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Ordinary least squares (OLS), or multi-
ple regression as it is also designated, is
the most popular method in applied

marketing research to summarize the relation-
ship between a predesignated set of independent
variables and a single dependent variable. To set
the scene and establish notation for the subse-
quent exposition, we start to briefly summarize
this well-known method. Let

i = 1, . . . , I consumers,

j = 1, . . . , J independent variables,

Yi = the value of the dependent variable for
consumer i,

Xij = the value of the jth independent variable for
consumer i,

bj = the value of the jth OLS regression coefficient,

ei = error for consumer i.

Then, the standard linear multiple regression
model can be expressed as

or, in matrix form,

y == Xb ++ e,

where y = ((yi)), X = ((Xij)), b = ((bj)), and
e = ((ei)). Given an independent sample of
consumers/observations for y and X, one is
typically interested in estimating bj by minimiz-
ing the following error sums of squares:

MinZ
bj

=
I∑

i=1

[
yi −

J∑
j=1

Xijbj

]2

= (y − Xb)′(y − Xb)

=
I∑

i=1

e2
i
= e′e.

yi =
J∑

j=1

Xijbj + ei

(1)

(2)

(3)
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Johnston (1984) and others derive (by taking
partial derivatives of (3), setting them equal to
zero, and then solving) the well-known ana-
lytical expression for estimating b and σ2 that
minimize (3):

b̂ == (X′′X)–1X′′y,

σ 2 = e′′e/(I – J).

Maddala (1976) and others show that if the
assumption is made that the random vector e
is multivariate normally distributed, then the
likelihood function can be written (assuming
E(ee′′) = σ2I, where I is an identity matrix), as

and the corresponding maximum likelihood
estimates for b and σ 2 that maximize the like-
lihood function in (5) are identical to those
obtained from least squares estimation (i.e., in
Expression (4)).

There are many applications that arise in
marketing, however, where the estimation of a
single set of regression coefficients may prove
to be “misleading.” Consider, for example, the
small illustrative synthetic data set provided in
Table 19.1 with J = 5 independent variables
(X1, . . . , X5) and I = 50 consumers. Suppose this
sample of 50 consumers was taken and, unknown
to the marketing researcher, the first 25 con-
sumers were extracted from a drastically different
market segment than the last 25 consumers. That
is, suppose this sample represents two radically
different market segments that were unknown a
priori. Table 19.2 represents the aggregate regres-
sion analysis computed over all I = 50 customers.
As shown, all five independent variables are not
significantly different from zero, as indicated by
the various t statistics. The calculated F statistic
is also not significant, which indicates that there
would be no significant linear relationship
between the five independent variables and the
dependent variable. Indeed, R2 = 0.06, and the
adjusted R2 is actually negative. The marketing
researcher concludes that nothing in the regres-
sion equation is significant.

Now, suppose this marketing researcher
understands that there are two disparate sets of
observations, has access to a variable that iden-
tifies these two sets, and a priori analyzes each
market segment separately. Here, in addition to
Equation (1), we now have further notation:

k = 1, . . ., K market segments (known, with K = 2
in the example),

bjk = the value of the jth regression coefficient for
the kth segment,

σk
2 = the variance term for the kth segment,

zik = the 0/1 membership of consumer i in
segment k.

We now assume yj has a univariate normal dis-
tribution, conditional upon known segment
membership:

The purpose here is to estimate the bjk and σk
2,

which is done in the example by conducting one
separate regression analysis for Market Segment
1 (the first 25 observations) and a different
regression analysis for Market Segment 2 (the
last 25 observations). Tables 19.3 and 19.4
display the corresponding results for each
market segment. As seen from the t tests, almost
every regression coefficient is significant in
both estimated equations, as is the total regres-
sion function (F test). The corresponding R2 are
0.993 and 0.994, indicating near-perfect fits. As
shown by the estimated regression coefficients,
Segment 1’s regression function is near the
opposite (in sign) that of Segment 2. Thus, we
see an illustration of how an aggregate regres-
sion function can mask the underlying structure
of consumer heterogeneity in the presence of
unknown and discrete market segments, as well
as how that problem is easily resolved if the
actual market segments are known.

Where such market segments are precisely
known in advance, the marketing researcher
merely has to divide/classify the total sample
of observations and conduct separate regres-
sion analyses per market segment, as has been

yi/k ∼
K∑

k=1

zik(2πσ 2
k
)−1/2 exp

[−(yi − Xibk)
2

2σ 2
k

]
.

L(y|b, σ 2) = (2πσ 2) exp

[
− (y − Xb)′(y − Xb)

2σ 2

]
,
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Table 19.1 Synthetic Regression Data

X1 X2 X3 X4 X5 Y

0.995 1.893 –1.291 –0.560 0.508 –3.287
–1.268 –0.988 0.244 0.716 –2.261 –8.254

0.135 0.725 –0.511 0.712 –1.551 –11.867
0.687 0.223 1.441 0.098 –0.352 10.859
1.020 –0.355 –0.660 0.090 –1.544 –4.733
0.313 0.999 0.365 –0.991 1.000 12.191
0.584 –1.775 –1.702 1.843 –1.267 –25.508

–1.342 –0.976 –1.381 0.290 1.525 –11.996
–0.159 –0.132 0.217 –1.643 –0.278 9.533

1.089 0.629 1.148 –1.138 –1.299 15.716
0.322 –0.983 –1.673 0.101 –0.287 –14.693
0.082 –0.009 1.068 –1.023 0.565 16.379

–0.923 2.327 –0.989 1.637 1.023 –14.245
–0.138 0.122 –0.967 –0.365 –0.535 –6.939
–0.650 1.494 0.040 –0.086 –0.806 –1.569

1.227 0.475 2.090 –0.294 0.643 21.104
0.987 0.389 –1.791 0.758 1.574 –12.890

–1.786 0.484 0.495 0.545 –0.448 –1.547
–1.330 –1.583 0.606 0.948 –0.137 –3.635
–0.213 –1.400 –0.942 –0.659 0.042 –1.644
–0.305 0.531 0.627 0.068 0.214 3.152
–0.907 –0.296 –0.528 –0.423 –0.603 –3.425
–0.051 –1.204 0.553 –0.044 0.373 4.460

0.247 –0.288 –0.623 0.371 –1.285 –9.167
–0.261 1.024 –2.361 0.188 –1.183 –20.099
–1.072 –0.044 0.486 0.176 0.788 –2.941
–0.179 0.345 –0.655 2.860 2.211 18.596
–0.777 –0.390 –1.587 0.682 1.438 14.039
–1.311 –0.671 0.715 0.440 0.181 –0.625

0.145 0.321 –1.310 –0.085 0.843 7.317
–1.229 –1.133 –0.148 0.865 –0.007 8.799

0.421 0.147 –0.215 0.075 –0.492 2.029
1.088 –1.352 –0.531 –0.222 –0.048 0.930

–1.210 –0.100 –0.935 –0.142 –0.742 10.174
–0.202 1.088 –0.514 1.695 0.146 14.756

0.651 –0.118 –2.153 –1.061 0.036 9.358
–0.908 0.304 0.403 0.332 0.099 0.087
–0.242 –1.206 0.520 0.647 –1.529 3.671

2.010 –0.312 1.958 –0.275 0.289 –19.342
0.170 –0.957 0.580 –0.027 –1.039 –1.826

–1.594 0.188 –0.331 1.407 –2.152 16.582
1.041 –1.211 –0.610 0.036 –0.252 5.588

–0.391 0.143 –0.186 –0.574 0.227 –3.652
1.227 –0.476 0.908 –0.733 –0.146 –14.729

–0.774 –3.297 –0.893 1.470 –0.468 18.368
0.807 0.030 1.033 –0.533 –0.585 –12.020
1.597 –1.308 0.837 –0.702 0.455 –11.534
1.595 –0.281 –1.685 1.117 –0.632 18.330

–0.664 0.113 –0.098 –0.423 –0.432 –0.882
1.529 –2.106 0.592 0.126 1.466 –6.664
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illustrated above. However, there are many cir-
cumstances where either the underlying market
segments are unknown or the existing market
segments, defined a priori, fail to display such
heterogeneity in terms of the structure of the
regression function (e.g., their market consump-
tion behavior). For example, market segments
defined solely on the basis of demographics
tend not to display structurally different regres-
sion functions when modeling purchase behav-
ior. Plotting the data may be beneficial when
there are one or two independent variables

but would be of little assistance for the data in
Table 19.1, where there are five independent
variables, as detailed plotting in six dimensions
is impossible.

