is reached. In our example set, this would be a 
sequence that repeats the four partnership states five times. The turbulence 
index is increasing when either (a) the variance of the time spent in each 
state is decreasing or (b) the number of subsequences is increasing. As a 
result, sequences with the same number of subsequences—such as 
sequences 5 and 6—will have different turbulence values when they differ 
in terms of the variance of state durations.

Complexity

The complexity index is another composite measure simultaneously consid-
ering sequencing and duration. The index introduced by Gabadinho and col-
leagues (2010) combines the number of transitions and within-sequence 
entropy. It reads,

C x
k x

k x
S x

STS

( )=
( )−( )
( )−

( )
1
1( )
*



   45

with S x( )  denoting the normalized entropy, k x( )  the length of the  
DSS sequence, and k xSTS ( )  the length of the same sequence in STS nota-
tion. Sequences 3 to 7, for example, all have a DSS sequence length of 4 
and an SPS length of 20. The quotient of the equation thus equals 

4−1( ) 20−1( )= 0.16, 4−1( ) 20−1( )= 0.16, which happens to be the normalized number of 
transitions. Combining two normalized indices, the complexity measure 
equals 0 for sequences without transitions and thus without variation in the 
state duration. The maximum of 1 can be reached only if the same amount 
of time is spent in each state and if the DSS sequence is of the same length 
as the STS sequence.

Although turbulence and complexity take different approaches to generate 
a composite measure, they are usually highly correlated. In our set of con-
structed sequences, the correlation is 0.87. In the pairfam data of yearly 
partnership trajectories, we obtain a correlation of 0.89. Both indicators pro-
vide information on the unpredictability or instability of sequences and are of 
most use if they are analyzed in tandem with other variables to compare 
different subgroups. While most SA applications still focus on the compari-
son and clustering of sequences using dissimilarity measures (Chapters 3 and 
4), the analytical potential of composite indices is increasingly acknowledged 
in more recent applications (Biemann et al., 2011; Van Winkle, 2018; Van 
Winkle & Fasang, 2017). Table 2.11 illustrates one possible application using 
the turbulence and complexity of combined fertility and partnership sequences 
as a dependent variable in a simple linear regression model. The results indi-
cate that family biographies are less predictable among highly educated per-
sons, whereas the sequences of first-generation migrants are less complex or 
turbulent than those of the autochthonous majority. Further analysis revealed 
that the migrants’ comparatively low complexity and turbulence scores are 
driven by their earlier onset of family formation and a high prevalence of the 
status “married, at least two children,” which is their sequences’ modal state 
for 12 out of 22 years (compared to 8 for the persons without a migration 
background). Compared to most standard dependent variables in social sci-
ence applications, composite indices are rather complex outcome measures 
that summarize multiple aspects of sequence data, such as sequencing and 
duration of states. Moreover, substantively different sequences can exhibit 
the same degree of complexity or turbulence. As a result, single indicators, 
such as education or gender, tend to capture only a small share of the varia-
tion of these outcome measures, which is also the case in our example regres-
sion shown in Table 2.11.

A New Wave of Composite Measures Assessing Sequence Quality

Although they provide a good summary of sequence volatility, turbu-
lence and complexity do not consider potential qualitative differences 
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between individual states and transitions. Sequences 3 and 4 from Table 
2.10, for instance, comprise the same states but in reverse order. For each 
of the first four indicators displayed in the table (transitions, entropy, tur-
bulence, and complexity), these two sequences produce identical results. 
Many people, however, would argue that there is a qualitative difference in 
family biographies of persons who see their marriage ended and those of 
persons who end up being married.

Against this background, several approaches have been suggested to 
measure sequence quality or weight existing composite indices by a factor 
grasping sequence quality (Brzinsky-Fay, 2007; Van Winkle & Fasang, 
2017). Among the most elaborated approaches in this domain of the SA 
literature are the indices that have been suggested by Ritschard et al. (2018) 
and Manzoni and Mooi-Reci (2018). Computing these and related indices 
requires that the researcher specify some sort of qualitative hierarchy 

Turbulence Complexity

Intercept 0.29*** 0.32***

(0.00) (0.00)

Woman (ref.: man) –0.01** –0.01

(0.00) (0.01)

Education: high school 0.04*** 0.04***

(0.00) (0.01)

Migration status
(ref.: no migration background)

1st generation –0.04*** –0.04***

(0.01) (0.01)

2nd generation 0.01 0.01

(0.01) (0.01)

Observations 1,809 1,809

R2 0.06 0.05

*p < 0.05; **p < 0.01; ***p < 0.001; standard errors in parentheses.

