
previous section. Often, it is sensible to examine how two fuzzy sets relate
to each other. In Chapter 5, scatterplots will be used to reveal when one
fuzzy set includes another.

3. MEASURING MEMBERSHIP

3.1 Introduction

As we noted in Chapter 2, applying fuzzy set theory requires that we

1. Precisely specify the domain X. What is the universe of objects under
consideration? This could be a set that can be listed easily, such as all
countries in the world, or Fortune 500 companies, or it could be a set
such as all persons under the age of 100, where no such listing is
practical.

2. Assign degrees of membership in fuzzy sets to objects in X. What
properties do the fuzzy sets represent? What does a degree of mem-
bership mean?

This chapter will be concerned primarily with the second task, although
specification of the first has important implications for the second, and
so the separation of the two is difficult. We begin with the question of what
a “degree of membership” means. Then we review the requirements
of membership functions for fuzzy set theory operations. We discuss the
measurement properties of the membership function and relate them to the
literature on social science measurement. Finally, we discuss strategies
for membership assignment and the construction of membership functions,
including the largely ignored topic of assessing measurement errors in
membership assignments. We use examples throughout to illustrate major
points. Verkuilen (2005) contains a longer discussion of many of the points
in this chapter, and also addresses some additional matters for which there
was insufficient space.

We make one point up front: Careful and clear conceptualization of
the sets to be used is essential. Unfortunately, as Adcock and Collier
(2001) note, many social science concepts are essentially contestable in
that they have no unique, correct definition. Here are three examples from
economics, political science, and clinical psychology illustrating the per-
sistence of such debates despite careful attention to conceptualization
and measurement: (a) Ravallion (2003) identifies several different notions
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of poverty and inequality tapping different aspects of the background
concept that comes out of ordinary discourse. Choosing different aspects
leads to different measures. (b) The literature on democracy has often
been confusing despite the careful attention that has been paid to theoret-
ical and conceptual development, because definitions differ about what
“real” democracy is (Munck & Verkuilen, 2002). (c) In the five decades
since the publication of the first edition of the Diagnostic and Statistical
Manual, massive research efforts and debates still have not resolved cru-
cial diagnostic issues regarding disorders such as depression, anxiety, or
schizophrenia. As the DSM-IV research coordinators recently remarked,
“There might not in fact be one sentence within DSM-IV for which well-
meaning clinicians, theorists, and researchers could not find some basis
for fault” (Widiger & Clark, 2000, p. 946). Statistical techniques are no
substitute for careful thinking about measurement issues, although some
techniques are more susceptible to measurement decisions than others.
Accordingly, our primary concerns in this chapter are the requirements
for, and issues that must be resolved in, systematically assigning mem-
bership in fuzzy sets.

3.2 Methods for Constructing Membership Functions

What is a membership function? As mentioned in Chapter 2, formally it is
a function for an attribute A over some space of objects (which may or may
not be numerical) Ξ mapping to the unit interval [0, 1]:

It is an index of “sethood” that measures the degree to which an object x
with property A is a member of a particular defined set. It measures the
fractional truth-value of the proposition “x is an element of A.” A fuzzy set
allows for partial membership, so the variable can have partial membership.
For example, when scoring a test item, we could assign no credit, half
credit, or full credit, representing membership values 0, .5, or 1 in the fuzzy
set “correct answers for this item.”

Because a membership function is only one number for a given object x,
it can represent only one dimension at a time; more dimensions require
more sets. In general, membership is latent, that is, not directly observable.
It also embodies interpretations tied to a particular context. Although
elapsed time certainly has bearing on the fuzzy set “long waits,” the speci-
fication of this set depends on the domain. A long wait for a package sent
by parcel post in the United States might be 3 weeks, whereas a package
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sent by overnight delivery is late if it arrives in 2 days. Thus, context should
be specified as clearly as possible.

Degrees of membership also require an interpretive foundation. This
foundation will, in turn, depend on the process of membership assignment.
For example, it is not difficult to construct a collection of verbal phrases
representing degrees of membership on whose order judges agree, although
this task becomes more difficult with finer and more numerous gradations
in membership. Somewhat more difficult is specifying or ascertaining
what judges mean by a phrase like “sort of a member” or “neither out nor
in,” and ensuring that they make membership assignments consistently.
The most tenuous and vexatious link, however, is between the ordered
membership phrases and numerical values. In many situations, the 0- and
1-valued membership assignments are fairly defensibly connected with
phrases such as “not at all” and “fully” or “prototypical,” by reference to
properties given in a theoretical literature or supplied by expert judges.
Some phrases such as “halfway in and halfway out” or “neither in nor out”
may arguably denote a value of 1/2. Finer-graded distinctions than this,
however, seem arbitrary unless supported by specific operational criteria.
Contrast this situation with the standard gambler or decision maker’s def-
inition of a subjective probability. A probability rating p of an event means
that the judge is willing to pay $p to receive $1 if the event occurs and
nothing otherwise. Given this operational definition, assigning a probabil-
ity of .4 vs. .5 has clear implications for the decision maker in terms of
the expected return.