The purpose of this chapter is to review
a class of models for problems of this
nature where the underlying basis of customer
heterogeneity (i.e., discrete market segments) is
unknown a priori. Our objective is to simultane-
ously estimate the number of market segments,
their size and composition, and the segment-
specific regression coefficients. In essence, we

Latent Structure Regression–•–397

Standard 
Adjusted Error of the

Model R R-Square R-Square Estimate

1 .244a .060 –.047 11.836924

Model Summary

a. Predictors: (Constant), X5, X3, X2, X1, X4.

Sum of Mean 
Model Squares df Square F Sig.

1 Regression 390.412 5 78.082 .557 .732a

Residual 6164.962 44 140.113
Total 6555.374 49

ANOVAb

a. Predictors: (Constant), X5, X3, X2, X1, X4.

b. Dependent Variable: Y.

Standardized 
Unstandardized Coefficients Coefficients

Model B Std. Error Beta t Sig. 

1 (Constant) .864 1.776 .487 .629
X1 –1.633 1.878 –.136 –.870 .389
X2 .352 1.671 .031 .211 .834
X3 1.932 1.693 .175 1.142 .260
X4 .493 2.165 .037 .228 .821
X5 1.639 1.767 .137 .928 .359

Coefficientsa

a. Dependent Variable: Y.

Table 19.2 SPSS Aggregate Regression Analysis for Entire Sample

19-Grover.qxd  5/23/2006  1:03 PM  Page 397



use the same data as in ordinary multiple regres-
sion and attempt to learn much more about the
underlying structure of the data. The problem is
essentially the same as that in Equation (6), but
now, the segment indicators zik are unknown. We
will first continue to treat problems involving
assumptions of normality of the dependent vari-
able, which are very common in marketing, and
later discuss alternative formulations.

This class of (latent structure regression)
methods enables marketers to engage in

response-based segmentation (i.e., identifying
segments that are homogeneous in how they
respond to market stimuli) and enables predic-
tion of a dependent measure of interest such as
attitude, preference, or choice. Since predicting
measures of marketing effectiveness is both
common and important, response-based segmen-
tation is a particularly powerful approach to seg-
mentation. Many applied and academic studies
have used this approach (cf. Wedel & Kamakura,
2000). Previously, marketing researchers have

398–•–ANALYSIS AND MODELING

Standard 
Adjusted Error of the

Model R R-Square R-Square Estimate

1 .996a .993 .991 1.120445

Model Summary

a. Predictors: (Constant), X5, X3, X1, X2, X4.

Sum of Mean 
Model Squares df Square F Sig.

1 Regression 3360.091 5 672.018 535.303 .000a

Residual 23.853 19 1.255
Total 3383.943 24

ANOVAb

a. Predictors: (Constant), X5, X3, X1, X2, X4.
b. Dependent Variable: Y.

Standardized 
Unstandardized Coefficients Coefficients

Model B Std. Error Beta t Sig. 

1 (Constant) .308 .240 1.284 .215
X1 1.520 .281 .109 5.401 .000
X2 .370 .222 .033 1.670 .111
X3 7.533 .216 .721 34.800 .000
X4 –5.868 .312 –.407 –18.798 .000
X5 1.877 .232 .160 8.074 .000

Coefficientsa

a. Dependent Variable: Y.

Table 19.3 SPSS Regression Analysis for Market Segment 1
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used combinations of approaches to do seg-
mentation and prediction (e.g., cluster analysis
followed by regression analysis), but these
approaches have been shown to be much less
effective or even not applicable at all in many
situations (Wedel & Kamakura, 2000). Two
important areas of application of these response-
based segmentation models are conjoint analy-
sis and scanner data modeling. Here, one can
estimate the importance of product attributes for
preference formation in segments of consumers

that are not identified a priori but are formed
based on their latent, unobservable preferences
for product attributes (cf. DeSarbo &
Ramaswamy, 1995; DeSarbo, Wedel, Vriens, &
Ramaswamy, 1992). Or one estimates the effect
of price and promotion on consumer choice,
grouping consumers into segments that are max-
imally different in terms of these effects. Other
applications of response-based segmentation
include the analyses of transaction databases
where segments of customers are derived for

Latent Structure Regression–•–399

Standard 
Adjusted Error of the

Model R R-Square R-Square Estimate

1 .997a .994 .992 .960690

Model Summary

a. Predictors: (Constant), X5, X2, X3, X4, X1.

Sum of Mean 
Model Squares df Square F Sig.

1 Regression 2781.179 5 556.236 602.688 .000a

Residual 17.536 19 .923
Total 2798.714 24

ANOVAb

a. Predictors: (Constant), X5, X2, X3, X4, X1.
b. Dependent Variable: Y.

Standardized 
Unstandardized Coefficients Coefficients

Model B Std. Error Beta t Sig. 

1 (Constant) –.154 .231 –.666 .514
X1 –1.258 .209 –.125 –6.014 .000
X2 –.509 .217 –.044 –2.344 .030
X3 –7.546 .211 –.679 –35.783 .000
X4 6.257 .245 .522 25.542 .000
X5 –1.762 .220 –.152 –8.022 .000

Coefficientsa

a. Dependent Variable: Y.

Table 19.4 SPSS Regression Analysis for Market Segment 2
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optimal targeting of offerings. In essence, one
can apply such latent structure regression meth-
ods in the same scenarios as where ordinary
multiple regression is typically applied.

Thus, latent structure regression models are a
powerful and useful tool for marketing research,
enabling the development of response models of
consumer behavior and grouping of consumers
based on differences in the response models
across segments. Latent structure regression
provides a powerful approach to model data that
can be considered continuous, such as many
rating scales in marketing (if the number of
scale points is 7 or larger). Here, the regression
framework allows one to build quite general
representations of consumer behavior through
the inclusion of main effects, interaction effects,
nonlinear effects, dummy variables, and so on.
In combination with the latent structure that
facilitates segmentation based on such general
response models, this gives rise to a broad class
of response-based segmentation models. The
great appeal of this approach derives from the
flexibility of the linear modeling framework
to represent consumer behavior. However, these
latent structure regression models cannot be
estimated with OLS but have to be estimated
with algorithms such as the E-M algorithm.
The E-M algorithm is a very robust algorithm
that iterates between estimating the probability
that each consumer belongs to each segment
(E step) and fitting a regression weighted
with these probabilities for each segment (M
step) until convergence. The next section of this
chapter describes the latent structure regression
framework and the E-M estimation algorithm.
Also, we discuss several technical issues that
are relevant, including the simultaneous
estimation of the posterior probabilities of
membership of consumers into classes. These
probabilities reflect the (un)certainty with
which each respondent can be classified into
every segment, and have important applications
in targeting segments or individuals (e.g., in
applications in direct marketing and customer
relationship management [CRM]). Also, we will
discuss how to decide which number of seg-
ments describes the data best, for which various
(information) statistics have been proposed.