Table 2.11  Composite indices used dependent variables in linear 
regressions
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between the states of an alphabet. That is, some states or transitions 
between states, such as from unemployed to employed or from divorced to 
married, have to be declared as more positive or desirable than others. In 
most social science applications, establishing a quality hierarchy involves 
normative and controversial decisions that might be difficult to defend and 
thus should be made explicit when they are imposed.

The precarity index is based on the complexity index C x( )  and com-
bines it with a notable set of other parameters that will be described only 
briefly here. For a more detailed introduction to the index, we refer to 
Ritschard et al. (2018). The index is defined as

prec x a x C x q x( )= ( )+ −( ) ( ) + ( )( )λ λ α β

1 1 1

The basic idea is to weight the well-established complexity index by a 
correction factor measuring whether positive or negative transitions mainly 
characterize a sequence. In focusing on transitions, the correction factor 
does not consider the time spent in high- or low-quality states. The precar-
ity index increases with the number of negative transitions and the degree 
of complexity. The default correction factor is obtained by subtracting the 
proportion of positive transitions from the proportion of negative transi-
tions: q x q x q x( )= ( ) − ( )− +. The index allows for several different 
approaches to determine q x( ), which include the exclusive considera-
tion of positive or negative transitions or the assignment of weights for 
different transitions. The parameter a x1( ) denotes the precarity of sequence 
x ’s starting state and the parameters control the relevance of the different 
components of the index:l controls the relative importance of the sequence’s 
starting state vis-à-vis the weighted complexity index, whereas the expo-
nents a  and b  specify the relevance of the complexity index as opposed 
to the correction factor.

Apart from those parameters, and most importantly, the researcher has to 
assign a rank order to the states of the alphabet, which allows distinguishing 
precarious from positive transitions. Initially, the index was developed to 
study employment trajectories, for which it is easier to establish a hierarchy 
between states than for family trajectories. That said, even for employment 
trajectories, it might not be straightforward to establish a rank order 
between all states of an alphabet. While it might seem reasonable to justify 
that being full-time employed is better than being unemployed, things 
become much more complicated if the alphabet also comprises states such 
as part-time employment or higher education. Given the common lack of 
clear hierarchies, the index allows the researcher to assign the same rank to 
multiple states (class of equivalent states) or declare them to be noncompa-
rable states. Transitions that involve noncomparable states or that occur 
between equivalent states do not contribute to the correction factor.
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In sum, the precarity index is a very flexible tool to jointly consider a 
sequence’s order of states, state duration, and quality. The flexibility, how-
ever, comes at a high price: The results very much hinge on the specifica-
tion of various complex parameters and thus provide an easy target for 
critique. The developers of the index argue that the “index provides most 
often sensible results with default parameter values and automatic methods 
for setting transition weights and starting precarity degrees” (Ritschard 
et al., 2018, p. 293). That said, we recommend recalculating the index with 
slightly adjusted parameters as a robustness check until the statistical prop-
erties of the index have been further evaluated by additional research.

Although in our view, the precarity index does not lend itself particularly 
well to studying partnership trajectories, we calculated it for the example 
sequences in Table 2.10 using the default parameters. Accordingly, we only 
had to specify a rank order of states. Taking a traditionalist’s perspective, 
we came up with the following rank order of partnership states:

MAR COH LAT S> > >

Because the correction factor of the precarity index is not affected by 
the time spent in states of different quality, sequences with the same order 
of transitions end up with the same q x( ). If a sequence includes only 
positive transitions, q x( ) equals 0 and the precarity index boils down to 
the weighted precarity of the sequence’s starting state. The precarity  vector 
for the states in our alphabet is S =1, LAT = 0.67,COH = 0.33,MAR= 0.  
With the default λ of 0.2, the precarity index for the sequences 4, 5, 6, and 
8, which all include only upward transitions, therefore equals 0.2. The 
same is true for sequence 1 with a complexity of 0 and single as the start-
ing state. These results illustrate that quite different sequences can have 
the same score on the precarity index either because they experience only 
positively evaluated transitions or no transitions at all. As already indi-
cated by the term precarity, the index’s main aim is to grasp negatively 
rated or precarious transitions. This becomes obvious in sequences 9 and 
10, which are characterized by the same entropy but show different pre-
carity scores. Both sequences contain one downward transition. While 
sequence 9 transitions from a LAT relationship into the single state, 
sequence 10 moves from marriage to singlehood. Given our hierarchy of 
states, the latter is a much more precarious transition, yielding a higher 
precarity score for sequence 10.4

The sequence quality index proposed by Manzoni and Mooi-Reci (2018) 
is another recent effort to go beyond the traditional composite measures. 