Even when judges can be shown to be internally consistent, this consis-
tency may not hold across judges, leading to the problem of calibration. Wall-
sten et al. (1986) established ratio scales for probability words within judges,
but note that there was substantial between-subjects variability and thus they
could not recommend averaging to generate a consensual scale because the
resulting confidence intervals would be very wide. This meant that subjects’
membership values were not comparable, and thus they were not well-
calibrated with an agreed standard meaning for the words being scaled.

Although the concepts of fuzziness and degree of membership are
intuitively appealing, both caused confusion for some years after the publi-
cation of Zadeh’s classic 1965 paper, and only recently have matters
become clearer. Indeed, it turns out that there are several distinct and viable
meanings of degree of membership. As Bilgiç and Türkšen (2000, p. 195)
point out, this state of affairs is “neither bizarre nor unsound.” Using
typologies provided by Smithson (1987, pp. 78–79) and Bilgiç and Türkšen
(2000), we group these interpretations into four clusters, each of which is
suited for specific research purposes.
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The first cluster consists of the formalist interpretation, which assigns
membership functions solely in mathematical terms by mapping an underly-
ing support variable into the membership scale. This variable can come from
many different sources: subjective assessments by judges, indirect scal-
ing/measurement models, or an objectively measured variable. Many fuzzy
set theorists themselves are formalists insofar as they begin by assuming that
we have agreed-upon locations for 0 and 1 or some other criterial member-
ship value, and then define all intermediate membership values by a (usu-
ally) smooth function of the underlying support variable. Kaufmann’s
(1975) catalog of membership functions is an extreme example of this posi-
tion. A more moderate exemplar is Kochen and Badre (1974), who begin
with directly elicited degrees of belief and then derive their membership
function from plausible and mathematically tractable criteria.

� EXAMPLE 3.1: Human Development Index

The United Nations Development Program (UNDP) Human Development
Index (HDI) was devised to make a broader, more conceptually rich mea-
sure of development than traditional national-level indicators, such as GDP
per capita or energy expenditure per capita, both of which are common
(UNDP, 1999). Starting from normative theory developed by Sen (1999)
and others, the authors of the HDI disaggregated the top-level concept
development into three components, Economic, Health, and Education.
One aspect of the HDI and its relatives that is not immediately apparent is
that they can be thought of as fuzzy sets.

To combine these HDI components, each needed to be put on a common
scale. The unit interval was chosen. In addition, the authors believed that
certain lower and upper goalposts represented important key points on the
continuum of development from no development to full development. A
country with a value above the upper goalpost could be considered fully
developed on that component. Conversely, a country with a value below a
lower goalpost could be considered fully undeveloped on that component.
Variation between the goalposts was important, but outside it was not.
These are exactly the sorts of conditions discussed in the poverty example
from Chapter 2. Therefore, the basic strategy was to use a linear filter to
assign membership. Table 3.1 shows the components, the indicators chosen
to measure them, the goalposts, and the equation used to assign member-
ship for each component.

Formalist approaches do not address the question of how any numerical
scale for “degree of membership” or any other pretransformation construct
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could be obtained. In the HDI example, linear filters were chosen, but they
could just as readily have used some other smooth monotonic function.
Instead, the life expectancy function could use a logistic formula:

[3.2]

where a is the slope and b is the life expectancy corresponding to mH(x) =
1/2. Setting α = 0.1 and b = 55 yields the curve shown in Figure 3.1, with
both the linear filter and logistic membership functions agreeing that
mH(55) = 1/2.

Note that the assignments by linear filter and logistic function are quite
similar. Indeed, they correlate quite strongly; any reasonable monotonic
functions will correlate strongly. Researchers taking a formalist approach
therefore would need some empirical or theoretical criterion by which to
choose a transformation from a class of strongly correlated functions. As
Verkuilen (2005) notes, the major problem with the formalist transforma-
tion approach is that the number of plausible transformations is limitless,
and consequences of a particular choice may not be immediately obvious.
Nevertheless, transformation is frequently an important component of the
assignment process, no matter how the base scores are obtained. For
example, the Wallsten et al. (1986) study established a ratio scale for mem-
bership by axiomatic methods, thus rigorously establishing the zero point,
but it required a subject-specific transformation to establish the point of full
membership (and, implicitly, the neutral point).

The second cluster is the probabilist interpretation, which bases degree
of membership on probability theory. The most direct grounding is simply

mH(x) = 1/[1 + e−a(x−b)],
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TABLE 3.1 

HDI Example Component Membership Assignments

Component

Economic: Decent
standard of living?

Health: Long and 
healthy life?

Education:
Knowledge?