However, many phenomena in marketing
are not well captured by the normal distribution

that is assumed in the latent structure regres-
sion approach. For example, in many marketing
studies, choice data are collected where the
dependent variable indicates whether a prod-
uct is chosen. Or, one wishes to investigate the
frequency with which products or services are
used, where the dependent variable is a count
taking on integer values of zero and larger. Or,
one collects data on times, such as response
latencies or retention times. Such times typi-
cally are positive and skewed, features that
are not very well captured by the normal distri-
bution. Consequently, for each of these types
of variables, a different distribution needs to
be chosen. Mostly, one chooses the binomial
or multinomial distribution for choices, the
Poisson distribution for counts, and the gamma
distribution for times. While such a regression
of such outcome variables is seemingly more
complex, it is in fact not much more so. These
distributions (normal, Poisson, binomial, and
gamma) are all members of the so-called expo-
nential family of distributions, and since they
are in that same family, all these distributions
can be accommodated through the same princi-
ples, as a single class rather than as a collection
of special cases. Regression models that involve
an outcome variable in the exponential family
are very well studied, often applied, and are
called “generalized linear models.” It takes not
much more human or computer effort to esti-
mate them than linear regression models.
Models that are well-known and often applied
in marketing, including logistic regression, pro-
bit regression, and count data regression, are
special cases. Rather than using least squares,
generalized linear models are estimated with
the method of maximum likelihood.

The likelihood is a measure of fit. It is,
loosely speaking, obtained as the probability
that a specific set of model parameters has gen-
erated the data set at hand. The distribution of
the dependent variable (normal, binomial, etc.)
is instrumental in computing those probabilities
for each consumer, and since consumers are
assumed to come from a random sample of the
population, the probability of the sample is the
product of the probabilities for each consumer.
In many cases, the likelihood function needs
to be maximized numerically to obtain the para-
meter estimates. A variety of numerical search

400–•–ANALYSIS AND MODELING
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algorithms can be used for that purpose, and in
most cases, these converge in a few iterations
only (because the likelihood is concave in the
parameters for generalized linear models).
Given the popularity of generalized linear mod-
els for the analysis of consumer behavior, their
extension to a latent structure framework opens
up a broad array of response-based segmenta-
tion models. Because it allows the simultaneous
segmentation and estimation of generalized lin-
ear models for each class, this class of models
has received much interest in marketing theory
and practice, particularly after Windows-based
software (GLIMMIX, Latent Gold, Sawtooth
CBC) had been developed to facilitate their esti-
mation. Most of the packages apply E-M-type
algorithms for the estimation of latent structure
regression models. Now, marketers can do
response-based segmentation in conjoint and
scanner data applications and identify segments
in such a way that consumer response to the
marketing mix in these segments is optimal.
These mixtures of generalized linear models
constitute a very broad class of models, where
one can choose from various types of depen-
dent measures, select very flexible predictor
functions as described above, and deal with con-
sumer heterogeneity and the identification of
segments all at the same time. The second part
of this chapter describes the details of this even
broader class of models, and technical details
are given in the appendix. We provide applica-
tions to synthetic and empirical data. Finally, we
discuss in more depth why these models are
conceptually appealing to marketing managers
and what their advantages and disadvantages are
over other approaches that assume a continuous
distribution of consumer heterogeneity.

NORMAL LATENT

STRUCTURE REGRESSION

The Model Framework

In addition to the notation developed above,
following DeSarbo and Cron (1988), let

k = 1, . . . , K market segments (now unknown),

bjk = the value of the jth regression coefficient for
the kth segment,

σ k
2 = the variance term for the kth segment,

λk = the size (proportion) of segment k.

We now assume yi is distributed as a finite sum
or “mixture” of conditional univariate normal
densities:

where Xi = ((Xij))i and bk = ((bj))k. That is, we
assume an independent sample of subjects’ (or
observations’) dependent variable y1,y2, . . . ,y1

drawn randomly from a finite mixture of condi-
tional normal densities of underlying groups or
segments in unknown proportions λ1,λ2,. . . ,λK.
That is, (7) is equivalent to (6), but the
unobserved segment proportions λK replace
the observed 0/1 segment indicators zik. Thus, in
(7), the contributions of the segment-specific
regression functions are weighted with the seg-
ment sizes, as in (6), but here those segment
proportions are unknown.

The parameters of the latent structure regres-
sion model can be estimated by maximizing a
likelihood function. The likelihood is based
on the assumption of a conditional normal dis-
tribution of the dependent variable within each
segment. Once the likelihood is formed, maxi-
mizing it over the parameters provides those
parameter values that are most likely to have
produced the data. Given a sample of I indepen-
dent subjects/observations, one can thus form a
log-likelihood (maximizing the log of the likeli-
hood is equivalent to maximizing the likelihood,
but simpler) to estimate λk σ k

2 and bjk (as is done
in ordinary multiple regression using maximum
likelihood estimation [MLE], as developed ear-
lier) and is described in detail in the appendix.
As mentioned above, here one relaxes the
assumption that the segments and their sizes are
known a priori and estimates the segment sizes
λk rather than being able to use the observed
segment indicators zik to run separate regres-
sions for each segment. However, after these
model parameters are estimated, one may still

yi ∼
K∑

k=1

λkfik(yi |Xij, σ
2
k
, bjk)

=
K∑

k=1

λk(2πσ 2
k
)−1/2 exp

[−(yi − Xibk)
2

2σ 2
k

]

Latent Structure Regression–•–401

(7)

,
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want to assign each of the subjects i to one
of the k segments. One does this by obtaining
estimates of the posterior probability of mem-
bership for any consumer i in each derived seg-
ment ki, p̂jk once one has obtained estimates of
the parameters λ̂k, σ̂ k

2 and b̂jk via the application
of Bayes rule, as shown in the appendix. This
result renders a “fuzzy” clustering of the I con-
sumers/observations, which is analogous to the
“hard” partition of the sample obtained if seg-
ment composition were known a priori in the
form of the indicators zik. But one could form
similar “hard” partitions by applying the rule
(which is the optimal Bayes rule):

Assign i to k if p̂ik > p̂il for all l ≠ k = l . . . K.

The appendix describes the technical aspects
of the estimation procedure devised by DeSarbo
and Cron (1988) to estimate λk , bjk, and σ k

2 that
maximize the log likelihood in (9), given y, X,
and a value of K. Finally, note that estimates of
λk,σ k

2, Pik, and bjk are obtained all simultaneously
by latent structure regression estimation meth-
ods such as the procedure outlined in the appen-
dix. Maximum likelihood estimates of the class
sizes (λk) and of the regression parameters
within each class (σ k

2 and bjk) are obtained via
the E-M algorithm, which involves two steps. In
the expectation step, cases are classified into the
latent classes based on the current parameter
estimates, using the Bayes rule (shown in the
appendix). In the maximization step, a weighted
least squares regression is fit to each latent class,
using the current membership probabilities
obtained from the previous expectation step
as weights. The E-M steps are iterated until
convergence, leading to maximum likelihood
estimates of the model parameters.

Determining K* == the Optimal
Number of Segments

When applying the above models to data, the
actual number of segments K* is unknown and
must be inferred from the data. Unfortunately,
the standard likelihood ratio statistic (the differ-
ence of the maximized likelihood of the two
models with K and K + 1 segments) for this test
does not apply. Wedel and Kamakura (2000)
discuss a number of alternative heuristics for

selecting K*. One class of criteria for inves-
tigating the number of segments that is fre-
quently used is various information criteria.
Such measures attempt to balance the increase
in fit obtained against the larger number of param-
eters estimated for models with more segments.
Basically, such criteria impose a penalty on the
likelihood that is monotone with the number of
free parameters estimated:

C = –21n Lmax + Pd.

Here, P is the number of free parameters
estimated (JK + 2K – 1), and d is some constant.
The constant imposes a penalty on the likeli-
hood, which balances the increase in fit (more
parameters yield a higher likelihood) against the
additional number of parameters estimated. The
classical Akaike (1974) information criterion,
AIC, arises when d = 2. Two criteria that penal-
ize the likelihood more heavily than AIC are the
Bayesian information criterion (BIC) and the
consistent Akaike information criterion (CAIC).
For those criteria, d = ln(I) and d = ln (I + 1),
respectively. Note that the CAIC penalizes the
likelihood somewhat more than BIC, although
the two criteria render similar decisions as to K*
in most applications. Both statistics impose a
larger penalty on the likelihood than AIC and
are more conservative than the AIC statistic in
that they tend to favor more parsimonious mod-
els (i.e., models with fewer segments). Studies
by Bozdogan (1987, 1994) indicate that CAIC is
preferable in general for mixture models.
Bozdogan also proposed the modified AIC3
criterion, for which d = 3.