4 For a more refined application proposing a weighted partnership complexity index based on 
the precarity index, we refer to Hiekel and Vidal (2020).
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The index is re-introducing an idea which was originally developed under 
the label integrative potential or capability in a research paper studying 
school-to-work transitions by Brzinsky-Fay (2007). Given that Manzoni 
and Mooi-Reci (2018) provide a more formal and general discussion of the 
index, we refer to it as quality index instead of using the term integrative 
capability that seems to be coined specifically for the study of employment 
trajectories. Different from the precarity index, this approach is interested 
in the quality of states rather than the quality of transitions. Quality is 
assessed by dividing the alphabet into states of success and states of failure. 
The resulting dichotomous sequences are evaluated to create a quality index 
that increases with the number of states indicating success. In addition, the 
index embraces the principle that more recent successes should contribute 
more to sequence quality than successes from the past. The index reads

γw xk( )= i=1

k

∑ pi
w

i=1

k

∑ iw
, with pi

i if  xi = S

 0 otherwise

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

where i  indicates the position within the sequence, x Si =  denotes a state 
of success at position i , and w  is a weighting factor that affects how 
strong and fast the index reacts to and recovers from failure states.

Before we turn to the example sequences shown in Table 2.10, we illus-
trate the impact of different weighting factors using the following little 
sequence: (S,2-LAT,1-COH,1-MAR,2). MAR is considered a success, while 
all other states are deemed to be failures.

γ0 =
0+0+0+0+1+1
1+1+1+1+1+1

= 0.33; γ1=
0+0+0+0+5+6
1+2+3+4+5+6

= 0.52;

γ 2 =
0+0+0+0+52+62

12+22+32+42+52+62
= 0.67

If the weight equals 0, the quality index is just indicating the proportion 
of successful states. A recent success counts just as much as earlier suc-
cesses. Increasing the size of the weight changes this behavior and empha-
sizes the more recent events. As a result, the example sequence’s quality 
index is increasing with the size of the weighting factor.

The values for the quality index shown in Table 2.10 use a weight of 
w=1 . The first two indices depict the two extremes of the distribution 
consisting exclusively of either failure or success states. The differences in 
the quality scores of the two sequence pairs 9 and 10 or sequences 11 and 
12 illustrate how the quality index emphasizes more recent states of 
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success. In both pairs, the sequences comprise the same number of states 
spent in marriage. However, these states appear in different positions. As a 
result, the quality index is higher for sequences 9 and 11, in which the mar-
riage spell occurs at the end of the sequences. The recency of the 5 marital 
states in sequence 9 even outweighs the 10 marital states occurring early in 
sequence 11 (γ9 = 0.43; γ11= 0.36). Reducing w† would change this behav-
ior by attenuating the recency effect.

In sum, the index provides a straightforward measure of sequence qual-
ity, which avoids the necessity of specifying a large number of parameters. 
The index can also be conceptualized as a time-varying variable by calcu-
lating it repeatedly, initially considering only a sequence’s starting state and 
then incrementing it by one additional sequence position until the total 
length of the sequence is reached. In its current form, however, the calcula-
tion of the quality index requires boiling down the alphabet to two states 
indicating either success or failure. This arguably poses a problem for many 
social science applications that often call for incorporating a more nuanced 
hierarchy of success, as suggested by the precarity index.5

The computation of composite indices trying to grasp qualitative features 
of a sequence is an area of research that only recently gained momentum in 
the SA literature. Thus, the indices shown in this chapter should be considered 
only a small snapshot of an actively evolving field of research. A specific 
evaluation of composite indices in the context of life course research has been 
conducted by Pelletier et al. (2020). For a very recent, more detailed, and 
comprehensive review of this field, we refer to the excellent overview article 
by Ritschard (2021).

5 On the companion page, we present a generalized version of the sequence quality index that 
allows the researcher to specify a quality hierarchy containing more than two states.