Indicator

GDP per
capita
($PPP)

Life
expectancy
at birth 

Adult literacy
rate and gross
enrollment 

Lower 
Goal Post

$100

25 years

0%

Upper 
Goal Post

$40,000

85 years

100%

Membership
Between Goal Posts

econ = log(GDPpc) − log(100)

log(40, 000) − log(100)

health = LE − 25

85 − 25

educ = 2

3
AL + 1

3
GE

Smithson-Chapters.qxd  1/19/2006  2:28 PM  Page 22



to assert that a degree of membership of Object x in Set A is the probabil-
ity that x belongs in A. This probability may be a subjective rating provided
by a single judge. The probability could also arise from a poll in two ways.
The first identifies the degree of membership with the proportion of a
sample who say that x belongs in A. Black’s (1937) paper on vagueness was
perhaps the first to suggest this approach, but others have followed suit
(e.g., Hersh & Caramazza, 1976). The second way identifies degree of
membership with the proportion of a sample who say that all x contained in
a particular class belong to A.

This interpretation is sometimes called the random set view of fuzzy
membership. Suppose the integer 4 has been assigned a degree of member-
ship of .7 in the fuzzy set “several.” The pollster interpretation of the inte-
ger 4’s membership grade of .7 in “several” would be that 70% of people
polled said that 4 is a member of “several.” The random set interpretation
of the grade .7 would be that 70% of the intervals over the integers that
people provided when asked which integers were members of “several”
included the integers from 4 to 7. Although many fuzzy set proponents have
rejected the probabilist version of membership, the random set version has
gained a number of adherents and has interpretive advantages in some
cases. The constant inclusion path method for determining subset relations
discussed in Chapter 5 has a natural interpretation in random sets.
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It is, of course, possible to combine formalist and probabilist notions
by devising a transformation that converts a probability distribution into a
membership function. Cheli and Lemmi (1995) propose a fuzzy member-
ship function for assessing poverty that is based on an existing population
with a cumulative distribution function (CDF) for each relevant support
variable (e.g., income). They identify 0-membership with a threshold on the
original scale (x0). The membership function is defined by

where F(x) is the CDF at x. This formulation applies to any variable that has
a CDF, and in fact is just a truncated CDF. Elaborations of this approach are
easy to imagine.

Proponents of the probabilist interpretation (e.g., Hisdal, 1988; Thomas,
1995) argue that, like subjective probabilities, grades of membership reflect
imperfect knowledge and/or errors in classification. The implication is that
with perfect knowledge and error-free classification, degrees of member-
ship would not exist. A counterargument is that judgments about degrees of
membership need not arise from imperfect knowledge or error; in fact, they
might be predicated on highly reliable expertise. For example, an artist who
can distinguish a “warm” from a “cold” green, unlike the novice, knows
that warm greens have a tinge of red and is not taking a gamble in that
assessment. Whatever degree of membership the artist would assign a warm
green to “red” would not be translatable into a “fair betting price” against
$1 that the color in question really is red. Similarly, a student who receives
partial credit on a test item usually has partial knowledge of the item
content that is not especially like a gamble. Without new information, the
student is likely to get the same parts right and the same parts wrong if the
item is administered again.

The third cluster consists of those who regard the assignment of mem-
bership from a decision-theoretic viewpoint. In this approach, the degree of
membership corresponds to the utility (payoff) of asserting that x is in A,
which is related to the degree of truth in asserting that x belongs in A (Giles,
1988). An older version of the decision-theoretic approach that combines it
with probability is signal detection theory (SDT), in which the expected
utility for asserting that x is A versus ~A covaries with x’s value or state on
the underlying support variable(s). Both the utility and SDT frameworks
treat labels such as “a few” or “several” as if they are chosen from a (usu-
ally finite) collection of labels. Thus, these frameworks apply most natu-
rally in contexts where decisions must be made (e.g., whether to sound an
alarm, or whether to describe the objects as “a few” vs. “several”). The
implicit assumption here is not that we have limited knowledge, but limited
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choices instead. Like the formalists, the decision-theoretic view begs the
question of where a utility scale comes from, but methods for the construc-
tion of utility scales exist.

The fourth cluster is composed of those who consider degree of mem-
bership as a problem in axiomatic measurement theory (Krantz, Luce,
Suppes, & Tversky, 1971; for a more accessible treatment, see Michell,
1990). In fuzzy set theory, the earliest papers along these lines were Yager
(1979) and Norwich and Türkšen (1982). A detailed examination of
axiomatic measurement theory and its application to degree of mem-
bership is beyond the scope of this book, but Bilgiç and Türkšen (2000)
provide a good technical overview. According to an axiomatic approach, we
should be able to demonstrate that numerical membership assignments are
quantitative in the sense that they behave just like fractional counts.

The key point in this perspective is that the quantitative structure
of membership boils down to a set of qualitative axiomatic conditions that
can and should be demonstrated empirically. Here are a few examples. The
Wallsten et al. (1986) study is arguably the gold standard in fuzzy set theory
because axiomatic methods were applied to show that the membership
values elicited from judges satisfy the properties of a ratio scale. Verkuilen
(2005) presents a simple example using the Bradley-Terry-Luce (BTL)
model to convert judges’ pairwise choices between various medical occu-
pations based on their prestige into a membership function in the fuzzy
set “prestigious medical occupations.” The preference scale generated by
the BTL model has an axiomatic basis: Provided the model fits, it satisfies
the axioms of a strong utility scale, and it generates an interval scale for the
objects. Recent work by Marchant (2004a, 2004b) illustrates the axiomatic
approach by using comparisons and subjective ratio scaling to generate
membership values, respectively, in a fuzzy set context. Finally, we should
mention the work of Crowther, Batchelder, and Hu (1995), who examine
the fuzzy logic model of perception (FLMP) of Massaro (1987) from the
perspective of axiomatic measurement theory. In the FLMP, subjects pro-
vide direct ratings of membership in a variety of sets. This, in turn, is used
to generate choice predictions. Crowther et al. demonstrate that the FLMP
is equivalent to the BTL model, but one where subjects provide interval
ratings rather than choices.