The preceding heuristics account for over-
parameterization as large numbers of segments
are derived, but one must also ensure that the
segments are sufficiently separated for the solu-
tion that is selected. To assess the separation
of the segments, an entropy statistic can be for-
mulated to investigate the degree of separation
in the estimated posterior probabilities. Ek is a
relative and nonlinear measure that is bounded
between 0 and 1. Values close to 1 indicate that
the derived segments are well separated. A value
close to 0, indicating that all the posteriors
are equal for each observation, is of concern as
it implies that the centroids of the segments
are not sufficiently well separated. Celeux and

402–•–ANALYSIS AND MODELING
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Soromenho (1996) proposed a normalized
entropy criterion (NEC) for the selection of the
number of segments in mixture models. A
potential problem with the measure is that it is
not defined for K = 1. Hence, NEC should
preferably be applied in conjunction with one of
the other informational criteria in determining
the number of segments for K > 2. See Wedel
and Kamakura (2000) for a discussion of other
heuristics. (Note that one can also compute an
overall R2 for such latent structure regression
solutions as in ordinary multiple regression.)

The major difficulty one faces with the use of
these heuristics is that there are occasions when
they may point to different optimal values of K*.
This is especially pronounced with the informa-
tion-based heuristics, where AIC and AIC3 tend
to select overparameterized (K* too large) solu-
tions as opposed to the more conservative BIC
and CAIC measures. Another problem is that in
general, these measures will select a larger
number of segments when the sample size
increases. In a recent extensive Monte Carlo
study, Dias (2004) shows that if one compares
AIC, BIC, CAIC, AIC3, ICOMP, and NEC sta-
tistics for the selection of the number of seg-
ments in a (discrete) latent class model, AIC3
appears to outperform the other measures, with
an overall hit rate of more than 70%. BIC and
CAIC performed relatively well, with hit rates
around 60%. We therefore recommend these
three measures.

The Synthetic Data Example

Recall the synthetic data illustration pre-
sented in Table 19.1 and how the overall aggre-
gate regression function (see Table 19.2) masks
the true data structure. The true structure was
revealed in Tables 19.3 and 19.4 once the previ-
ously unknown market segments were revealed.
Now, let’s assume we know nothing in advance
about the underlying market segments and per-
form the latent structure regression analysis on
the Table 19.1 data. Table 19.5a presents the
various heuristics for k = 1, . . . , 4. As aptly
noted, the procedure accurately reveals the
structure underlying the data as all heuristics
select the K* = 2 segment solution. Table 19.5b
presents the K* = 2 segment solution parameter
values, which are indeed similar to those found

in Tables 19.3 and 19.4 when we assumed the
market segments were known. Thus, for this
synthetic example, the latent structure regres-
sion performs very well in simultaneously
estimating the number of market segments, their
size and composition, and the segment-specific
regression parameters.

ALTERNATIVE LATENT STRUCTURE

REGRESSION SPECIFICATIONS

The number of applications of generalized
linear models (which include as special cases
linear regression, logit and probit models, log-
linear, and multinomial models) in marketing
has been enormous. Generalized linear models
(Nelder & Wedderburn, 1972) are regression
models in which the dependent variable is
specified to be distributed according to one of
the members of the exponential family (see
Table 19.6). Generalized linear models deal
with continuous variables, which can be speci-
fied to follow a normal, gamma, or exponential
distribution; for discrete variables, the binomial,
multinomial, Poisson, or negative binomial
distributions can be used, among others. Each
of those distributions has extensive applications
in marketing. For example, the normal is used
for continuous measures, often rating scales,
although these are strictly speaking categorical.
Nevertheless, in applications, one often treats
them as continuous. Consumer choices of 
products are discrete and often described with
the binomial distribution; purchase counts are
mostly modeled with a Poisson distribution,
which describes them to be positive and accom-
modates their nature as integer (0, 1, 2, . . .) vari-
ables. Response and retention times are positive
and skewed and therefore best described with
a gamma (or exponential as a special case) dis-
tribution. The expectation of these dependent
variables is modeled as a function of a set of
explanatory variables as in standard multiple
regression models discussed earlier. Thus, gen-
eralized linear models provide a very rich
framework for modeling marketing response,
enabling one to deal independently with a wide
variety of stochastic forms of the dependent
variable, reflecting uncertainty in consumer
behavior or the marketer’s knowledge of it, as
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well as the richness of the structure of the mar-
keting problem in terms of how explanatory
variables affect the expectation of the dependent
variable through linear, nonlinear (e.g., quadratic),
and interactive functions.

However, as we have seen, the estimation of
a single aggregate (generalized linear) regres-
sion equation across all consumers in a sample
may be inadequate if the consumers belong to a
number of unknown segments in which the
regression coefficients differ. An alternative
motivation for such mixture regression models
comes from random coefficient specifications.
In random coefficient models, the coefficients
of a generalized linear model are assumed to
follow some distribution across the population
to account for heterogeneity. Often, the normal
distribution is assumed, but a discrete distri-
bution can be assumed instead (e.g., the multi-
nomial in the case of a finite mixture model).
If one assumes a normal distribution of the
coefficients, each consumer has his or her own

coefficient, but these are constrained to come
from a continuous normal distribution. The
random coefficient models are not as easy to
estimate and necessitate the application of, for
example, simulated likelihood or hierarchical
Bayes methods (Wedel et al., 1999). However, if
one does not have a good prior about the shape
of the population distribution of the parameters
and assumes that it is discrete (binomial, multi-
nomial), then a latent structure model arises. In
that case, a finite number of support points with
accompanying probability mass are used to
approximate the distribution of the coefficients
over the population of consumers (i.e., instead of
estimating a parameter for each individual, a
limited set of parameters is estimated for rela-
tively homogeneous groups of individuals). This
is the finite mixture (or alternatively called latent
class/latent structure) formulation, which is
often more convenient than the continuous het-
erogeneity approximation because it is easy to
interpret the coefficients for each class, interpret
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Table 19.5 Latent Structure Regression Results for the Synthetic Data in Table 19.1

(a) Results

K* ln L # Parameters AIC AIC3 BIC CAIC R2 Entropy # Iterations

1 –191.31 7 396.62 403.62 410.01 417.01 0.06 0.00 2
2 –99.09 15 228.18 243.18 256.86 271.86 0.99 0.93 9
3 –92.17 23 230.33 253.33 274.31 297.31 1.00 0.90 16
4 –85.89 31 233.78 264.78 293.06 324.06 1.00 0.90 18

(b) The K* == 2 Solution

k = 1 k = 2

b0 0.289 –0.181
b1 1.584 –1.238
b2 0.358 –0.533
b3 7.513 –7.567
b4 –5.866 6.256
b5 1.875 –1.764

σ̂2 0.99 0.85

λ 0.52 0.48

Note: AIC = Akaike information criterion; AIC3 = modified Akaike information criterion, where d = 3; BIC = Bayesian
information criterion; CAIC = consistent Akaike information criterion.
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the classes as segments connecting well to
strategic marketing, and estimate the coeffi-
cients. The maximization of the likelihood is rel-
atively simple using such algorithms as the E-M
algorithm, where the application of continuous
distributions of the coefficients necessitates the
evaluation of high dimensional integration. In
addition, the finite mixture formulation has
much conceptual appeal to marketers since it
connects elegantly to the theory of market seg-
mentation, which uses discrete market segments
to explain differences in consumer behavior and
product differentiation.