Connections between axiomatic measurement and psychometrics seem
to be growing stronger at the time of writing. On one hand, as computational
capacity catches up with the often extremely demanding requirements of
testing measurement axioms, it becomes possible to provide a rational, prob-
abilistic basis for testing the usually algebraic/deterministic measurement
models in the presence of noise. On the other hand, axiomatic methods often
provide sharper indications of model misfit than do the usual goodness-of-fit
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tests, which are dependent on the data. For instance, the well-known Rasch,
or one-parameter logistic, model of IRT (which is, in turn, mathematically
equivalent to the BTL model) also satisfies the axioms of conjoint measure-
ment and thus can generate interval-scale information. Karabatsos has shown
that inference about both subjects and items in the context of Rasch model-
ing can be improved by using axiomatic conditions (Karabatsos, 2001;
Karabatsos & Ullrich, 2002). It seems clear that additional work in this area
beyond the earlier, fairly simplistic studies would be useful.

So which of the four approaches—formalist, probabilist, decision-
theoretic, or axiomatic—is the right one? We argue that none of these views
is the sole correct one. If one’s problem is similar to a decision-theoretic
problem, then the tools of decision theory become relevant. Likewise, if the
membership function we want amounts to a special kind of rating scale,
then axiomatic measurement would be the best perspective. In short, we
feel that a judicious choice of methods drawn from each view combined
with a general skepticism is the healthiest attitude to take. It should also be
noted that there are many opportunities for combining approaches.

3.3 Measurement Properties Required for Fuzzy Sets

Given the variety of interpretations of membership in fuzzy sets and
the likelihood that membership functions may vary considerably in their
measurement properties, it is worthwhile to consider how weak we would
make our assumptions and still make use of fuzzy sets. Fewer and/or
weaker assumptions are desirable, although there is always a tradeoff with
statistical power and the clarity of results we can present on one hand, and
the strength of assumptions we need to make on the other.

A “minimalist” membership assignment might consist of {0 = definite
nonmember, possible member, 1 = definite member}. The case for interme-
diate degrees of membership (and therefore fuzziness) hinges on compar-
isons between objects (x and y, say) regarding whether x belongs to A more
than y does. If such comparisons yield at least three objects for which the
strict inequality mA(x) > mA(y) > mA(z) holds, then the case has been made
for membership values between 0 and 1, and, thus, A being a fuzzy set.

Perhaps surprisingly, most fuzzy set concepts could be used effectively
with a minimalist assignment. We would still be able to utilize fuzzy inter-
section and union, providing that min and max operators are used. The
probabilistic viewpoint leads to a rejection of the min and max operators
(Hisdal, 1988), and so does the decision-theoretic framework. An axiomatic
measurement framework may have qualitative conditions on membership
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values (the axioms) that admit or even require min and max (e.g., Bollman-
Sdorra, Wong, & Yao, 1993; Yager, 1979). However, as Bilgiç and Türkšen
(2000) note, measurement that is strong enough to yield interval or ratio
scales does not generally privilege the min-max aggregators over other
aggregation operators (e.g., addition). Instead, the min-max pair emerges as
the best aggregator for ordinal scales.

Negation is slightly more problematic. A probabilistic or decision-
theoretic stance on fuzzy membership requires the standard definition of
m~A(x) = 1 – mA(x). Moreover, some measurement theorists, such as Bilgiç
and Türkšen (2000), incorrectly assert that without a bounded ratio scale
in the [0,1] interval, negation cannot be used. However, Smithson (1987,
pp. 86–88) points out that an interval scale with an agreed-upon neutral
point (q, such that mA(q) = 1/2) is sufficient to justify a “mirror image” def-
inition of negation that can be used even for ordinal membership scales.
The mirror image of x is then 2q – x, so m∼A(2q – x) = mA(x). The minimalist
assignment is {0 = definite nonmember, possible member, 1 = definite
member}, where negation works without assigning a numerical value for
“possible member.”

Comparisons between fuzzy sets with identical membership functions
may be unproblematic (provided one is willing to assume or can establish
comparability), but comparisons between fuzzy sets using different mem-
bership scales entail additional difficulties. Bollman-Sdorra et al. (1993)
draw an important distinction between membership measurement and prop-
erty ranking. Membership measurement hinges on comparisons between
objects in the same set, regarding whether x belongs to A more than y does.
In contrast, property ranking is based on comparisons between sets on the
same object, that is, whether x belongs more to Set A than it does to Set B.
If we cannot establish property ranking, then degrees of membership in
Sets A and B are not directly comparable, regardless of the level of mea-
surement each of the membership functions for A and B has.