Following Wedel and DeSarbo (1995), we
assume that the multivariate random variables
yi = (yir), i = 1, . . . , I and r = 1, . . . , R (replica-
tions) arise from a superpopulation that is a
mixture of a finite number (K) of populations
in proportions λ1, . . . , λk, where it is not known
in advance from which class a particular vector
of observations arises. Here, r = 1, . . . , R
denotes repeated observations of the dependent
variable for each consumer i. Although such
repeated measures can also be accommodated
in the latent class linear regression model
described above, we have omitted them for ease
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Table 19.6 Some Distributions in the Exponential Family

Distribution Notation Distribution Function Link

Binomial B(K,µ) In(µ/(K – µ))

Poisson p(µ) In(µ)

Negative binomial NB(µ,υ) In(µ/(υ + µ))

Multinomial M(µ) In(µ/(µk + µK))

Normal N(µ,σ) µ

Multivariate normal MVN(µ,Σ) µ

Exponential E(µ)

Gamma G(µ,υ)

Dirichlet D(µ) In(µ/(µk + µK))

Source: Adapted from McCullagh and Nelder (1989).
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of exposition. In fact, repeated measures provide
additional information for the classification of
cases into the latent class in the E step of the
E-M algorithm, leading to better defined latent
classes or segments. It is relatively easy to
deal with such repeated measures in particular
when they are considered to be independent.
In that case, the modeling exercise involves
stringing out the measurements on the I con-
sumers and the R replications in one long I*R
vector yi = (yir). Dependencies of the repeated
measures, if assumed to be present, can be
modeled through the structural component of
the model (i.e., by including lagged effects in
the independent variables, assuming the repeated
measures are made in time).

Thus far, the setup is similar to that for the
mixture of normal regressions described above,
except that we now have multiple replications (r)
for each consumer i. However, we now assume
that the conditional probability density function
of yir, given that yir comes from segment k, takes
the general exponential family form as described
in the appendix. Conditional upon segment k, the
yir are independently distributed according to a
particular distribution in this class with means
µkir. These are the means of the normal or Poisson
distributions or the expected probability of choice
for the binomial. Table 19.6, adapted from
McCullagh and Nelder (1989), presents several
characteristics of some common univariate dis-
tributions in the exponential family that are used
in developing this class of models. We specify a
linear predictor, ηkir, that captures the structural
part of consumer response that one wishes to
describe, such that in each segment, the linear
predictor is produced by J covariates X1, . . . , XJ

(XJ = (Xirj)), j = 1, . . . , J, and the parameter vec-
tors ββk = (βij) in segment k:

Thus, conditional upon segment k, a generalized
linear model is formulated with the specification
of the distribution of the random variable, yir,
a linear predictor ηkir. A link-function g(.) links
the mean of the random and the systematic

components. For the normal distribution, the link
function is linear (µkir = ηkir), the Poisson uses a
convenient log-link function (log(µkir) = ηkir),
and the binomial uses the logit link function
(log(µkir/1 – µkir) = ηkir); see McCullagh and
Nelder (1989). These link functions have the
property that the predicted values of the model
are consistent with the assumptions on the values
that the dependent variable can take on (i.e., any
value for the normal, positive values for the
Poisson, and between 0 and 1 for the binomial).
For example, the binomial distribution and the
logit link leads to the popular logistic regression
model of choice. Note that the linear predictor
can contain main effects, interactions, nonlinear
effects, dummy-coded discrete variables, and
more, which, in combination with the stochastic
nature of the dependent variable and the mixture
formulation accommodating segments and het-
erogeneity, affords a greatly flexible and general
modeling framework.

The purpose of the latent structure analysis
is to estimate the parameters characterizing the
segments and the within-segment regression
models. To accomplish this, we formulate the
likelihood function and maximize it, as described
in the appendix. The likelihood can be maxi-
mized using an E-M algorithm (Dempster,
Laird, & Rubin, 1977) or through direct numer-
ical maximization using such algorithms as
Newton-Raphson. Once estimates of the param-
eters have been obtained in any iteration of esti-
mation, estimates of the posterior probability,
pki, that observation i comes from latent seg-
ment k can be calculated for each observation
vector, yi, by means of Bayes theorem as before.

The proposed approach is similar to finite
ordinary mixture models, except for the specifi-
cation of the within-class generalized linear
model. Note that these methods as well as sev-
eral other published methods—including uni-
variate normal regression mixtures (DeSarbo &
Cron, 1988), binomial probit and logit regres-
sion mixtures (DeSoete & DeSarbo, 1991;
Wedel & DeSarbo, 1993), univariate Poisson
regression mixtures (Wedel, DeSarbo, Bult, &
Ramaswamy, 1993), latent class multinomial
logit model (Kamakura & Russell, 1989), and
latent class analysis (Goodman, 1974)—can be
obtained as special cases of this framework.

ηkir =
J∑

j=1

Xirjβkj.
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(9)
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APPLICATION: THE DODGE VIPER

In this illustrative application, we extend
the analysis originally presented by Malhotra
(1996) to demonstrate how the latent structure
regression approach can provide valuable
insights otherwise overlooked by traditional
regression analysis. Malhotra reports an interest-
ing psychographic study conducted in 1989
among visitors of auto shows as part of a concept
test for the Dodge Viper. Dodge had produced a
concept version of a new automobile (to be later
named the Dodge Viper) that was featured in a
number of auto shows throughout the United
States; it wanted to know what type of market
existed for such a car priced around $60,000.
Initially, Dodge hypothesized that the car would
be attractive to a Yuppie crowd—highly edu-
cated, affluent baby boomers who tended to pre-
fer imported vehicles. After a series of in-depth
personal interviews with consumers, a list of
some 30 psychographic questions was con-
structed to measure important constructs such as
patriotism, styling, prestige, personality, and so
on. These appear in Table 19.7 and are measured
on 9-point Likert scales (1 = definitely disagree
to 9 = definitely agree). In addition, an intention/
likelihood to buy question was asked in an effort
to understand how these psychological con-
structs affected buying intentions for the new
concept car. Knowledge of these key constructs
could drive advertising decisions and the posi-
tioning of the automobile. Targeted respondents
were interviewed at such auto shows, and some
400 completed surveys were collected.

Traditional Analysis Results

Given the large number of intercorrelated
psychographic variables present in the study,
Malhotra (1996) first conducted a principal
components analysis (PCA) among the 30 psy-
chographic items to attempt to reduce the total
number of dimensions of the data. Using
the “eigenvalue-greater-than1” rule, Malhotra
extracted nine principal components that account
for 78.53% of the total variance in these data.
Table 19.8 presents the varimax rotated PCA load-
ings for the nine-component solution. Malhotra
labels these varimax-rotated factors as follows:

Component Label

1 Financial concerns
2 Style consciousness
3 Societal concern
4 Patriotism
5 Optimism
6 Adventurous
7 Opinion leadership
8 Traditionalism
9 Intensity

As mentioned earlier, the questionnaire also
includes an intention-to-buy measure as the
marketing group wanted to understand how to
properly position the Viper. Table 19.9 presents
the aggregate total sample corresponding
regression analysis on these PCA scores for the
nine derived components. Table 19.9 indicates
that the total regression equation is significant,
with R2 = 0.522. As seen in Table 19.9, only the
first and eighth components (financial concerns
and traditionalism) are not statistically signifi-
cant. Overall, this model suggests that the major
psychographic constructs explaining likelihood
of purchase are adventurous, style, and opti-
mism. As Malhotra (1996) concludes, market-
ing communications should be designed to
appeal to these three major traits (see also
DeSarbo & Hausman, 2006).

Latent Structure Regression Results

Table 19.10a presents the various heuristics
for solutions k = 1, 2, 3, 4 using the latent
structure regression procedure. While the log-
likelihood steadily improves with increasing k,
we do not see consistent heuristics. The entropy,
AIC, and AIC3 point to K* = 2, while the BIC
and CAIC indicate K* = 1. Looking at R2 alone,
K* = 4 appears most appropriate. As mentioned
earlier, many times (unlike the synthetic data
results), these heuristics do not all render consis-
tent selection of the optimal K*. Given the dom-
inance of K* = 2 on half of these measures, let’s
examine that solution’s results. Table 19.10b pre-
sents the parameter estimates for the K* = 2
solution. As seen, Segment 1 has approximately
91 consumers in it, and Segment 2 has 309
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consumers. The derived regression coefficients
for Segment 2 are quite similar to the aggregate
regression function displayed in Table 19.9,
while the smaller segment’s estimated regression
coefficients are quite different. For Segment 1,
higher intention to purchase the Viper would cor-
respond to higher adventurism, opinion leader-
ship, and societal concerns and lower intensity,
style consciousness, financial concerns, and tra-
ditionalism. For Segment 2, higher intention to

purchase the Viper would relate to higher adven-
turism, style consciousness, optimism, patrio-
tism, and societal concerns. Thus, the analysis
renders some common factors (adventurism
and societal concerns) as well as segment-unique
factors (Segment 1: opinion leadership, intensity,
style consciousness, financial concerns, tradi-
tionalism; Segment 2: style consciousness, opti-
mism, and patriotism) upon which to promote
the vehicle.
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Table 19.7 Psychographic Items in Malhotra’s (1996) Dodge Viper Study

1. I am in very good physical condition. (V1)

2. When I must choose between the two, I usually dress for fashion, not comfort. (V2)

3. I have more stylish clothes than most of my friends. (V3)

4. I want to look a little different from others. (V4)

5. Life is too short not to take some gambles. (V5)

6. I am not concerned about the ozone layer. (V6)

7. I think the government is doing too much to control pollution. (V7)

8. Basically, society today is fine. (V8)

9. I don’t have time to volunteer for charities. (V9)

10. Our family is not too heavily in debt today. (V10)

11. I like to pay cash for everything I buy. (V11)

12. I pretty much spend for today and let tomorrow bring what it will. (V12)

13. I use credit cards because I can pay the bill off slowly. (V13)

14. I seldom use coupons when I shop. (V14)

15. Interest rates are low enough to allow me to buy what I want. (V15)

16. I have more self-confidence than most of my friends. (V16)

17. I like to be considered a leader. (V17)

18. Others often ask me to help them out of a jam. (V18)

19. Children are the most important things in a marriage. (V19)

20. I would rather spend a quiet evening at home than go out to a party. (V20)

21. American-made cars can’t compare with foreign-made cars. (V21)

22. The government should restrict imports of products from Japan. (V22)

23. Americans should always try to buy American products. (V23)

24. I would like to take a trip around the world. (V24)

25. I wish I could leave my present life and do something entirely different. (V25)

26. I am usually among the first to try new products. (V26)

27. I like to work hard and play hard. (V27)

28. Skeptical predictions are usually wrong. (V28)

29. I can do anything I set my mind to. (V29)

30. Five years from now, my income will be a lot higher than it is now. (V30)

Source: Case and data adapted from Malhotra (1996).
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One other aspect in Table 19.10 deserves
mention and may reveal some insights as to
these two segments. Segment 1’s estimate of σ 2

is much smaller than that for Segment 2, indicat-
ing that there appears to be substantial homogene-
ity among these 91 respondents. Unfortunately,
demographic, behavioral, and present car own-
ership data were not available to profile these
derived segments.

DISCUSSION

The finite mixture latent structure regression
model approach has proven to be a powerful
approach to analyzing marketing data. Its popular-
ity has been propelled by the wide availability of
(commercial) software such as GLIMMIX (Wedel,
2001) and Latent Gold (Vermunt & Magdison,
2005). Heterogeneity is of key importance in
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Table 19.8 PCA Varimax-Rotated Components

Rotated Component Matrixa

Component

1 2 3 4 5 6 7 8 9

V2 –.013 .907 .022 .054 .005 .072 .004 .001 .006
V3 .012 .905 .035 .069 .013 .053 –.009 .008 –.009
V4 .040 .826 .007 –.002 .094 .036 .027 .043 .015
V5 .005 .648 .006 –.093 .129 .036 .072 –.034 –.045
V6 .005 .162 .196 .156 .164 .445 .019 –.003 –.236
V7 .000 .029 .764 –.027 .051 .165 .073 .011 –.392
V8 .034 –.011 .837 –.022 .039 .131 .032 –.016 –.284
V9 .020 .030 .859 .050 –.041 –.087 .034 –.004 .367
V10 .011 .041 .858 .048 –.032 –.095 .011 –.011 .356
V11 .896 –.005 .013 .001 –.038 .037 .004 –.012 –.021
V12 .902 –.007 .006 –.010 –.021 .002 –.028 –.002 .007
V13 .937 –.008 .005 –.011 –.021 .011 .012 –.027 .003
V14 .937 .019 .029 –.004 –.010 .013 .010 .004 .013
V15 .871 .027 .020 –.007 .052 –.036 –.028 .015 .009
V16 .758 .025 –.010 .017 .061 –.023 –.028 .079 .065
V17 .001 .037 .035 .080 .011 .063 .903 –.016 –.001
V18 –.025 .011 .042 .056 .082 .016 .935 –.032 –.015
V19 –.028 .054 .032 .006 .020 –.045 .877 .028 –.001
V20 .026 .016 .003 .006 –.015 –.015 .001 .901 –.056
V21 .025 –.004 –.018 .009 –.040 .018 –.017 .900 .035
V22 –.048 –.014 .027 .955 .020 .074 .042 .003 –.003
V23 .001 .011 .010 .955 .054 .082 .070 .006 –.016
V24 .035 .010 .004 .915 .055 .056 .034 .008 .009
V25 –.044 .061 .033 .079 .043 .912 .031 –.005 .038
V26 –.004 .061 –.015 .063 .064 .923 .008 –.015 .048
V27 .045 –.002 –.036 –.010 .101 .708 –.020 .030 .328
V28 .053 –.023 .045 –.006 .105 .221 –.005 –.021 .618
V29 .005 .101 .036 .041 .950 .117 .034 –.037 .020
V30 .018 .070 .002 .028 .955 .126 .038 –.028 .047
V31 .003 .098 –.021 .062 .896 .047 .046 .000 .048

Note: Extraction method: principal component analysis. Rotation method: varimax with Kaiser normalization.

a. Rotation converged in seven iterations.
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marketing and has since long been the very topic
of its investigation. Finite mixture models provide
a flexible and relatively simple representation of
heterogeneity that ties in very well with the notion
of the existence of market segments (for a discus-
sion, see Wedel & Kamakura, 2000; Wedel et al.,
1999). The ability to capture unobserved hetero-
geneity with a finite mixture model depends on
the volume and quality of information available

from each consumer. An important distinction
between the formulations of the normal latent
structure regression presented in (A2) and the
generalized linear latent structure model in (A29)
is that the latter formulation considers replications
within each consumer. With more replications per
consumer, additional information is available
regarding individual behavior, leading to a clearer
definition of the latent segments.
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Standard 
Adjusted Error of the

Model R R-Square R-Square Estimate

1 .723a .522 .511 1.808

Model Summary

a. Predictors: (Constant), PCA9, PCA8, PCA7, PCA6, PCA5, PCA4, PCA3, PCA2, PCA1.

Sum of Mean 
Model Squares df Square F Sig.

1 Regression 1395.267 9 155.030 47.401 .000a

Residual 1275.531 390 3.271 
Total 2670.797 399

ANOVAb

a. Predictors: (Constant), PCA9, PCA8, PCA7, PCA6, PCA5, PCA4, PCA3, PCA2, PCA1.
b. Dependent Variable: PREF.

Standardized 
Unstandardized Coefficients Coefficients

Model B Std. Error Beta t Sig. 

1 (Constant) 5.023 .090 55.544 .000
PCA1 .111 .091 .043 1.225 .221
PCA2 .774 .091 .299 8.550 .000
PCA3 .385 .091 .149 4.249 .000
PCA4 .388 .091 .150 4.282 .000
PCA5 .762 .091 .294 8.413 .000
PCA6 1.371 .091 .530 15.143 .000
PCA7 .201 .091 .078 2.225 .027
PCA8 .096 .091 .037 1.063 .288
PCA9 –.278 .091 –.108 –3.073 .002

Coefficientsa

a. Dependent Variable: PREF.