If the same scales are used, then property ranking usually may be
assumed simply by equating identical membership values with each
other—although this assumption could be debatable in some circum-
stances. Otherwise (and more generally), we must specify a joint ordering
of the membership levels of the sets being compared. A joint ordering
might seem difficult if we compare the “apples” in one scale with the
“oranges” in another. This issue is discussed in Chapters 4 and 5. The cen-
tral point of this section, however, is that the fuzzy set framework compels
researchers to make decisions about measurement properties. At the very
least, we must decide what is in the set, what is excluded from it, and what
is neither in nor out. If there is an underlying scale on which membership
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assignments are based, then scale-based criteria for full membership,
partial membership, and nonmembership must be established.

3.4 Measurement Properties of Membership Functions

How do we determine the measurement level of a membership function?
Researchers working with fuzzy sets have claimed levels anywhere from
ordinal (unique up to monotonic transformation), to absolute, or unique
(Bilgiç & Türkšen, 2000). Fuzzy set research shares this diversity with
all of the social sciences, where debate on the measurement properties
of variables continues (e.g., Michell, 1997). We lack the space for a review
of those issues, but any readers who familiarize themselves with the
debates will be able to handle measurement issues in using fuzzy sets.
Jacoby (1991) is an excellent introduction to the data-theoretic perspec-
tive. Michell (1990) offers an eloquent introduction to and defense of the
classical perspective.

There is one central point of data theory deserving emphasis: No variable
comes with a measurement level obviously attached. Instead, the measure-
ment level must be justified in the context of a specific problem. Indeed,
many variables used in social or psychological research that have perfectly
well-defined physical meanings in terms of ratio-level measurement (e.g.,
reaction times or electric potentials) may not have so obvious a connection
with behavioral constructs of interest. For example, the percentage of
income collected by the state as tax revenue—a frequently used measure
of state capacity—is sometimes offered as an example of a measure that is
“obviously ratio.” But it is far from clear that the difference between 0%
(Somalia) and 10% (Paraguay) is equivalent to 30% (Spain) and 40%
(Italy) in terms of the concept of interest: state capacity (Lieberman, 2000).
The first difference is a huge jump in terms of state capacity from none
to possibly substantial, whereas the latter is a relatively small shift at the
margin in terms of tax policy.

In short, it is incumbent upon the investigator to specify the relationship
between the observed data and conceptual variables. Verkuilen (2005) notes
that many relations between data and conceptual variables can be captured
by the notions “more (less) is better,” meaning that the relation between the
data and concept is monotonic, and “just right,” which means that the rela-
tion between the data is one of an ideal point, with membership declining
from a peak. Furthermore, the notion of diminishing returns is implicit
in most fuzzy set applications. Values near the extremes of membership
(0 or 1) should rise or fall relatively slowly.
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What measurement properties characterize a membership function,
beyond the bare necessities described earlier? For some fuzzy set A, any
collection of objects {x1, x2, . . . , xk} can be ordered in terms of degree of
membership in A, so that

As pointed out earlier, we must be able to identify at least two strict
inequalities, that is, there must be xh, xi, and xj such that mA(xh) < mA(xi)
< mA(xj).

Moreover, membership functions have endpoints (at least in principle)
representing full nonmembership and full membership. In saying this, we
have moved to a higher level of measurement, albeit one that is largely
ignored by the standard textbook classification: ordinal with natural 0 and
1. In this case, we can assert that

For every xi, if we can determine that either mA(xi) < 1/2 or mA(xi) ≥ 1/2,
then we have still more structure than a simple ordinal scale. In Chapter 4,
we will make use of a crude but effective membership scale comprising
nonmembers, those closer to nonmembership, those closer to full member-
ship, and full members. If we can identify an object xneutral such that
mA(xneutral) = 1/2 and the fuzzy set is normal (i.e., has an object with 0 mem-
bership and another with 1 membership), we have even more structure. In
short, starting with a weak ordering of objects in terms of membership, as
we identify more and more objects with points in the membership scale, we
constrain the possible membership values to a greater degree.

The move from membership functions with these more or less
constrained quasi-ordinal scales to truly quantified membership functions
requires stronger assumptions, special elicitation methods, or empirically
based scaling techniques. None of these is beyond the purview of tradi-
tional measurement or scale construction approaches in the social sciences;
the chief difference lies in identifying benchmark scale points for full mem-
bership, nonmembership, and/or neutrality. This is not to imply that obtain-
ing truly quantified membership is easy, however, and often it is the case
that it is more straightforward in a given application to use sensitivity
analysis over the plausible range of the variables to show that conclusions
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are invariant under perturbation of the assigned membership values. Indeed,
this practice is widespread in control systems theory applications of fuzzy
set theory. One disadvantage of this approach is that it is unclear whether
the scale generalizes to other applications, because no additional validation
was done.

The most straightforward, practical route to membership functions uses
the properties of an existing support variable in combination with endpoint
identification. If we are mapping a single variable to membership by iden-
tifying the endpoints, we can interpolate intermediate membership values.
In fact, this is precisely what the linear filter does, using a linear function
to interpolate between endpoints. The HDI example is based entirely on this
approach. As demonstrated with the logistic function, we could choose dif-
ferent interpolating functions, although linear filters frequently do quite
well and have the virtue of simplicity. If we are willing to identify the
neutral point or other interior reference points, we could use a piecewise
interpolating function such as a piecewise linear or cubic spline, depending
on the degree of smoothness required. The reference points provide more
control over the shape of the interpolating function.

Depending on the data-gathering method, we may be able to extract even
more information from the sort order itself. As Coombs (1951) suggests, it
is highly desirable to collect data in a way that provides substantial redun-
dant information, which allows for extensive cross-checking of validity and
model fit. Rather than assuming ordinality, a method that allows one to
check to see if responses are ordinal provides useful leverage, and the same
principle holds for higher levels of measurement. Indeed, this is precisely
what axiomatic measurement theory is about. Measurement models allow
for assumption checking and often can “promote” the ordinal information
to a higher level. Methods for doing this range from the widely used Rasch
(1980) item-response theory (IRT) approach in aptitude and ability testing
to recent and more flexible models suited to attitude measurement (e.g.,
Rossi, Gilula, & Allenby, 2001). Virtually all of these methods use probit or
logit models to estimate “threshold” values on an interval-level latent con-
tinuum corresponding to the ordinal categories. If there is justification for
designating certain thresholds as the nonmembership, neutral, and/or full
membership cutoffs, then we may interpolate the remaining membership
values using linear filters or appropriate splines. In sum, the entire bag of
tricks of psychometrics and scaling is open, ranging from direct member-
ship assignments by judges, to indirect scaling methods (e.g., IRT models
or optimal scaling), to fundamental measurement.
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3.5 Uncertainty Estimates in Membership Assignment

“What should we put in parentheses? It is a basic principle of sound econo-
metrics that every serious estimate deserves a standard error” (Koenker &
Hallock, 2001, emphasis in original). Despite the confusion about the rela-
tionship between fuzziness and probability and general disagreements
about the nature of the membership function, relatively little attention has
been paid to providing uncertainty estimates for membership functions in
a practical sense. This is a major deficiency. As in any sort of measure-
ment, there is no reason to believe that membership assignments are with-
out error, and it is incumbent on researchers to assess the degree of error.
Fuzzy set theory has managed to develop largely without a formal theory of
error because in engineering, it is usually possible to do a lot of testing to
show that the device being created works satisfactorily. Unfortunately, the
concerns of an empirical scientist are not so easily addressed.

Many techniques are available, and we lack the space for an exhaustive
treatment. Even if the formal machinery of statistical analysis is not applic-
able in all circumstances, any assignment method is open to uncertainty
estimates of some form. An analysis involving fuzzy set techniques is
incomplete without an assessment of uncertainty. Instead, we will concen-
trate on providing two detailed examples. The first uses sensitivity analysis
in the case of a compound scale created from a single judge’s ratings on
four scales. The general strategy is useful because it can be applied in any
situation, even direct ratings by one judge. The second considers using
bootstrapping to provide pointwise error bounds for membership assign-
ments when scores from an additive scale are mapped into the unit interval.
However, we should note that many assignment techniques come with error
assessments built in. If a multiple indicator measurement model were used,
such as maximum likelihood factor analysis or polytomous IRT, it is possi-
ble to compute a confidence interval for assigned scores, which can in turn
be transformed into a confidence interval for assigned membership. Even
some direct elicitation methods, such as the “staircase method,” generate
their own uncertainty estimates (Tversky & Koehler, 1994).

3.5.1 Sensitivity Analysis

One way of assessing the precision of measurement of a membership
function is to use a sensitivity analysis, an experiment designed to show the
likely differences in the conclusions due to perturbations in the input
(Saltelli, Tarantola, & Campolongo, 2000). This is particularly useful when
there are no other sources of uncertainty estimates, for instance, coming
from multiple measurements or a data-gathering strategy that included
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redundant information. If the membership values are the result of, say, one
expert judge, sensitivity analysis can give an idea of how uncertain these
assessments might be if different judges were used. We will focus the dis-
cussion on membership provided by an expert judge, but the technique is
not limited to such situations. Examining the sensitivity of a parametric
function used for membership assignment to different parameter values
also is valuable.

The basic idea in sensitivity analysis is to examine the effect of varying
the inputs on a particular calculated quantity by considering different sce-
narios of inputs. Assuming a given judge represents the baseline, one judge
might be systematically lower than the baseline judge, whereas another
judge might be systematically higher. In the application to be presented, we
do not have these judges, but we will simulate them. In most membership
assignment tasks, there are four principal options for judgmental bias from
a given baseline: (a) biased systematically toward 0 (the tough grader),
(b) biased systematically toward 1 (the easy grader), (c) biased toward the
endpoints (the extreme grader), and (d) biased toward the neutral point
(the vague grader).