Table 19.9 Aggregate Regression Model Fit on PCA Scores
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Despite its conceptual and computational
attractions, the finite mixture model approach is
not without its limitations. The most important
ones have been cited by Allenby and Rossi
(1999). The main critiques against the finite
mixture model approach are that it assumes that,
within each given segment, all consumers
behave exactly in the same manner (i.e., have
precisely the same values of the regression coef-
ficients in the linear predictor). Whether this is
an acceptable assumption depends on the man-
ager’s purpose. If her or his purpose is to classify
the population of consumers into fewer market
segments containing relatively homogeneous
(compared across segments) consumers, the
assumption of homogeneity within each segment
might be adequate. However, some marketing
researchers use the results from finite a mixture
model to obtain individual-level estimates, leading

to the “convex hull” problem: Individual-level
predictions of finite mixture models are a
weighted combination of the segment-level
regression functions, weighted with the posterior
membership probabilities. Therefore, predic-
tions are constrained to lie within the boundaries
provided by 0/1 posterior membership weights.
This would imply that finite mixture models
might do less well in capturing the extremes of
distributions of heterogeneity and predicted val-
ues. For those interested in obtaining individual-
level estimates from a finite mixture model,
Kamakura and Wedel (2004) propose a proce-
dure for integrating out the asymptotic distribu-
tion of the parameter estimates, rather than using
point estimates, which alleviates (but does not
eliminate) the “convex hull” problem.

A commonly proposed alternative is continu-
ous mixtures where the regression parameters
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Table 19.10 Latent Structure Regression Results for the Viper PCA Scores

(a) Results

K ln L # Parameters AIC AIC3 BIC CAIC R2 Entropy # Iterations

1 –799.51 11 1621.01 1632.01 1664.92 1675.92 0.52 0.00 2
2 –772.99 23 1591.98 1614.98 1683.78 1706.78 0.61 0.91 242
3 –765.70 35 1601.39 1636.39 1741.09 1776.09 0.74 0.74 260
4 –754.85 47 1603.69 1650.69 1791.29 1838.29 0.94 0.58 200

(b) Parameter Estimates for K == 2 Solution

k = 1 k = 2

b0 6.482** 4.904**
b1 –6.05** 0.149
b2 –0.209 0.829**
b3 0.685** 0.323**
b4 –0.190 0.453**
b5 0.293** 0.753**
b6 1.140** 1.389**
b7 0.910** 0.163
b8 –0.340** 0.164
b9 –1.757** –0.177

σ̂2 0.100 1.701

λ 0.077 0.923

Note: AIC = Akaike information criterion; AIC3 = modified Akaike information criterion, where d = 3; BIC = Bayesian
information criterion; CAIC = consistent Akaike information criterion.

*p < .05. **p < .01.
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follow a normal distribution (Allenby & Rossi,
1999). Such a specification would not suffer
from the two problems mentioned above.
However, the assumption that parameters them-
selves have a normal distribution might not
be valid. Therefore, it seems that the extent to
which the finite mixture model versus the
continuous mixture model fits well is an
empirical issue (Wedel et al., 1999). Indeed, a
recent series of extensive studies by Andrews
and coauthors (e.g., see Andrews, Ainslie, &
Currim, 2002) reveals that there is little empiri-
cal evidence that the continuous heterogeneity
approach dominates the finite mixture approach.
These studies revealed that the differences are
small and that there is little reason to prefer one
approach to the other. One important exception
to this general rule is the case of discrete choice
data with few observations per subject (small R
above); here it appeared that the continuous
mixture does not do very well and is inferior to
the discrete heterogeneity approach.

Whereas these results should give applied
researchers confidence that the finite mixture
approach is valid if one deals with heteroge-
neous regression models, there remain caveats.
In all analyses, one needs to exercise great care
in checking the model specification. Distri-
butional assumptions can be incorrect, important
variables may have been omitted in the linear
predictors, the number of assumed segments is
too small or too large, or within-segment hetero-
geneity can be nonnegligible. The marketing and
statistics literatures have provided a range of
model checks and test statistics to investigate
these issues (see McLachlan, 2000; Wedel &
Kamakura, 2000), and we strongly suggest that
these tests and checks be used routinely in prac-
tice. In case model violations are discovered, the
model must be extended and adapted.

A host of extended finite mixture models are
now available that allow for demographic vari-
ables to explain segment membership simulta-
neously (concomitant variable mixtures), allow
segment composition to change over time
according to a first-order process and joint seg-
mentation based on sets of disparate variables
(hidden Markov models), accommodate latent
variables in the form of multidimensional scaling
(MDS) and/or factor representations (Wedel &
DeSarbo, 1996), and allow for within-segment

(normal) heterogeneity (Allenby, Arora, &
Ginter, 1998). In addition, there are interesting
applications of finite mixture models to prob-
lems such as data fusion (Kamakura & Wedel,
1997). While these approaches seem as yet to be
less often used in the practice of marketing
research, we believe that they may hold great
promise and are worth considering.

APPENDIX

The Normal Latent Structure
Regression Algorithm (DeSarbo &
Cron, 1988) and Its Mixture GLM
(Wedel & DeSarbo, 1995) Extension

A. The Normal Latent
Structure Regression Algorithm

Given a sample of I independent subjects/
observations, one can thus form a log-likelihood:

or

Given K, y, and X, one wishes to estimate λk,
σ k

2, and bjk to maximize L or ln L (as is done
in ordinary multiple regression using MLE, as
developed earlier), where

0 < λk < 1,

σ k
2 > 0.

The maximum likelihood estimates of λk, bk,
σ k

2, and pik are found by initially forming an

K∑
k=1

λk = 1,

(A2)

ln L =
I∑

i=1

ln

[
K∑

k=1

λk(2πσ 2
k
)−1/2 exp

[−(yi − Xibk)
2

2σ 2
k

]]

(A1)

L =
I∏

i=1

[
K∑

k=1

λk(2πσ 2
k
)−1/2 exp

[−(yi − Xibk)
2

2σ 2
k

]]
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augmented log-likelihood function to reflect the
λk constraints in expressions (A3) to (A5), and

The resulting maximum likelihood stationary
equations are obtained by equating the first-
order partial derivatives of the augmented log-
likelihood function in (A2) to 0:

where fik(*) is used for fik(yi⏐Xij,σ k
2,bjk). To esti-

mate µ, we multiply both sides of Equation (A2)
by λk and then sum both sides over k:

or

µ̂ = I.

To estimate λk, we multiply both sides of
Equation (A2) by λk and simplify:

or

and

To estimate σ k
2 and bjk, we use the definition of

p̂ik in (13) and reexpress (A8) and (A9) as:

Thus, the maximum likelihood equations for
estimating the parameters σ k

2 and bjk are
weighted averages of the maximum likelihood 

equations where θ reflects the

parameter of interest arising from each com-
ponent separately, and the weights are the
posterior probabilities of membership of the
subjects/observations in each cluster. These
posterior membership probabilities are obtained
via the application of Bayes rule:

This particular structure is equivalent to a two-
stage E-M algorithm (Dempster et al., 1977) for
the estimation of these parameters (see Hosmer,
1974). In the E stage, one estimates the class
sizes λk and the membership probabilities for
each case pik via expressions (A7) and (A17). In
the M stage, one estimates bjk and σ k

2 via K
weighted least squares regressions, using the
class membership probabilities pik as weights.
To show this M stage, we expand (A15) and
(A16):

∂Φ

∂bk

=
I∑

i=1

1∑
λkfik(∗)

· λk(2πσ 2
k
)−1/2

× exp

[−(yi − Xibk)
2

2σ 2
k

]
·

p̂ik = λ̂kfik(yi |Xij, σ̂
2
k
, b̂jk)

K∑
k=1

λ̂kfik(yi |Xij, σ̂
2
k , b̂jk)

∂ log fik(
∗)

∂θ
= 0,

∂Φ

∂σ 2
k

=
I∑

i=1

p̂ik

∂ log fik(
∗)

∂σ 2
k

= 0,

∂Φ

∂bjk

=
I∑

i=1

p̂ik

∂ log fik(
∗)

∂bjk

= 0.