Table 3.2 lists several families of transformations that implement these
four types by systematically modifying the assigned memberships. By
applying these transformations to the baseline membership assignments,
we can then use standard descriptive statistics to generate pointwise error
bars. There are caveats, however. Real judges are never totally consistent,
so including random error may be desirable. Also, we do not mean to imply
that the transformations listed in Table 3.2 are the only ones necessary.
Transformations should be tailored to specific problems. More importantly,
the baseline judge might not be very reliable and/or valid, so sensitivity
analysis is not a substitute for real replications. However, in the absence of
replications, sensitivity analysis does provide a method of obtaining uncer-
tainty estimates.

� EXAMPLE 3.2: Electoral Democracy Index Sensitivity Analysis

There have been numerous proposals for a democracy index (Munck &
Verkuilen, 2002). One, the Electoral Democracy Index (EDI) (Munck &
Verkuilen, 2003; UNDP, 2004), is based on fuzzy sets. The EDI is a
compound index built from four components, each of which is assessed
by an expert judge. The four components are Suffrage (S), Offices (O),
Free (F), and Clean (C). S refers to the right of all adults to vote. O refers
to the condition where the decision-making offices (executive and legisla-
tive) are filled by elections. F refers to the right of party competition and

32

Smithson-Chapters.qxd  1/19/2006  2:28 PM  Page 32



33

TA
B

L
E

 3
.2

So
m

e 
T

ra
ns

fo
rm

at
io

ns
 U

se
fu

l i
n 

Se
ns

iti
vi

ty
 A

na
ly

si
s

Tr
an

sf
or

m
at

io
n

0.
Id

en
tit

y

1.
C

on
ce

nt
ra

tio
n

2.
D

ila
tio

n

3.
C

on
tr

as
t

In
te

ns
if

ic
at

io
n

4.
C

on
tr

as
t

D
if

fu
si

on

5.
In

te
rv

al
Sq

ua
sh

6.
In

te
rv

al
E

xp
an

d

F
un

ct
io

n

id
en

tit
y(

m
) 
=

m

co
nc

(m
) 
=

m
k

cd
if

f(
m

) 
=

2m
– 

ci
nt

en
s(

m
)

m
′=

sq
ua

sh
(m

) 
=

.5
u

+(
1 

−
u)

m

ex
pa

nd
(m

′) 
=

(m
′−

.5
u)

/(
1 

−
u)

Pa
ra

m
et

er

— k
>

1,
ty

pi
ca

lly
 2

k
>

1,
ty

pi
ca

lly
 2

k
>

1,
ty

pi
ca

lly
 2

k
>

1,
ty

pi
ca

lly
 2

0 
<

u
<

 1
,

ty
pi

ca
lly

 .0
5

A
s 

sq
ua

sh
(·

)

E
ffe

ct
 o

n 
m

•
Fo

r 
k

=
1;

 a
ll 

ot
he

r
tr

an
sf

or
m

s 
re

du
ce

 to
 th

e
id

en
tit

y

•
L

ow
er

s 
al

l v
al

ue
s 

in
 (

0,
1)

•
E

nd
po

in
ts

 u
nc

ha
ng

ed

•
R

ai
se

s 
al

l v
al

ue
s 

in
 (

0,
1)

•
E

nd
po

in
ts

 u
nc

ha
ng

ed

•
V

al
ue

s 
>

.5
 g

o 
up

•
V

al
ue

s 
<

.5
 g

o 
do

w
n

•
E

nd
po

in
ts

 a
nd

 .5
 u

nc
ha

ng
ed

•
V

al
ue

s 
>

.5
 g

o 
do

w
n

•
V

al
ue

s 
<

.5
 g

o 
up

•
E

nd
po

in
ts

 a
nd

 .5
 u

nc
ha

ng
ed

•
R

es
et

s 
m

em
be

rs
hi

p 
to

 b
e 

in
[u

/2
,1

 –
 u

/2
],

sy
m

m
et

ri
c

ar
ou

nd
 .5

•
In

ve
rt

s 
sq

ua
sh

(·
).

 

C
om

pa
re

d 
to

 B
as

el
in

e/
N

ot
es

E
xa

ct
ly

 th
e 

sa
m

e.
 

Sy
st

em
at

ic
al

ly
 c

lo
se

r 
to

 0
.

A
 h

ar
de

r 
gr

ad
er

.

Sy
st

em
at

ic
al

ly
 c

lo
se

r 
to

 1
.

A
n 

ea
si

er
 g

ra
de

r. 

Sy
st

em
at

ic
al

ly
 c

lo
se

r 
to

 th
e 

en
dp

oi
nt

s.
A

 m
or

e 
ex

tr
em

e 
gr

ad
er

.

Sy
st

em
at

ic
al

ly
 c

lo
se

r 
to

 th
e 

ne
ut

ra
l

po
in

t,
.5

. A
 m

or
e 

va
gu

e 
gr

ad
er

. 