λ̂k =

I∑
i=1

p̂ik

I
.

I∑
i=1

p̂ik − λkI = 0,

I∑
i=1

λkfik(
∗)∑

k

λkfik(∗)
− λkµ = 0,

I∑
i=1

∑
k

λkfik(
∗)

∑
k

λkfik(∗)
− µ

∑
k

λk = 0

∂Φ

∂λk

=
I∑

i=1

1∑
k

λkfik(∗)
fik(

∗) − µ = 0,

∂Φ

∂σ 2
k

=
I∑

i=1

1∑
k

λkfik(∗)
λk

∂fik(
∗)

∂σ 2
k

= 0,

∂Φ

∂bjk

=
I∑

i=1

1∑
k

λkfik(∗)
λk

∂fik(
∗)

∂bjk

= 0,

Φ =
I∑

i=1

ln

[
K∑

k=1

λkfik(yi |Xij, σ
2
k
, bjk)

]

−µ

(∑
k

λk − 1

)
.
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which are identical to the stationary equations
derived by solving the weighted least squares
problem, where y = (yi) and X are each weighted
by p̂½

ik Thus, the entire set of bk is derived by
performing K separate weighted least squares
analyses. Once this is done, the estimates of σ k

2

follow:

Multiplying both sides of (A19) by 2σk and
simplifying, one obtains:

Thus, σ̂ k
2 can be obtained during the K weighted

least squares procedures for estimating bk. Note
that because (A1) becomes unbounded as σ k

2 →
0, σ̂ k

2 is set to a default small positive value (.01)
if it becomes small during these iterations.

Thus, the computation of the maximum
likelihood estimates is facilitated by the use of
this E-M algorithm. Given starting values of
the parameters, the expectation (E phase) and
maximization (M phase) steps of this algorithm

are alternated until convergence of a sequence
of log-likelihood values is obtained. Dempster
et al. (1977) prove that:

where m is the iteration counter, indicating
that the E-M algorithm provides monotone
increasing values of the objective function.
Given the constraint σ k

2 ≥ .01 one can show that
Φ is bounded from above, and convergence to
at least a local maximum can be established
(cf. Titterington, Smith, & Makov, 1985). While
several authors (e.g., Everitt & Hand, 1981;
Redner & Walker, 1984) have documented
the potentially slow convergence rate of E-M
procedures for estimating the parameters of
unconditional mixture distributions, we find that
this E-M procedure typically converges in 300
or less iterations. Moreover, the iterations are
processed much faster than if a gradient-based
procedure had been used. Acceleration proce-
dures discussed by Peters and Walker (1978)
and Louis (1982) can also be implemented.

One of the appealing properties of maxi-
mum likelihood estimators is that, under typical
regularity conditions, these estimators are
asymptotically normal. Define b as a vector of
all the (b1, b2, . . . , bK) estimated coefficients
in a maximum likelihood context and B as the
corresponding vector of unknown population
parameters (B1, B2, . . . , BK). Then, according
to Theil (1971),

√I(b – B) →d N(O, lim(R(B)/I)–1),

where:

the information matrix. According to Judge,
Griffiths, Hill, Lütkepohl, and Lee (1985),
replacing lim(R(B)/I) by a consistent estimator
does not change the asymptotic distribution of
the test statistics or confidence intervals for b.
Here, the consistent estimator used is:

R(B) = −E

[
∂2Φ

∂B∂B′

]
,

�(θ(m+1)) ≥ �(θ(m)),

σ̂ 2
k

=

I∑
i=1

p̂ik(yi − Xibk)
2

I∑
i=1

p̂ik

.

=
I∑

i=1

p̂ik

[ −1

2σ 2
k

+ (yi − Xibk)
2

2σ 4
k

]
= 0.

∂Φ

∂σ 2
k

=
I∑

i=1

1∑
k

λkfik(∗)

[
λk exp

[−(yi − Xibk)
2

2σ 2
k

]

(−1
/

2(2πσ 2
k
)−3/22π)

+ λk(2πσ 2
k
)−1/2 exp

[−(yi − Xibk)
2

2σ 2
k

]

1
/

2(yi − Xibk)
2

2σ 4
k

]
= 0

(A18)

2(yi − Xibk)Xi

2σ 2
k

= 0

=
I∑

i=1

p̂ik(yi − Xibk)Xi = 0,
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and the asymptotic variances of b can be
defined as the main diagonal elements of F –1,
the asymptotic variance covariance matrix.
From (A22) to (A24), it follows that an asymp-
totic (1 – α) 100% confidence interval for Bn is
given by:

where Zα/2 is the central value of a normal dis-
tribution with mean 0 and variance 1, and f nn

–1 is
the asymptotic estimate of the variance of bn.

B. The Latent Structure
Generalized Linear Model Algorithm

For the extension to mixtures of generalized
linear models, we assume that the conditional
probability density function of yir, given that yir

comes from segment k, takes the general expo-
nential family form:

fir⏐k(yir⏐Θkir, αk) = exp{(yirΘkir – b(Θkir))/
γ(αk) + c(yir, αk)}

for specific functions a(.), b(.), and c(.) that
determine the specific distribution as a member
of the exponential family. Conditional upon
segment k, the yir are independently distributed
according to this distribution, with canonical
parameters Θkir and means µ kir. The parameter
αk is called the dispersion parameter—relevant
for some members of the exponential family
only such as the normal and the gamma distri-
butions, and it is assumed to be constant over
observations in segment k, while γ(αk) > 0. If αk

is known, then the distribution is a member of
the exponential family with canonical parame-
ter Θkir. The distribution may or may not be a
member of the exponential family if αk is
unknown (cf. McCullagh & Nelder, 1989; e.g.,
the negative binomial may not be a member
of the exponential family for such unknown
dispersion parameters). We specify a linear

predictor ηkir and a link function g(.) that captures
the structural part of consumer response that one
wishes to describe, such that in segment k:

ηkir = g(µ kir),

where the linear predictor is produced by J
covariates X1, . . . , XJ (XJ = (Xirj)), j = 1, . . . , J,
and the parameter vectors βk = (βij) in segment k:

Thus, conditional upon segment k, a generalized
linear model is formulated with the specification
of the distribution of the random variable, yir; a
linear predictor ηkir; and a function g(.), which
links the random and systematic components
(so-called canonical links occur when Θkir = ηkir

for the normal, Poisson, binomial, gamma, and
inverse Gaussian distributions; see McCullagh
& Nelder, 1989). The unconditional probability
density function of an observation vector yi can
therefore be expressed in the finite mixture form
(McLachlan & Basford, 1988):

where:

Φ′ = ((λ′, β′, π ′); λλ = (λ1, . . . , λK)′;
ββ = (β ′1, . . . , β ′K)′; αα = (α1, . . . , αK)′).

The purpose of the analysis is to estimate the
parameter vector Φ. To accomplish this, we
formulate the likelihood for Φ:

An estimate of Φ can be obtained by maximiz-
ing the likelihood Equation (A30) with respect
to Φ, subject to the restrictions in (A3) to (A5)
using an E-M algorithm (Dempster et al., 1977),
or through direct numerical maximization using

L(Φ; y) =
n∏

i=1

fi(yi |Φ).

fi(yi |Φ) =
K∑

k=1

λk

R∏
r=1

fir|k(yir|βk, αk),

ηkir =
J∑

j=1

Xirjβkj.

(bn − Zα/2

√
f −1

nn
, bn + Zα/2

√
f −1

nn
),

F = 1

I

[
I∑

i=1

(
∂Φ

∂b∗

) (
∂Φ

∂b∗

)′]

b∗=b

,
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algorithms such as Newton-Raphson. Once an
estimate of Φ has been obtained, estimates of
the posterior probability, pki, that observation i
comes from latent segment k can be calculated
for each observation vector yi by means of
Bayes theorem, where, as before, this posterior
probability is given by:

The entropy of the posterior classification is
provided by:
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