U
se

d 
to

 m
ov

e 
en

dp
oi

nt
s 

in
to

 (
0,

1)
so

 o
th

er
 tr

an
sf

or
m

at
io

ns
 c

ha
ng

e
th

os
e 

va
lu

es
. 

U
se

d 
to

 r
es

to
re

 o
ri

gi
na

l i
nt

er
va

l.
C

an
 m

ov
e 

po
in

ts
 o

ut
si

de
 [

0,
1]

 s
o

ex
tr

em
e 

po
in

ts
 s

ho
ul

d 
be

 c
lip

pe
d.

 

di
l(
m

)
=

k√ m

ci
nt

en
s(

m
)
=

⎧ ⎨ ⎩km
k
,

m
<

.5
.5

,
m

=
.5

1
−

k
(1

−
m

)k
,

m
>

.5

Smithson-Chapters.qxd  1/19/2006  2:28 PM  Page 33



organization. Finally, C refers to the right to have the votes counted fairly
and not have the voting process manipulated. Each of these indexes
is assigned a score by one judge according to a set of rigorously defined
coding rules. In Chapter 6, we will discuss how these components are
combined to form the index.

To allow the endpoints to move under transformation, the given scores
were “squashed” into the interval [.025, .975] by choosing u = .05 in the
squash(·) transformation from Table 3.2; upon completion, the values were
expanded back to [0,1], with any inadmissible values, such as 1.05 or −.1,
clipped to fit. We use the transformations found in Table 3.2 to alter the
baseline ratings on all four components given by the judge according to a
54 factorial design crossing transformations with components to simulate
625 different judges (one of which is the baseline judge). This design gen-
erates judges who are biased in different ways on different components. For
example, a judge might be a tougher grader on S, be an easier grader on O,
and agree with the baseline judge on F and C. We use order statistics to
generate error bands. Figure 3.2 shows error bands using the 5% and 95%
quantiles, with the actual EDI score for Brazil in years 1960, 1977, 1985,
and 1990–2002. These bands encompass 90% of the simulated values. Note
that because the error bands are based on order statistics, they are not
always symmetric, unlike a confidence interval for the mean based on the
standard error.

3.5.2 Test Inversion and Bootstrapping

In situations where degrees of membership are based on sample
estimates (e.g., transformations of quantiles), confidence bands around the
membership function can be estimated. Otherwise, bootstrapping may be
employed instead (Efron & Tibshirani, 1994). Bootstrapping uses sampling
with replacement from the original data set to generate as many replications
of the data set as desired. Then, standard quantities such as quantiles
or standard deviations for the statistic in question can be calculated using
the usual procedures. Either way, the confidence interval approach is
compatible with treating membership functions as random variables.

� EXAMPLE 3.3: Confidence Bands for
the Fuzzy Set “Violent Crime Prone” State

This example is based on the violent crime statistics in the data set “USAr-
rests,” one of the sample data sets included with the R statistical package.
We lack the space to discuss the example in detail but encourage readers to
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try their own coding. The relevant data comprise the number of arrests
reported to the FBI for three violent crimes—murder, rape, and assault—
for the 50 U.S. states in 1975. We want to create a fuzzy set “violent crime
prone,” denoted VCP.

First, we define vcscore to be the mean of the standard scores of the three
crime rates, murder, rape, and assault. We justify this procedure on two
grounds. First, although there are far fewer murders than rapes and fewer
rapes than assaults, the severity of the crimes is such that this weighting
of them makes sense. Standard scores adjust for the variations in scale
between the components, unlike the FBI’s unweighted Crime Index, which
simply sums the arrests, ignoring the severity of the crime and thus swamp-
ing murders with assaults. Second, the intercorrelations are all .56 or
higher, so summation is reasonable based on reliability theory conventions.
The mean of vcscore is 0 by construction, and we further standardize it to
have a standard deviation of 1. To create membership values, we use the
CDF in Equation 3.3, as suggested by Cheli and Lemmi (1995). Note that
this assignment generates a subnormal fuzzy set because there are no states
with 0 membership, but then again there are no states without violent crime.
(Choosing a lower cutoff would normalize the set.)
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Figure 3.2 Error Bands by Perturbation for EDI Scores for Brazil
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To assess the uncertainty due to crime statistics, we employ two
different techniques, one based on a classical statistical test and the other
on bootstrapping. First, we inverted the Kolmogorov-Smirnov test to
create confidence bands for the CDF (Conover, 1980). This test is known to
lack power and therefore generates rather wide confidence bounds. Second,
we generated 1,000 bootstrap samples from the 50 original values. Each
sample was sorted from least to greatest; scores for q.025 and q.975 were taken
for each of the 50 states’ membership scores; and finally, a CDF was
computed for each set of scores, q.025 corresponding to the upper interval
and q.975 to the lower.

Figure 3.3 shows both sets of confidence bands. Note that, as expected,
the bootstrap generates narrower intervals than does the inverted K-S test.
One way to gauge the impact of sampling error on subsequent analyses
would be to substitute the lower and upper membership estimates in the
calculations and examine how conclusions change.
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